
HPcc as High Performance Commodity Computing
on Top of Integrated Java, CORBA, COM

and Web Standards

G.C. Fox, W. Furmanski, T. Haupt, E. Akarsu and H. Ozdemir

Northeast Parallel Architectures Center, Syracuse University, Syracuse NY, USA
gcf@npac.syr.edu, furm@npac.syr.edu

http://www.npac.syr.edu

A b s t r a c t . We review the growing power and capability of commodity
computing and communication technologies largely driven by commercial
distributed information systems. These systems are built from CORBA,
Microsoft's COM, JavaBeans, and rapidly advancing Web approaches.
One can abstract these to a three-tier model with largely independent
clients connected to a distributed network of servers. The latter host
various services including object and relational databases and of course
parallel and sequential computing. High performance can be obtained
by combining concurrency at the middle server tier with optimized par-
allel back end services. The resultant system combines the needed per-
formance for large-scale HPCC applications with the rich functionality
of commodity systems. Further the architecture with distinct interface,
server and specialized service implementation layers, naturally allows ad-
vances in each area to be easily incorporated. We illustrate how perfor-
mance can be obtained within a commodity architecture and we propose
a middleware integration approach based on JWORB (Java Web Object
Broker) multi-protocol server technology. Examples are given from col-
laborative systems, support of multidisciplinary interactions, proposed
visual HPCC ComponentWare, quantum Monte Carlo and distributed
interactive simulations.

1 I n t r o d u c t i o n

We believe that industry and the loosely organized worldwide collection of (free-
ware) programmers is developing a remarkable new software environment of
unprecedented quality and functionality. We call this DcciS - Distr ibuted com-
modi ty computing and information System. We believe tha t this can benefit
H P C C in several ways and allow the development of both more powerful paral-
lel p rogramming environments and new distributed metacomput ing systems. In
the second section, we define what we mean by commodi ty technologies and ex-
plain the different ways that they can be used in HPCC. In the third and critical
section, we define an emerging architecture of DcciS in terms of a conventional
3 tier commercial computing model, augmented by distr ibuted object and com-
ponent technologies of Java, CORBA, COM and the Web. This is followed in

56

sections four and five by more detailed discussion of the HPcc core technologies
and high-level services.

In this and related papers [5], we discuss several examples to address the
following critical research issue: can high performance systems - called HPcc or
High Performance Commodity Computing - be built on top of DcciS. Examples
include integration of collaboration into HPcc; the natural synergy of distribu-
tion simulation and the HLA standard with our architecture; and the step from
object to visual component based programming in high performance distributed
computing. Our claim, based on early experiments and prototypes is that HPcc
is feasible but we need to exploit fully the synergies between several currently
competing commodity technologies. We refer to our approach towards HPcc,
based on integrating several popular distributed object frameworks as Prag-
matic Object Web and we describe a specific integration metodology based on
multi-protocol middleware server, JWORB (Java Web Object Request Broker).

2 Commodity Technologies and Their Use in HPCC

The last three years have seen an unprecedented level of innovation and progress
in commodity technologies driven largely by the new capabilities and business
opportunities of the evolving worldwide network. The web is not just a document
access system supported by the somewhat limited HTTP protocol. Rather it is
the distributed object technology which can build general multi-tiered enterprise
intranet and internet applications. CORBA is turning from a sleepy heavyweight
standards initiative to a major competitive development activity that battles
with COM, JavaBeans and new W3C object initiatives to be the core distributed
object technology.

There are many driving forces and many aspects to DcciS but we suggest that
the three critical technology areas are the web, distributed objects and databases.
These are being linked and we see them subsumed in the next generation of
"object-web" [1] technologies, which is illustrated by the recent Netscape and
Microsoft version 4 browsers. Databases are older technologies but their linkage
to the web and distributed objects, is transforming their use and making them
more widely applicable.

In each commodity technology area, we have impressive and rapidly im-
proving software artifacts. As examples, we have at the lower level the collec-
tion of standards and tools such as HTML, HTTP, MIME, IIOP, CGI, Java,
JavaSeript, Javabeans, CORBA, COM, ActiveX, VRML, new powerful object
brokers (ORB's), dynamic Java clients and servers including applets and servlets,
and new W3C technologies towards the Web Object Model (WOM) such as
XML, DOM and RDF.

At a higher level collaboration, security, commerce, multimedia and other
applications/services are rapidly developing using standard interfaces or frame-
works and facilities. This emphasizes that equally and perhaps more importantly
than raw technologies, we have a set of open interfaces enabling distributed mod-
ular software development. These interfaces are at both low and high levels and

57

the latter generate a very powerful software environment in which large preex-
isting components can be quickly integrated into new applications. We believe
that there are significant incentives to build HPCC environments in a way that
naturally inherits all the commodity capabilities so that HPCC applications can
also benefit from the impressive productivity of commodity systems. NPAC's
HPcc activity is designed to demonstrate that this is possible and useful so that
one can achieve simultaneously both high performance and the functionality of
commodity systems.

Note that commodity technologies can be used in several ways. This article
concentrates on exploiting the natural architecture of commodity systems but
more simply, one could just use a few of them as "point solutions". This we can
term a "tactical implication" of the set of the emerging commodity technologies
and illustrate below with some examples:

- Perhaps VRML,Java3D or DirectX are important for scientific visualization;
- Web (including Java applets and ActiveX controls) front-ends provide con-

venient customizable interoperable user interfaces to HPCC facilities;
- Perhaps the public key security and digital signature infrastructure being

developed for electronic commerce, could enable more powerful approaches
to secure HPCC systems;

- Perhaps Java will become a common scientific programming language and
so effort now devoted to Fortran and C + + tools needs to be extended or
shifted to Java;

- The universal adoption of JDBC (Java Database Connectivity), rapid ad-
vances in the Microsoft's OLEDB/ADO transparent persistence standards
and the growing convenience of web-linked databases could imply a grow-
ing importance of systems that link large scale commercial databases with
HPCC computing resources;

- JavaBeans, COM, CORBA and WOM form the basis of the emerging "object
web" which analogously to the previous bullet could encourage a growing use
of modern object technology;

- Emerging collaboration and other distributed information systems could
allow new distributed work paradigms which could change the traditional
teaming models in favor of those for instance implied by the new NSF Part-
nerships in Advanced Computation.

However probably more important is the strategic implication of DcciS which
implies certain critical characteristics of the overall architecture for a high per-
formance parallel or distributed computing system. First we note that we have
seen over the last 30 years many other major broad-based hardware and software
developments - such as IBM business systems, UNIX, Macintosh/PC desktops,
video games - but these have not had profound impact on HPCC software. How-
ever we suggest the DcciS is different for it gives us a world-wide/enterprise-wide
distributing computing environment. Previous software revolutions could help
individual components of a HPCC software system but DcciS can in principle
be the backbone of a complete HPCC software system - whether it be for some

58

global distributed application, an enterprise cluster or a tightly coupled large
scale parallel computer.

In a nutshell, we suggest that "all we need to do" is to add "high performance"
(as measured by bandwidth and latency) to the emerging commercial concurrent
DcciS systems. This "all we need to do" may be very hard but by using DcciS as
a basis we inherit a multi-billion dollar investment and what in many respects is
the most powerful productive software environment ever built. Thus we should
look carefully into the design of any HPCC system to see how it can leverage
this commercial environment.

3 T h r e e T i e r H i g h P e r f o r m a n c e C o m m o d i t y C o m p u t i n g

A Web-based 3-Tier Cornputlng Syste/n

Fig. 1. Industry 3-tier view of enterprise Computing

We start with a common modern industry view of commodity computing with
the three tiers shown in fig 1. Here we have customizable client and middle tier
systems accessing "traditional" back end services such as relational and object
databases. A set of standard interfaces allows a rich set of custom applications
to be built with appropriate client and middleware software. As indicated on
figure, both these two layers can use web technology such as Java and Javabeans,
distributed objects with CORBA and standard interfaces such as JDBC (Java
Database Connectivity). There are of course no rigid solutions and one can get
"traditional" client server solutions by collapsing two of the layers together. For
instance with database access, one gets a two tier solution by either incorporating
custom code into the "thick" client or in analogy to Oracle's PL/SQL, compile
the customized database access code for better performance and incorporate the
compiled code with the back end server. The latter like the general 3-tier solution,
supports "thin" clients such as the currently popular network computer.

59

The commercial architecture is evolving rapidly and is exploring several ap-
proaches which co-exist in today's (and any realistic future) distributed informa-
tion system. The most powerful solutions involve distributed objects. Currently,
we are observing three important commercial object systems - CORBA, COM
and JavaBeans, as well as the ongoing efforts by the W3C, referred by some as
WOM (Web Object Model), to define pure Web object /component standards.
These have similar approaches and it is not clear if the future holds a single such
approach or a set of interoperable standards.

CORBA is a distributed object standard managed by the OMG (Object Man-
agement Group) comprised of 700 companies. COM is Microsoft 's distributed
object technology initially aimed at Window machines. JavaBeans (augmented
with RMI and other Java 1.1 features) is the "pure Java" solution - cross plat-
form but unlike CORBA, not cross-language! Finally, WOM is an emergent Web
model that uses new standards such as XML, RDF and DOM to specify respec-
tively the dynamic Web object instances, classes and methods.

Legion is an example of a major HPCC focused distributed object approach;
currently it is not built on top of one of the three major commercial standards.
The HLA/RTI [2] standard for distributed simulations in the forces modeling
community is another important domain specific distributed object system. It
appears to be moving to integration with CORBA standards.

Although a distributed object approach is attractive, most network services
today are provided in a more ad-hoc fashion. In particular today's web uses a
"distributed service" architecture with H T T P middle tier servers invoking via
the CGI mechanism, C and Perl programs linking to databases, simulations or
other custom services. There is a trend toward the use of Java servers with the
servlet mechanism for the services. This is certainly object based but does not
necessarily implement the standards implied by CORBA, COM or Javabeans.
However, this illustrates an important evolution as the web absorbs object tech-
nology with the evolution from low- to high-level network standards:

- from H T T P to Java Sockets to IIOP or RMI
- from Perl CGI Script to Java Program to JavaBean distributed object

As an example consider the evolution of networked databases. Originally
these were client-server with a proprietary network access protocol. In the next
step, Web linked databases produced a three tier distributed service model with
an H T T P server using a CGI program (running Perl for instance) to access the
database at the backend. Today we can build databases as distributed objects
with a middle tier JavaBean using JDBC to access the backend database. Thus a
conventional database is naturally evolving to the concept of managed persistent
objects.

Today as shown in fig 2, we see a mixture of distributed service and dis-
tributed object architectures. CORBA, COM, Javabean, H T T P Server + CGI,
Java Server and servlets, databases with specialized network accesses, and other
services co-exist in the heterogeneous environment with common themes but
disparate implementations. We believe that there will be significant convergence
as a more uniform architecture is in everyone's best interest.

60

[] [] [] [] []

ThL~ T I~ 0 cI eS l~e
~uw

I~]'a~aikelDmL,~

W W i b $ ~

Fig. 2. Today's Heterogeneous Interoperating Hybrid Server Architecture. HPcc in-
volves adding to this system, high performance in the third tier.

We also believe that the resultant architecture will be integrated with the
web so that the latter will exhibit distributed object architecture shown in fig 3.

More generally tile emergence of IIOP (lnternet lnter-OILB Protocol), CORBA2,
rapid advances with the Microsoft's COM, DCOM, and COM+, and the realiza-
tion that both CORBA and COM are naturally synergistic with Java is starting
a new wave of "Object Web" developments that could have profound impor-
tance. Java is not only a good language to build brokers but also Java objects
are the natural inhabitants of object databases. The resultant architecture in
fig 3 shows a small object broker (a so-called ORBlet) in each browser as in
Netscape's current plans. Most of our remarks are valid for all these approaches
to a distributed set of services. Our ideas are however easiest to understand if one
assumes an underlying architecture which is a CORBA or Javabean distributed
object model integrated with the web.

We wish to use this service/object evolving 3-tier commodi ty architecture
as the basis of our HPcc environment. We need to naturally incorporate (essen-
tially) all services of the commodity web and to use its protocols and standards
wherever possible. We insist on adopting the architecture of commodi ty distri-
bution systems as complex HPCC problems require the rich range of services
offered by the broader community systems. Perhaps we could "port" commodity
services to a custom HPCC system but this would require continued upkeep with
each new upgrade of the commodity service.

By adopting the architecture of the commodity systems, we make it easier
to track their rapid evolution and expect it will give high functionality HPCC
systems, which will naturMly track the evolving Web/dis t r ibuted object worlds.
This requires us to enhance certain services to get higher performance and to
incorporate new capabilities such as high-end visualization (e.g. CAVE's) or
massively parallel systems where needed. This is the essential research challenge
for HPcc for we must not only enhance performance where needed but do it in
a way that is preserved as we evolve the basic commodity systems.

61

Fig. 3. Integration of Object Technologies (CORBA) and the Web

We certainly have not demonstrated clearly that this is possible but we have
a simple strategy that we will elaborate in ref. [5] and sec. 5. Thus we exploit
the three-tier structure and keep HPCC enhancements in the third tier, which
is inevitably the home of specialized services in the object-web architecture.
This strategy isolates HPCC issues from the control or interface issues in the
middle layer. If successful we will build an HPcc environment that offers the
evolving functionality of commodity systems without significant re-engineering
as advances in hardware and software lead to new and better commodity prod-
ucts.

Returning to fig 2, we see that it elaborates fig 1 in two natural ways. Firstly
the middle tier is promoted to a distributed network of servers; in the "purest"
model these are CORBA/ COM/ Javabean object-web servers, but obviously
any protocol compatible server is possible. This middle tier layer includes not
only networked servers with many different capabilities (increasing functionality)
but also multiple servers to increase performance on an given service.

The use of high functionality but modest performance communication pro-
tocols and interfaces at the middle tier limits the performance levels that can
be reached in this fashion. However this first step gives a modest performance
scaling, parallel (implemented if necessary, in terms of multiple servers) HPcc
system which includes all commodity services such as databases, object services,
transaction processing and collaboratories. The next step is only applied to those
services with insufficient performance. Naively we "just" replace an existing back
end (third tier) implementation of a commodity service by its natural HPCC high
performance version. Sequential or socket based messaging distributed simula-
tions are replaced by MPI (or equivalent) implementations on low latency high

62

bandwidth dedicated parallel machines. These could be specialized architectures
or "just" clusters of workstations.

Note that with the right high performance software and network connectivity,
workstations can be used at tier three just as the popular "LAN consolidation"
use of parallel machines like the IBM SP-2, corresponds to using parallel com-
puters in the middle tier. Further a "middle tier" compute or database server
could of course deliver its services using the same or different machine from the
server. These caveats illustrate that as with many concepts, there will be times
when the relatively clean architecture of fig 2 will become confused. In partic-
ular the physical realization does not necessarily reflect the logical architecture
shown in fig 2.

4 C o r e T e c h n o l o g i e s f o r H i g h P e r f o r m a n c e C o m m o d i t y

S y s t e m s

4.1 Multidisciplinary Application

We can illustrate the commodity technology strategy with a simple multidisci-
plinary application involving the linkage of two modules A and B - say CFD and
structures applications respectively. Let us assume both are individually parallel
but we need to link them. One could view the linkage sequentially as in fig 4, but
often one needs higher performance and one would "escape" totally into a layer
which linked decomposed components of A and B with high performance MPI
(or PVMPI). Here we view MPI as the "machine language" of the higher-level
commodity communication model given by approaches such as WebFlow from
NPAC.

There is the "pure" HPCC approach of fig 5, which replaces all commodity
web communication with HPCC technology. However there is a middle ground
between the implementations of figures 4 and 5 where one keeps control (initial-
ization etc.) at the server level and "only" invokes the high performance back
end for the actual data transmission. This is shown in fig 6 and appears to ob-
tain the advantages of both commodity and HPCC approaches for we have the
functionality of the Web and where necessary the performance of HPCC soft-
ware. As we wish to preserve the commodity architecture as the baseline, this
strategy implies that one can confine HPCC software development to providing
high performance data transmission with all of the complex control and service
provision capability inherited naturally from the Web.

4.2 JavaBean Communicat ion Model

We note that JavaBeans (which are one natur~ul basis of implementing program
modules in the HPcc approach) provide a rich communication mechanism, which
supports the separation of control (handshake) and implementation. As shown
below in fig 7, Javabeans use the JDK 1.1 AWT event model with listener objects
and a registration/call-back mechanism.

63

Simple Server Approach

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Data

and
Control I

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Fig . 4. Simple sequential server approach to Linking Two Modules

Classic HPCC Approach

I I
e e e e e
0 0 0 0 0

Con~o l
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Fig . 5. Full HPCC approach to Linking Two Modules
control ~~

at server and data transfer at Data
H[~C level Only

0 0 0 0 0 ~ 0 0 0 0 0
0 0 0 0 0 ~ 0 0 0 0 0
0 0 0 0 0 ~ 0 0 0 0 0

Fig . 6. Hybrid approach to Linking Two Modules

64

Fig. 7. JDK 1.1 Event Model used by (inter alia) Javabeans

JavaBeans communicate indirectly with one or more "listener objects" acting
as a bridge between the source and sink of data. In the model described above,
this allows a neat implementation of separated control and explicit communi-
cation with listeners (a.k.a. sink control) and source control objects residing in
middle tier. These control objects decide if high performance is necessary or
possible and invoke the specialized HPCC layer. This approach can be used to
advantage in "run-time compilation" and resource management with execution
schedules and control logic in the middle tier and libraries such as MPI, PCRC
and CHAOS implementing the determined da ta movement in the high perfor-
mance (third) tier. Parallel I /O and "high-performance CORBA can also use
this architecture. In general, this listener model of communication provides a
virtualization of communication that allows a separation of control and data
transfer that is largely hidden from the user and the rest of the system. Note
that current Internet security systems (such as SSL and SET) use high func-
tionality public keys in the control level but the higher performance secret key
cryptography in bulk data transfer. This is another illustration of the proposed
hybrid multi-tier communication mechanism.

4.3 J W O R B b a s e d M i d d l e w a r e

Enterprise JavaBeans that control, mediate and optimize HPcc communication
as described above need to be maintained and managed in a suitable middleware
container. Within our integrative approach of Pragmatic Object Web, a CORBA
based environonment for the middleware management with IIOP based control
protocol provides us with the best encapsulation model for EJB components.
Such middleware ORBs need to be further integrated with the Web server based
middleware to assure smooth Web browser interfaces and backward compatibili ty
with CGI and servlet models. This leads us to the concept of JWORB (Java Web

65

Object Request Broker)[6] - a multi-protocol Java network server that integrates
several core services (so far dispersed over various middleware nodes as in fig 2)
within a single uniform middleware management framework.

An early JWORB prototype has been recently developed at NPAC. The base
server has H T T P and IIOP protocol support as illustrated in fig 8. It can serve
documents as an H T T P Server and it handles the IIOP connections as an Object
Request Broker. As an H T T P server, JWORB supports base Web page services,
Servlet (Java Servlet API) and CGI 1.1 mechanisms. In its CORBA capacity,
JWORB is currently offering the base remote method invocation services via
CDR based IIOP and we are now implementing higher level support such as the
Interface Repository, Portable Object Adapter and selected Common Object
Services.

Fig. 8. Overall architecture of the JWORB based Pragmatic Object Web middleware

During the s tar tup/boots t rap phase, the core JWORB server checks its con-
figuration files to detect which protocols are supported and it loads the necessary
protocol classes (Definition, Tester, Mediator, Configuration) for each protocol.
Definition Interface provides the necessary Tester, Configuration and Mediator
objects. Tester object inpects the current network package and it decides how to
interpret this particular message format. Configuration object is responsible for
the configuration parameters of a particular protocol. Mediator object serves the
connection. New protocols can be added simply by implementing the four classes
described above and by registering a new protocol with the JWORB server.

After JWORB accepts a connection, it asks each protocol handler object
whether it can recognize this protocol or not. If JWORB finds a handler which
can serve the connection, is delegates further processing of the connection stream

66

to this protocol handler. Current algorithm looks at each protocol according to
their order in the configuration file. This process can be optimized with random-
ized or prediction based algorithm. At present, only H T T P and IIOP messaging
is supported and the current protocol is simply detected based on the magic
anchor string value (GIOP for IIOP and POST, GET, HEAD etc. for H TTP) .
We are currently working on further extending JWORB by DCE RPC protocol
and XML co-processor so that it can also act as DCOM and WOM/WebBroker
server.

5 C o m m o d i t y S e r v i c e s i n H P c c

We have already stressed that a key feature of HPcc is its support of the natural
inclusion into the environment of commodity services such as databases, web
servers and object brokers. Here we give some further examples of commodity
services that illustrate the power of the HPcc approach.

5.1 Dis tr ibuted Collaboration Mechanisms

The current Java Server model for the middle tier naturally allows one to in-
tegrate collaboration into the computing model and our approach allow one to
"re-use" collaboration systems built for the general Web market. Thus one can
without any special HPCC development, address areas such as computat ional
steering and collaborative design, which require people to be integrated with
the computational infrastructure. In fig 9, we define collaborative systems as
integrating client side capabilities together. In steering, these are people with
analysis and visualization software. In engineering design, one would also link
design (such as CATIA or AutoCAD) and planning tools. In both cases, one
would need the base collaboration tools such as white-boards, chat rooms and
audio-video conferencing.

If we are correct in viewing collaboration (see Tango [10, 11] and Habanero
[12]) as sharing of services between clients, the a tier model naturally separates
HPCC and collaboration and allows us to integrate into the HPCC environment,
the very best commodity technology which is likely to come from larger fields
such as business or (distance) education. Currently commodity collaboration
systems are built on top of the Web and although emerging facilities such as
Work Flow imply approaches to collaboration, are not yet defined from a general
CORBA point of view. We assume that collaboration is sufficiently important
that it will emerge as a CORBA capability to manage the sharing and replication
of objects. Note CORBA is a server-server model and "clients" are viewed as
servers (i.e. run Orb's) by outside systems. This makes the object-sharing view of
collaboration natural whether application runs on "client" (e.g. shared Microsoft
Word document) or on back-end tier as in case of a shared parallel computer
simulation.

67

Fig. 9. Collaboration in today's Java Web Server implementation of the 3 tier com-
puting model. Typical clients (on top right) are independent but Java collaboration
systems link multiple clients through object (service) sharing

5.2 Object Web and Dis tr ibuted Simulat ion

The integration of HPCC with distributed objects provides an opportunity to
link the classic HPCC ideas with those of DoD's distributed simulation DIS or
Forces Modeling FMS community. The latter do not make extensive use of the
Web these days but they have a commitment to CORBA with their HLA (High
Level Architecture) and RTI (Runtime Infrastructure) initiatives. Distributed
simulation is traditionally built with distributed event driven simulators manag-
ing C++ or equivalent objects. We suggest that the Object Web (and parallel
and distributed ComponentWare described in sec. 5.3) is a natural convergence
point for HPCC and DIS/FMS. This would provide a common framework for
time stepped, real time and event driven simulations. Further it will allow one
to more easily build systems that integrate these concepts as is needed in many
major DoD projects - as exemplified by the FMS and IMT DoD computational
activities which are part of the HPCC Modernization program.

HLA is a distributed object technology with the object model defined by the
Object Model Template (OMT) specification and including the Federation Ob-
ject Model (FOM) and the Simulation Object Model (SOM) components. HLA
FOM objects interact by exchanging HLA interaction objects via the common
Run-Time Infrastructure (RTI) acting as a software bus similar to CORBA.
Current HLA/RTI follows a custom object specification but DMSO's longer
term plans include transferring HLA to industry via OMG CORBA Facility for
Interactive Modeling and Simulation.

At NPAC, we are anticipating these developments are we are building a pro-
totype RTI implementation in terms of Java/CORBA objects using the JWORB
middleware [7]. RTI is given by some 150 communication and/or utility calls,
packaged as 6 main managment services: Federation Management, Object Man-
agement, Declaration Managmeent, Ownership Management, Time Management,
Data Distribution Management, and one general purpose utility service. Our de-

68

Fig. 10. Overall architecture of the Object Web RTI - a JWORB based RTI prototype
recently developed at NPAC

sign shown in fig 10 is based on 9 CORBA interfaces, including 6 Managers, 2
Ambassadors and RTIKernel. Since each Manager is mapped to an independent
CORBA object, we can easily provide support for distributed management by
simply placing individual managers on different hosts.

The communication between simulation objects and the RTI bus is done
through the RTIambassador interface. The communication between RTI bus and
the simulation objects is done by their FederateAmbassador interfaces. Simula-
tion developer writes/extends FederateAmbassador objects and uses RTIambas-
sador object obtained from the RTI bus.

RTIKernel object knows handles of all manager objects and it creates RTI-
ambassador object upon the federate request. Simulation obtains the RTIambas-
sador object from the RTIKernel and from now on all interactions with the RTI
bus are handled through the RTIambassador object. RTI bus calls back (asyn-
chronously) the FederateAmbassador object provided by the simulation and the
federate receives this way the interactions/at tr ibute updates coming from the
RTI bus.

Although coming from the DoD computing domain, RTI follows generic de-
sign patterns and is applicable to a much broader range of distributed applica-
tions, including modeling and simulation but also collaboration, on-line gaming
or visual authoring. From the HPCC perspective, RTI can be viewed as a high
level object based extension of the low level messaging libraries such as PVM or
MPI. Since it supports shared objects management and publish/subscribe based
multicast channels, RTI can also be viewed as an advanced collaboratory frame-
work, capable of handling both the multi-user and the mult i-agent/mult i-module
distributed systems.

69

5.3 Visual H P C C C o m p o n e n t W a r e

HPCC does not have a good reputation for the quality and productivity of
its programming environments. Indeed one of the difficulties with adoption of
parallel systems, is the rapid improvement in performance of workstations and
recently PC's with much better development environments. Parallel machines do
have a clear performance advantage but this for many users, this is more than
counterbalanced by the greater programming difficulties. We can give two rea-
sons for the lower quality of HPCC software. Firstly parallelism is intrinsically
hard to find and express. Secondly the PC and workstation markets are substan-
tially larger than HPCC and so can support a greater investment in attractive
software tools such as the well-known PC visual programming environments.
The DcciS revolution offers an opportunity for HPCC to produce programming
environments that are both more attractive than current systems and further
could be much more competitive than previous HPCC programming environ-
ments with those being developed by the PC and workstation world. Here we
can also give two reasons. Firstly the commodity community must face some
difficult issues as they move to a distributed environment, which has challenges
where in some cases the HPCC community has substantial expertise. Secondly
as already described, we claim that HPCC can leverage the huge software in-
vestment of these larger markets.

objects

C-~

COKBA
P, M I

HPC.~-
Nexus~lobus

Le~ion

I'W-CORBA

" • Compoaems A u l h o d ~ o

Visual c .~ / J .~
Visual ~asic

Ac~veX Delphi
wL~c~

][h~m~ m'tect
I ~] ~ a s

Eme~pflse AVS, F,.horo~
~ v a B e ~ s HenCI~ CODE

CORBA Bearm Cros~vare
DCOM WebfJ.ow

F E ~
PAWS

JavaT.,. ~ § V~,,I].
Visual .4ugr~tn8

with
J ~ a F r ~

Fig. 11. System Complexity (vertical axis) versus User Interface (horizontal axis)
tracking of some technologies

In fig 11, we sketch the state of object technologies for three levels of system
complexity - sequential, distributed and parallel and three levels of user (pro-
gramming) interface - language, components and visual. Industry starts at the
top left and moves down and across the first two rows. Much of the current com-
mercial activity is in visual programming for sequential machines (top right box)
and distributed components (middle box). Crossware (from Netscape) represents

70

an initial talking point for distributed visual programming. Note that HPCC al-
ready has experience in parallel and distributed visual interfaces (CODE and
HenCE as well as AVS and Khoros). We suggest that one can merge this ex-
perience with Industry's Object Web deployment and develop attractive visual
HPCC programming environments as shown in fig 12.

Currently NPAC's WebFlow system [9][12] uses a Java graph editor to com-
pose systems built out of modules. This could become a prototype HPCC Com-
ponentWare system if it is extended with the modules becoming JavaBeans and
the integration with CORBA. Note the linkage of modules would incorporate
the generalized communication model of fig 7, using a mesh of JWORB servers
to manage a recourse pool of distributedHPcc components. An early version of
such JWORB based WebFlow environment, illustrated in fig 13 is in fact op-
erational at NPAC and we are currently building the Object Web management
layer including the Entperprise JavaBeans based encapsulation and communica-
tion support discussed in the previous section.

Returning to fig 1, we note that as industry moves to distributed systems,
they are implicitly taking the sequential client-side PC environments and using
them in the much richer server (middle-tier) environment which traditionally
had more closed proprietary systems.

Fig. 12. Visual Authoring with Software Bus Components

We will then generate an environment such as fig 12 including object broker
services, and a set of horizontal (generic) and vertical (specialized application)
frameworks. We do not have yet much experience with an environment such as
fig 12, but suggest that HPCC could benefit from its early deployment without
the usual multi-year lag behind the larger industry efforts for PC's. Further
the diagram implies a set of standardization activities (establish frameworks)

71

and new models for services and libraries that could be explored in prototype
activities.

Fig. 13. Top level view of the WebFlow environment with JWORB middleware over
Globus metacomputing or NT cluster baekend

5.4 Early User Communit ies

In parallel with refining the individual layers towards production quality HPcc
environment, we start testing our existing prototypes such as WebFlow, JWORB
and WebHLA for the selected application domains.

Within the NPAC participation in the NCSA Alliance, we are working with
Lubos Mitas in the Condensed Matter Physics Laboratory at NCSA on adapting
WebFlow for Quantum Monte Carlo simulations [13]. This application is illus-
trated in figures 14 and 15 and it can be characterized as follows. A chain of
high performance applications (both commercial packages such as GAUSSIAN
or GAMESS or custom developed) is run repeatedly for different data sets. Each
application can be run on several different (multiprocessor) platforms, and con-
sequently, input and output files must be moved between machines. Output files
are visually inspected by the researcher; if necessary applications are rerun with
modified input parameters. The output file of one application in the chain is the
input of the next one, after a suitable format conversion.

The high performance part of the backend tier in implemented using the
GLOBUS toolkit [14]. In particular, we use MDS (metacomputing directory ser-
vices) to identify resources, GRAM (globus resource allocation manager) to al-
locate resources including mutual, SSL based authentication, and GASS (global
access to secondary storage) for a high performance data transfer. The high per-
formance part of the backend is augmented with a commodity DBMS (servicing

72

Fig. 14. Screendump of an example WebFlow session: running Quantum Simulations
on a virtual metacomputer. Module GAUSSIAN is executed on Convex Exemplar at
NCSA, module GAMESS is executed on SGI Origin2000, data format conversion mod-
de is executed on Sun SuperSparc workstation at NPAC, Syracuse, and file manipu-

~ion modules (FileBrowser, EditFile, GetPile) are run on the researcher's desktop

Permanent Object Manager) and LDAP-based custom directory service to main-
tain geographically distributed data files generated by the Quantum Simulation
project. The diagram illustrating the WebFlow implementation of the Quantum
Simulation is shown in fig 15.

Another large application domain we are currently adressing is DoD Mod-
eling Simulation, approached from the perspective of FMS and IMT thrusts
within the DoD Modernization Program. We already described the core effort
on building Object Web RTI on top of JWORB. This is associated with a set
of more application- or component-specific efforts such as: a) building distance
training space for some mature FMS technologies such as SPEEDES; b) paral-
lelizing and CORBA-wrapping some selected computationally intense simulation
modules such as CMS (Comprehensive Mine Simulator at Ft. Belvoir, VA); c)
adapting WebFlow to support visual HLA simulation authoring. We refer to such
Pragmatic Object Web based interactive simulation environment as WebHLA [8]
and we believe that it will soon offer a powerful modeling and simulation frame-
work, capable to address the new challenges of DoD computing in the areas of
Simulation Based Design, Testing, Evaluation and Acquisition.

R e f e r e n c e s

[1] Client/Server Programming with Java and CORBA by Robert Orfali and Dan
Harkey, Wiley, Feb '97, ISBN: 0-471-16351-1

73

Fig. 15. WebFlow implementation of the Quantum Simulations problem

[2] High Level Architecture and Run-Time Infrastructure by DoD Modeling and Sim-
ulation Office (DMSO), h t t p ://,ww. dmso.mil/hla

[3] Geoffrey Fox and Wojtek Furmanski, "Petaops and Exaops: Supercomputing on
the Web", IEEE Internet Computing, 1(2), 38-46 (1997);
http ://www. npac. syr. edu/users/gcfpetastuff/petaweb

[4] Geoffrey Fox and Wojtek Furmanski, "Java for Parallel Computing and as a Gen-
eral Language for Scientific and Engineering Simulation and Modeling", Concur-
rency: Practice and Experience 9(6), 415-426(1997).

[5] Geoffrey Fox and Wojtek Furmanski, "Use of Commodity Technologies in a Com-
putational Grid", chapter in book to be published by Morgan-Kaufmann and edited
by Carl Kesselman and Ian Foster.

[6] Geofrey C. Fox, Wojtek Furmanski and Hasan T. Ozdemir, "JWORB - Java Web
Object Request Broker for Commodity Software based Visual Dataflow Metacom-
puting Programming Environment", NPAC Technical Report, Feb 98,
http://t apetus, npac. syr. edu/iwt98/pm/document s/

[7] G.C.Fox, W. Furmanski and H. T. Ozdemir, "Java/CORBA based Real-Time In-
frastructure to Integrate Event-Driven Simulations, Collaboration and Distributed
Object/Componentware Computing", In Proceedings of Parallel and Distributed
Processing Technologies and Applications PDPTA '98, Las Vegas, Nevada, July
13-16, 1998,
http ://t apetus, npac. syr. edu/iwt98/pm/document s/

[8] David Bernholdt, Geoffrey box and Wojtek Furmanski, B. Natarajan, H. T.
Ozdemir, Z. Odcikin Ozdemir and T. Pulikal, "WebHLA - An Interactive Pro-
gramming and Training Environment for High Performance Modeling and Simula-
tion", In Proceedings of the DoD HPC 98 Users Group Conference, Rice University,
Houston, TX, June 1-5 1998,
h t t p : / / t apetus, npac. syr . edu/iwt98/pm/document s /

[9] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski and G. Prem-
chandran, "WebFlow - A Visual Programming Paradigm for Web/Java based
coarse grain distributed computing", Concurrency Practice and Experience 9,555-
578 (1997),
h t t p : / / t apetus, npac. syr . edu/iwt98/pm/documents/

[10] L. Beca, G. Cheng, G. Fox, T. Jurga, K. Olszewski, M. Podgorny, P. Sokolowski
and K. Walczak, "Java enabling collaborative education, health c a r e and comput-

74

ing", Concurrency Practice and Experience 9,521-534(97).
h t tp : / / t r u r l .npac. syr . edu/t ango

[11] Tango Collaboration System, h t tp : / / t r u r l . n p a c . syr . edu/tango
[12] Habanero Collaboration System,

http ://www.nasa.uiua. edu/SDG/Software/Habanero
[13] Erol Akarsu, Geoffrey Fox~ Wojtek Furmanski, Tomasz Haupt, "WebFlow - High-

Level Programming Environment and Visual Authoring Toolldt for High Perfor-
mance Distributed Computing", paper submitted for Supercomputing 98,
http://www, npac. syr. edu/users/haupt/ALLIANCE/sc98, html

[14] Ian Foster and Carl Kessleman, Globus Metacomputing Toolkit,
h t tp ://www. globus, org

