
Generating Parallel Applications of Spatial
Interaction Models

John Davy and Wissal Essah

School of Computer Studies, University of Leeds,
Leeds. West Yorkshire, UK, LS2 9JT

A b s t r a c t . We describe a tool enabling portable parallel applications of
spatial interaction modelling to be produced automatically from high-
level specifications of their parameters. The application generator can
define a whole family of models, and produces programs which execute
only slightly more slowly than corresponding hand-coded versions.

1 I n t r o d u c t i o n

This paper describes a prototype Application Generator (AG) for rapid devel-
opment of parallel programs based on Spatial Interaction Models (SIMs). The

)rk was a collaboration between the School of Computer Studies and the Cen-
: for Computat ional Geography at the University of Leeds, with GMAP Ltd, a

university company, as industrial partner. It was supported by the Engineering
and Physical Sciences Research Council within its Portable Software Tools for
Parallel Architectures programme.

An application generator can be characterised as a tool "with which appli-
cations can be built by specifying their parameters, usually in a domain-specific
language" [1]. Our AG follows precisely this definition:

- both the SIM itself and the various computat ional tasks which use it are
specified by defining parameters in a textual Interface File;

- parallel programs for the required tasks are generated from the Interface
File, using templates which implement generic forms of these tasks;

- automatically generated programs deliver identical results to hand-coded
versions of the same tasks.

Portability is achieved on two counts. Firstly, the level of abstraction of the Inter-
face File is high enough to be machine-independent. Secondly, the AG generates
source-portable programs in Fortran-77 with MPI. Currently the AG has been
tested on a 4-processor SGI Power Challenge and a 512-processor Cray T3D. A
serial version runs on a range of Sun and SGI workstations.

A common criticism of such high-level approaches to program generation is
that excessive and unacceptable overheads are introduced in comparison with
equivalent hand-coded programs. For this reason, every effort was made to ensure
that needless inefficencies arising from genericity were avoided; also the AG
determines an efficient form of the parallel program based on the dimensions

137

of the model and the number of processors available. With execution times for
generated programs no more than 2% greater than the corresponding hand-coded
programs, we have demonstrated that acceptable performance from high-level
abstractions is indeed possible, at least within a limited application domain.

The work is closely related to algorithmic skeletons [3], in which common
patterns of parallel algorithms are specified as higher-order functions, each of
which has a template for parallel implementation. Our current prototype is only
first order, but extensions to cover a wider range of industrial requirements are
likely to lead to higher-order versions.

2 S p a t i a l I n t e r a c t i o n M o d e l l i n g

Spatial interaction modelling was developed in the context of the social sciences,
notably quantitative geography. A SIM is a set of non-linear equations which
defines flows (people, commodities ete) between spatial zones. Such models are of
importance to the business sector, academic researchers, and policy makers; they
have been used in relation to a wide range of spatial interaction phenomena, such
as movements of goods, money, services and persons, and spread of innovation.

Many realistic spatial interaction problems involve large data flows, together
with computation which grows rapidly with the number of zones the model uses
to represent geographical areas. Computer constraints have therefore limited
the level of geographical detail that can practically be used for these models.
Greater computing power, available by the exploitation of parallel processing,
allows models to be used on a finer level with more realistic levels of detail
and may enable better quality results. Despite these benefits, the exploitation
of parallelism has received limited attention.

Recent research [2, 5, 6] has confirmed the reality of these benefits and the
considerable potential of parallelism in this area. In particular, [5] shows the
effectiveness of parallel genetic algorithms for solving the network optimisation
problem, in comparison with previous heuristic methods. To date, however, such
work has proceeded on an ad hoc basis, and there is still a need to provide a
more uniform and consistent approach, enabling these technologies to be more
readily exploited outside the specialised community of parallel processing.

The research reported here aims to rectify this deficiency by developing an
application generator to:

- cover a wide range of SIM applications in the social sciences;
- enable efficient parallel implementations over a range of machines;
- be scalable to enable the use of large da ta sets on appropriate machines.

2 .1 A F a m i l y o f M o d e l s

There is a family of closely-related SIMs derived from so-called entropy-maximising
methods [7]. A simple origin-constrained model is specified by

Tij = OiDjAif(cij) (1)

138

A, = 1/~,Dsf(c~5) (2)
J

where Tij predicts the flow from origin zone i to destination zone j, Oi, Dj
represent the 'sizes' of i and j , and cij is a measure of the travel cost from i
to j (often simply the distance). The deterrence function f(cij) decreases as cij
increases and is commonly modelled as either the exponential function e -zc ' j or
the exponentiation function cij-8 where/~ is an unknown impedance factor to be
estimated. Equation (2) ensures that the predicted flows satisfy the constraint:

~ =o; (3)
J

thus equating the 'size' of a zone to the number of flows starting there. A single
model evaluation involves computing the set of values TiN defined by (1) and (2).

Destination-constrained models are an obvious variant of origin-constrained
models, in which (1) and (2) are replaced by

Tij = Oi Dj Aj f (cij)

A~ = 1 / E O , f(e, j)
i

thus satisfying the constraint

E T i j = Dj
i

Doubly-constrained models are rather more complex:

~j = O~D~A~Bjf(eij)

As = l / E D j B j f (c i j)

(4)

(5)

(6)

(7)

(8)
J

Bj = 1/EOiAi f (c i j) (9)
i

In this case the predicted flows satisfies constraints similar to both (3) and (6).

2.2 Applications Involving SIMs

SIMs are commonly used to represent human trip behaviour (such as to retail
outlets) in network optimisation problems, where some 'profit ' or other perfor-
mance indicator of a global network is maximised. A typical problem is to locate
some number NF of facilities (e.g. shops, dealerships, hospitals) in a set of Nz
distinct zones (where NF < Nz) in such a way as to maximise the 'profit ' from
the facilities, which is computed from an underlying SIM by evaluating (a variant
of) equation (1) for the zones in which facilities are located.

139

A necessary preliminary to solving this non-linear optimisation problem is the
calibration of the model, in which the value of fl is estimated from observed values
T~ bs of trips (flows) between zones. This is a further non-linear optimisation
problem which minimises an appropriate error norm f(/3) between T ~ and the i j
flows T/j predicted by the model. Choice of appropriate error norms is a complex
issue [7], which is beyond the scope of this paper; for simplicity we here use only
maximum likelihood (10).

o b s .

f (~) = ~ i ~ j T ~ j c,j - ~iy '~jTijci j (10)

The reliability of solutions to network optimisation problems depends on the
reliability of the calibration process, which can be addressed computationally.
The robustness of the computed value of fl in relation to minor changes in T/~ bs
is assessed by bootstrapping, involving multiple recalibrations of the model, with
slightly different sets of observed trip values obtained by systematic sampling
and replacement from the original T/~. bs. Thus the mean and variance of fl can
be derived. The number of calibrations of carried out, B is the bootstrap size.
Clearly, greater values of B lead to more accurate estimates of the mean and
variance of fl; in practice, the heavy computation places practical limits on B,
emphasising the potential benefits of parallel processing.

3 P a r a l l e l I m p l e m e n t a t i o n

We have implemented all three application components (calibration, bootstrap-
ping, optimisation) on all three kinds of model (origin-, destination- and doubly-
constrained), using Fortran77 with MPI. The aim of this part of the work was
to experiment with alternative implementation techniques and derive templates
for use in the AG. Details have already been reported in [4]; here there is space
only to outline the principles in the origin-constrained case.

For all three components parallelism can be obtained within both the model
evaluation and the application which evaluates the model: model evaluation is
highly data parallel (as implied by (1) and (2)) and the applications can be
parallelised by executing independent SIM evaluations in parallel.

For calibration we used a 'Golden Section' non-linear optimiser, which gen-
erates few independent model evaluations. Hence we expected parallelism to be
exploited most effectively within the SIM evaluation. On the other hand, boot-
strapping involves multiple independent calibrations and thus a high level of
more coarsely-grained application-level parallelism was expected.

Following [5], a genetic algorithm was used to solve the non-linear network op-
timisation problem. Here the SIM is used to evaluate the fitness of each member
of a population of possible solutions, hence multiple independent SIM evalua-
tions are again involved, leading to plentiful application-level parallelism.

To explore the optimal combination of application- and model-based paral-
lelism the P processors are viewed as a logical grid of dimensions Papp • Pmod.

140

The application is parallelised between the Papp application processors of one
row, each of which acts as a master processor for model evaluation, distributing
its copy of the model between the Pm~d model processors in its column.

3.1 Paral le l i sm in the m o d e l

One of the main computational challenges for model evaluation is the large vol-
ume of stored data; space is required for the cost matr ix eij and (for calibration
and bootstrapping) the trip matr ix obs T~j . A data parallel implementation dis-
tributes them across the processors using cyclic parti t ioning by rows: processor
1 receives rows 1, P + I , 2 P + l , . . . , processor 2 rows 2, P+2, 2P+2 , . . . , and so
on. The matrices are treated slightly differently, as follows:

- each processor reads an (x, y) pair for each zone centroid, to compute its
own rows of eij, stored in dense format.

- each processor stores the corresponding rows of T/~ bs (also read from file), in
sparse format since most trips are between physically close zones.

This distribution ensures that model evaluation is scalable from the perspective
of memory usage, as long as the number of processors increases proport ionately
to the model size. Partitioning cyclically leads to a better load balance than
partit ioning contiguously because of the removal of systematic matr ix patterns.

Evaluation of (1) and (2) may then proceed entirely in parallel with no further
communication. It is only necessary to store one row of the T/j matrix, since
the error norms for calibration or bootstrapping are cumulatively evaluated in
parallel from equation (10). The 'profit ' in network optimisation is similarly
accumulated.

3.2 P e r f o r m a n c e r e s u l t s

Performance results were obtained on a 512-processor Cray T3D machine, using
' journey-to-work' da ta derived from the 1991 UK census (see [6]). This records
the numbers of journeys (T~ bs) out of and into all 10764 electoral wards. Costs
cij are computed from distances between the centroids (xi, Yl) of wards; in the
case of intra-ward journeys the costs cii are fixed at some notional distance di de-
pending on ward size. A second, smaller data set contains equivalent information
aggregated into 459 electoral districts.

These data are representative of a range of other origin-constrained models,
such as journeys to shopping centres or car dealerships, and can therefore be used
to simulate corresponding location optimisation problems. As most journeys are
between relatively close zones the trips matr ix has the typical highly sparse
pattern. Also, since the data sets satisfy both origin and destination constraints
they may be used to assess doubly-constrained calibration and bootstrapping.

In all cases an exponential deterrence function was used. For space reasons,
only a selection of the results in [4] are given.

As expected, calibration obtained best results with all parallelism in the
model (Papp = 1), whereas bootstrapping and network optimisation enabled

Table 1. Optimisation times (sec) for locating 15 facilities in 10764 zones

P ~ p p

P 1 2 4 8 16
32 3779
64 33171843
128 3300 1657 928 -
25634591650 833 471
512 3736 1724 824 418 241

141

Table 2. Calibration times (sec) for 10764 zones

P Time at p~pp = 1 Speedup
32 274.3
64 137.6 1.99
128 69.2 3.96
256 35.1 7.8
512 17.9 15.3

m a x i m u m parallelism in the application. Table 1 shows optimisat ion t imes for
allocating 15 car dealerships within 10764 zones, for varying values of P and
Papp- Increasing Papp always decreases execution time, so the best t ime is ob-
tained when the m a x i m u m value of Papp is used (in this case P/32, since the
model requires 32 processors to evaluate). Similar results were obtained for the
459-zone model, which can be evaluated on a single processor (ie Papp = P)-
Encouragingly, the diagonal entries in Table 1 show a speedup close to linear.

Boots t rapping results show a similar pa t tern to network optimisation. Cali-
brat ion was predictably less scalable, since only the finer-grain model parallelism
was available. However, even here the results were encouraging. Table 2 shows a
near-linear improvement in execution t ime as the number of processors increases
16-fold - the baseline of 32 processors was again the min imum necessary to eval-
uate the model. Even with the smaller 459-zone model useful performance im-
provements were obtained by parallelism up to 64 processors (see [4] for details)
but performance degraded thereafter. By contrast, boots t rapping and optimisa-
tion continued to achieve near-linear speedup up to 512 processors even with the
smaller model, because parallelism was exploited at the application level.

4 Specifying a Spatial Interaction Model

A SIM application can be specified by defining its parameters in a textual Inter-
face File. We illustrate this for a simple case in Fig. 1, which defines a locational
problem to optimise placement of 15 facilities within 10764 zones. (The need for
M A X T R P in this file arises from using static arrays in the Fortran-77 imple-
menta t ion and is not inherent in the model specification.)

142

SIM

MODTYP=O

DETFUN=exp

CALIBRATE

ERROR=maxlike

BOOTSTRAP

BSIZE=256

OPTIMISE

LOC=I5

DATASIZES

NZ=I0764

MZ=I0764
MAXTRP=586645

Model parameters

origin constrained model

exponential deterrence function

calibration parameters

maximum likelihood error norm

bootstrapping parameters

size of bootstrap sample

optimisation parameters

number of locations to be optimised

data set details for

number of origin zones

number of destination zones

total number of non-zero trips

in calibration data

Fig. 1. Interface File for simple origin-constrained model

This Interface File format could be used as the input to an AG to generate
parallel programs using templates based on the codes described in section 3.
In effect we would have a generator based on SIMs defined by equations (1)
to (9). While interesting as a demonstration of principle, the simplified form of
the models is very restrictive. To develop a more powerful AG, we studied the
requirements of a wide range of spatial location problems, including examples
from retailing, agricultural production, industrial location, and urban spatial
structure. From these a more generic SIM formulation was derived. Here we
outline the origin-constrained version, without seeking to justify the modelling
process.

4.1 A Generic Origin-Constrained Model

We assume that each origin zone produces 'activities' or 'goods' of several
types and that each destination zone has several facilities' (consumers of activi-
ties/goods). This rather general terminology describes a range of different phe-
nomena; for instance (and rather counter-intuitively) 'goods' may be m different
categories of potential buyers travelling to one of r different car dealerships.

The earlier flow value, Tij generalises to Tir~ r , the flow of good type m from
zone i to facility r in zone j . Origin and destination sizes, Oi and Dj become
O~ and D~ and we allow for the latter to be exponentiated. Thus (1), (2) and
(3) generalise to

m r m 7- o~ d Tij = Oi (O)) i f (c i j) (11)

Ai = 1 / E E (D ~) ~ f (c i j) (12)
j

E ~-~T m~ = O ? (13)
j r

143

The network optimisation problem is defined as maximising the difference
between revenues (D~) and costs (C~) for each facility, ie for each r maximise

-c D (14)
jeJ

over a subset J of destination zones, subject to (13).
Revenues are computed as Y-~.i Y-~-m P[~T/ar where p~ is the revenue generated

from a good of type m from zone i. In the most general case, costs at facility of
type r at j have three components: maintaining the facility, transport , and the
costs associated with transactions. This is modelled as

i m i m

r r where vj, qj are the unit costs of running facility r at j and making transactions
there. The second and third terms are not always needed.

Finally, unit t ransport costs, cij, can be modelled by a term proportional
to distance together with ' terminal costs', such as parking. Thus, in the most
general case,

Cij : tdij q- ~i q- Pj (16)

where t is travel cost per unit distance, dij is a distance measure (we use Eu-
clidean distance), Yi and pj are the terminal costs at origin and destination. In
some cases the t value may be irrelevant (ie it is only necessary to have costs
proportional to distance) and the terminal costs are not always required.

Specifying this more general model requires the values of m, r and a, as well
as stating whether the optional parts of the model are included. The values of

~ and p[~ are da ta to be read from files at runtime if required. p j , ~i, v j , qj

Thus, the previous Interface File (Fig. 1) would be replaced by Fig. 2.

5 T h e A p p l i c a t i o n G e n e r a t o r

The prototype AG implements the generic model above. It accepts an Interface
File as input and generates the required parallel programs using templates based
on the codes described in section 3. The user supplies an Interface File as above,
or alternatively is prompted for parameters at a simple command-line interface.
Each of the CALIBRATE, BOOTSTRAP, OPTIMISE sections is optional.

Using the results of section 3, cMibration only exploits parallelism in the SIM
evaluation, whereas bootstrapping and optimisation use maximum parallelism
in the application, subject to limits imposed by the model size, derived from the
NZ and MZ parameters. Thus, within the constraints of the program structure
chosen, the values of Papp and Pmod give optimal execution time.

The use of a generic model can lead to superfluous and time-consuming
computations, such as adding 0 when optional parts of the computat ion are not
present, and needless exponentiation when ALPHA has its (common) vMue 1.
The AG removes all such redundant computat ion, bringing execution times of

144

SIM

MODTYP=O

DETFUN=exp

O_ACTIVITY=I

D_FACILITY=I

CFLAG=O

TFLAG=O

PFLAG=O

QFLAG=O

ALPHA=I.O

CALIBRATE

ERROR=maxlike

BOOTSTRAP

BSIZE=256

OPTIMISE

LOC=7

DATASIZES

NZ=I0764

MZ=I0764

MAXTRP=586645

number of activities at origins

number of facilities at destinations

travel costs NOT included in optimisation

terminal and unit travel costs NOT included

revenue costs NOT included in optimisation

transaction costs NOT included in optimisation

value of alpha

Fig . 2. Interface file with generic SIM

generated code very close to hand-coded versions. Table 3 shows overheads of less
than 2% on the Cray T3D for a variety of model types, application components
and values of P (with 10764-zone model).

Source code for the AG is a mix of Fortran, Perl and Unix scripts. The
templates consist of 2700 lines of code totalling some 97 kbytes, and the rest of
the AG consists of 2500 lines (77 kbytes). It has been implemented and tested on
an SGI Power Challenge, a Cray T3D, and various Sun and SGI workstations.

6 E v a l u a t i o n a n d C o n c l u s i o n s

The prototype AG shows that it is possible to generate non-trivial parallel appli-
cations from very high-level specifications, with small overheads compared with
direct coding. This is made possible by a restricted application domain, which
nevertheless is useful in practice and benefits from parallelism.

The current tool is not yet of industrial-strength, on several counts. It has
not been adequately evaluated by real users, does not cover the full range of
spatial interaction modelling variants, and is limited in the outputs produced.
Further generalisation will require more detailed inputs from domain experts,
including a standardisation of data formats in a flexible way to permit greater
generality. More control over the optimisation process (such as specifying the
number of generations for the genetic algorithm) is desirable. Lastly, the user
interface betrays the system's Fortran origins and would benefit from a graphical
presentation.

Table 3. Overheads of application generator

application type model constraint
calibration origin

calibration double

optimisation origin

P overheads (%)
1 1
2 1.26
8 1.4
1 1.8
2 1.7
8 1.6
1 1.6
4 1.85
16 1.9

145

Despite its limitations, we believe this work is valuable in showing that rapid
parallel application development through a skeleton-like approach can be made
to work effectively in an appropriate, well-defined application domain.

References

l. C. Barnes and C. Wadsworth. Portable software tools for parallel architectures. In
Proceedings o] PPECC'95, 1995.

2. M. Birkin, M. Clarke, and F. George. The use of parallel computers to solve non-
linear spatial optimisation problems. Environment and Planning A, 17:1049-1068,
1994.

3. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
Pitman/MIT Press, 1989.

4. W. Essah, J. R. Davy, and S. Openshaw. Systematic exploitation of parallelism in
spatial interaction models. In Proceedings of PDPTA '97, July 1997.

5. F. George. Hybrid genetic algorithms with immunisation to optimise networks of
car dealerships. Edinburgh Parallel Computing Centre, EPCC-PAR-GMAP, 1994.

6. I. Turton and S. Openshaw. Parallel spatial interaction models. Geographical and
Environmental Modelling, 1:179-197, 1997.

7. A. G. Wilson. A family of spatial interaction models, and associated developments.
Environment and Planning, 3:1-32, 1971.

