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A b s t r a c t .  We describe a tool enabling portable parallel applications of 
spatial interaction modelling to be produced automatically from high- 
level specifications of their parameters. The application generator can 
define a whole family of models, and produces programs which execute 
only slightly more slowly than corresponding hand-coded versions. 

1 I n t r o d u c t i o n  

This paper describes a prototype Application Generator (AG) for rapid devel- 
opment of parallel programs based on Spatial Interaction Models (SIMs). The 

)rk was a collaboration between the School of Computer  Studies and the Cen- 
: for Computat ional  Geography at the University of Leeds, with GMAP Ltd, a 

university company, as industrial partner.  It was supported by the Engineering 
and Physical Sciences Research Council within its Portable Software Tools for 
Parallel Architectures programme. 

An application generator can be characterised as a tool "with which appli- 
cations can be built by specifying their parameters,  usually in a domain-specific 
language" [1]. Our AG follows precisely this definition: 

- both the SIM itself and the various computat ional  tasks which use it are 
specified by defining parameters in a textual Interface File; 

- parallel programs for the required tasks are generated from the Interface 
File, using templates which implement generic forms of these tasks; 

- automatically generated programs deliver identical results to hand-coded 
versions of the same tasks. 

Portability is achieved on two counts. Firstly, the level of abstraction of the Inter- 
face File is high enough to be machine-independent. Secondly, the AG generates 
source-portable programs in Fortran-77 with MPI. Currently the AG has been 
tested on a 4-processor SGI Power Challenge and a 512-processor Cray T3D. A 
serial version runs on a range of Sun and SGI workstations. 

A common criticism of such high-level approaches to program generation is 
that excessive and unacceptable overheads are introduced in comparison with 
equivalent hand-coded programs. For this reason, every effort was made to ensure 
that needless inefficencies arising from genericity were avoided; also the AG 
determines an efficient form of the parallel program based on the dimensions 
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of the model and the number of processors available. With  execution times for 
generated programs no more than 2% greater than the corresponding hand-coded 
programs, we have demonstrated that  acceptable performance from high-level 
abstractions is indeed possible, at least within a limited application domain. 

The work is closely related to algorithmic skeletons [3], in which common 
patterns of parallel algorithms are specified as higher-order functions, each of 
which has a template for parallel implementation. Our current prototype is only 
first order, but extensions to cover a wider range of industrial requirements are 
likely to lead to higher-order versions. 

2 S p a t i a l  I n t e r a c t i o n  M o d e l l i n g  

Spatial interaction modelling was developed in the context of the social sciences, 
notably quantitative geography. A SIM is a set of non-linear equations which 
defines flows (people, commodities ete) between spatial zones. Such models are of 
importance to the business sector, academic researchers, and policy makers; they 
have been used in relation to a wide range of spatial interaction phenomena, such 
as movements of goods, money, services and persons, and spread of innovation. 

Many realistic spatial interaction problems involve large data  flows, together 
with computation which grows rapidly with the number of zones the model uses 
to represent geographical areas. Computer constraints have therefore limited 
the level of geographical detail that can practically be used for these models. 
Greater computing power, available by the exploitation of parallel processing, 
allows models to be used on a finer level with more realistic levels of detail 
and may enable better quality results. Despite these benefits, the exploitation 
of parallelism has received limited attention. 

Recent research [2, 5, 6] has confirmed the reality of these benefits and the 
considerable potential of parallelism in this area. In particular, [5] shows the 
effectiveness of parallel genetic algorithms for solving the network optimisation 
problem, in comparison with previous heuristic methods. To date, however, such 
work has proceeded on an ad hoc basis, and there is still a need to provide a 
more uniform and consistent approach, enabling these technologies to be more 
readily exploited outside the specialised community of parallel processing. 

The research reported here aims to rectify this deficiency by developing an 
application generator to: 

- cover a wide range of SIM applications in the social sciences; 
- enable efficient parallel implementations over a range of machines; 
- be scalable to enable the use of large da ta  sets on appropriate machines. 

2 .1  A F a m i l y  o f  M o d e l s  

There is a family of closely-related SIMs derived from so-called entropy-maximising 
methods [7]. A simple origin-constrained model is specified by 

Tij = OiDjAif(cij)  (1) 
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A, = 1/~,Dsf(c~5) (2) 
J 

where Tij predicts the flow from origin zone i to destination zone j, Oi, Dj 
represent the 'sizes' of i and j ,  and cij is a measure of the travel cost from i 
to j (often simply the distance). The deterrence function f(cij) decreases as cij 
increases and is commonly modelled as either the exponential function e -zc ' j  or 
the exponentiation function cij-8 where/~ is an unknown impedance factor to be 
estimated. Equation (2) ensures that the predicted flows satisfy the constraint: 

~ =o;  (3) 
J 

thus equating the 'size' of a zone to the number of flows starting there. A single 
model evaluation involves computing the set of values TiN defined by (1) and (2). 

Destination-constrained models are an obvious variant of origin-constrained 
models, in which (1) and (2) are replaced by 

Tij = Oi Dj Aj f (cij) 

A~ = 1 / E O ,  f(e, j) 
i 

thus satisfying the constraint 

E T i j  = Dj 
i 

Doubly-constrained models are rather more complex: 

~j  = O~D~A~Bjf(eij) 

As = l / E D j B j f ( c i j )  

(4) 

(5) 

(6) 

(7) 

(8) 
J 

Bj = 1/EOiAi f (c i j )  (9) 
i 

In this case the predicted flows satisfies constraints similar to both (3) and (6). 

2.2 Applications Involving SIMs 

SIMs are commonly used to represent human trip behaviour (such as to retail 
outlets) in network optimisation problems, where some 'profit '  or other perfor- 
mance indicator of a global network is maximised. A typical problem is to locate 
some number NF of facilities (e.g. shops, dealerships, hospitals) in a set of Nz 
distinct zones (where NF < Nz) in such a way as to maximise the 'profit '  from 
the facilities, which is computed from an underlying SIM by evaluating (a variant 
of) equation (1) for the zones in which facilities are located. 
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A necessary preliminary to solving this non-linear optimisation problem is the 
calibration of the model, in which the value of fl is estimated from observed values 
T~ bs of trips (flows) between zones. This is a further non-linear optimisation 
problem which minimises an appropriate error norm f(/3) between T ~ and the i j  
flows T/j predicted by the model. Choice of appropriate error norms is a complex 
issue [7], which is beyond the scope of this paper; for simplicity we here use only 
maximum likelihood (10). 

o b s  . 

f (~ )  = ~ i ~ j T ~ j  c,j - ~iy '~jTijci j  (10) 

The reliability of solutions to network optimisation problems depends on the 
reliability of the calibration process, which can be addressed computationally. 
The robustness of the computed value of fl in relation to minor changes in T/~ bs 
is assessed by bootstrapping, involving multiple recalibrations of the model, with 
slightly different sets of observed trip values obtained by systematic sampling 
and replacement from the original T/~. bs. Thus the mean and variance of fl can 
be derived. The number of calibrations of carried out, B is the bootstrap size. 
Clearly, greater values of B lead to more accurate estimates of the mean and 
variance of fl; in practice, the heavy computation places practical limits on B, 
emphasising the potential benefits of parallel processing. 

3 P a r a l l e l  I m p l e m e n t a t i o n  

We have implemented all three application components (calibration, bootstrap- 
ping, optimisation) on all three kinds of model (origin-, destination- and doubly- 
constrained), using Fortran77 with MPI. The aim of this part of the work was 
to experiment with alternative implementation techniques and derive templates 
for use in the AG. Details have already been reported in [4]; here there is space 
only to outline the principles in the origin-constrained case. 

For all three components parallelism can be obtained within both the model 
evaluation and the application which evaluates the model: model evaluation is 
highly data parallel (as implied by (1) and (2)) and the applications can be 
parallelised by executing independent SIM evaluations in parallel. 

For calibration we used a 'Golden Section' non-linear optimiser, which gen- 
erates few independent model evaluations. Hence we expected parallelism to be 
exploited most effectively within the SIM evaluation. On the other hand, boot- 
strapping involves multiple independent calibrations and thus a high level of 
more coarsely-grained application-level parallelism was expected. 

Following [5], a genetic algorithm was used to solve the non-linear network op- 
timisation problem. Here the SIM is used to evaluate the fitness of each member 
of a population of possible solutions, hence multiple independent SIM evalua- 
tions are again involved, leading to plentiful application-level parallelism. 

To explore the optimal combination of application- and model-based paral- 
lelism the P processors are viewed as a logical grid of dimensions Papp • Pmod. 
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The application is parallelised between the Papp application processors of one 
row, each of which acts as a master processor for model evaluation, distributing 
its copy of the model between the Pm~d model processors in its column. 

3.1 Paral le l i sm in the  m o d e l  

One of the main computational  challenges for model evaluation is the large vol- 
ume of stored data; space is required for the cost matr ix  eij and (for calibration 
and bootstrapping) the trip matr ix  obs T~j . A data  parallel implementation dis- 
tributes them across the processors using cyclic parti t ioning by rows: processor 
1 receives rows 1, P + I ,  2 P + l , . . . ,  processor 2 rows 2, P+2, 2P+2 , . . . ,  and so 
on. The matrices are treated slightly differently, as follows: 

- each processor reads an (x, y) pair for each zone centroid, to compute its 
own rows of eij, stored in dense format.  

- each processor stores the corresponding rows of T/~ bs (also read from file), in 
sparse format  since most trips are between physically close zones. 

This distribution ensures that  model evaluation is scalable from the perspective 
of memory usage, as long as the number of processors increases proport ionately 
to the model size. Partitioning cyclically leads to a better  load balance than 
partit ioning contiguously because of the removal of systematic matr ix  patterns. 

Evaluation of (1) and (2) may then proceed entirely in parallel with no further 
communication. It is only necessary to store one row of the T/j matrix, since 
the error norms for calibration or bootstrapping are cumulatively evaluated in 
parallel from equation (10). The 'profit '  in network optimisation is similarly 
accumulated. 

3.2 P e r f o r m a n c e  r e s u l t s  

Performance results were obtained on a 512-processor Cray T3D machine, using 
' journey-to-work' da ta  derived from the 1991 UK census (see [6]). This records 
the numbers of journeys (T~ bs) out of and into all 10764 electoral wards. Costs 
cij are computed from distances between the centroids (xi, Yl) of wards; in the 
case of intra-ward journeys the costs cii are fixed at some notional distance di de- 
pending on ward size. A second, smaller data  set contains equivalent information 
aggregated into 459 electoral districts. 

These data  are representative of a range of other origin-constrained models, 
such as journeys to shopping centres or car dealerships, and can therefore be used 
to simulate corresponding location optimisation problems. As most journeys are 
between relatively close zones the trips matr ix  has the typical highly sparse 
pattern.  Also, since the data  sets satisfy both origin and destination constraints 
they may be used to assess doubly-constrained calibration and bootstrapping. 

In all cases an exponential deterrence function was used. For space reasons, 
only a selection of the results in [4] are given. 

As expected, calibration obtained best results with all parallelism in the 
model (Papp = 1), whereas bootstrapping and network optimisation enabled 



Table  1. Optimisation times (sec) for locating 15 facilities in 10764 zones 

P ~ p p  

P 1 2 4 8 16 
32 3779 
64 33171843 
128 3300 1657 928 - 
25634591650 833 471 
512 3736 1724 824 418 241 
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Table  2. Calibration times (sec) for 10764 zones 

P Time at p~pp = 1 Speedup 
32 274.3 
64 137.6 1.99 
128 69.2 3.96 
256 35.1 7.8 
512 17.9 15.3 

m a x i m u m  parallelism in the application. Table 1 shows optimisat ion t imes for 
allocating 15 car dealerships within 10764 zones, for varying values of P and 
Papp- Increasing Papp always decreases execution time, so the best t ime is ob- 
tained when the m a x i m u m  value of Papp is used (in this case P/32, since the 
model requires 32 processors to evaluate). Similar results were obtained for the 
459-zone model, which can be evaluated on a single processor (ie Papp = P)-  
Encouragingly, the diagonal entries in Table 1 show a speedup close to linear. 

Boots t rapping results show a similar pa t tern  to network optimisation.  Cali- 
brat ion was predictably less scalable, since only the finer-grain model parallelism 
was available. However, even here the results were encouraging. Table 2 shows a 
near-linear improvement  in execution t ime as the number  of processors increases 
16-fold - the baseline of 32 processors was again the min imum necessary to eval- 
uate the model. Even with the smaller 459-zone model useful performance im- 
provements were obtained by parallelism up to 64 processors (see [4] for details) 
but performance degraded thereafter. By contrast,  boots t rapping and optimisa-  
tion continued to achieve near-linear speedup up to 512 processors even with the 
smaller model,  because parallelism was exploited at the application level. 

4 Specifying a Spatial Interaction Model  

A SIM application can be specified by defining its parameters  in a textual  Inter- 
face File. We illustrate this for a simple case in Fig. 1, which defines a locational 
problem to optimise placement of 15 facilities within 10764 zones. (The need for 
M A X T R P  in this file arises from using static arrays in the Fortran-77 imple- 
menta t ion and is not inherent in the model specification.) 
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SIM 

MODTYP=O 

DETFUN=exp 

CALIBRATE 

ERROR=maxlike 

BOOTSTRAP 

BSIZE=256 

OPTIMISE 

LOC=I5 

DATASIZES 

NZ=I0764 

MZ=I0764 
MAXTRP=586645 

Model parameters 

origin constrained model 

exponential deterrence function 

calibration parameters 

maximum likelihood error norm 

bootstrapping parameters 

size of bootstrap sample 

optimisation parameters 

number of locations to be optimised 

data set details for 

number of origin zones 

number of destination zones 

total number of non-zero trips 

in calibration data 

Fig. 1. Interface File for simple origin-constrained model 

This Interface File format  could be used as the input to an AG to generate 
parallel programs using templates based on the codes described in section 3. 
In effect we would have a generator based on SIMs defined by equations (1) 
to (9). While interesting as a demonstration of principle, the simplified form of 
the models is very restrictive. To develop a more powerful AG, we studied the 
requirements of a wide range of spatial location problems, including examples 
from retailing, agricultural production, industrial location, and urban spatial 
structure. From these a more generic SIM formulation was derived. Here we 
outline the origin-constrained version, without seeking to justify the modelling 
process. 

4.1 A Generic Origin-Constrained Model  

We assume that  each origin zone produces 'activities' or 'goods' of several 
types and that  each destination zone has several facilities' (consumers of activi- 
ties/goods). This rather general terminology describes a range of different phe- 
nomena; for instance (and rather counter-intuitively) 'goods' may be m different 
categories of potential buyers travelling to one of r different car dealerships. 

The earlier flow value, Tij generalises to Tir~ r , the flow of good type m from 
zone i to facility r in zone j .  Origin and destination sizes, Oi and Dj become 
O~ and D~ and we allow for the latter to be exponentiated. Thus (1), (2) and 
(3) generalise to 

m r  m 7- o~ d Tij = Oi (O))  i f ( c i j )  (11) 

Ai = 1 / E E ( D ~ ) ~ f ( c i j )  (12) 
j 

E ~-~T m~ = O ?  (13) 
j r 
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The network optimisation problem is defined as maximising the difference 
between revenues (D~) and costs (C~) for each facility, ie for each r maximise 

-c D (14) 
jeJ 

over a subset J of destination zones, subject to (13). 
Revenues are computed as Y-~.i Y-~-m P[~T/ar where p~ is the revenue generated 

from a good of type m from zone i. In the most general case, costs at facility of 
type r at j have three components: maintaining the facility, transport ,  and the 
costs associated with transactions. This is modelled as 

i m i m 

r r where vj, qj are the unit costs of running facility r at j and making transactions 
there. The second and third terms are not always needed. 

Finally, unit t ransport  costs, cij, can be modelled by a term proportional 
to distance together with ' terminal costs', such as parking. Thus, in the most 
general case, 

Cij : tdij q- ~i q- Pj (16) 

where t is travel cost per unit distance, dij is a distance measure (we use Eu- 
clidean distance), Yi and pj are the terminal costs at origin and destination. In 
some cases the t value may be irrelevant (ie it is only necessary to have costs 
proportional to distance) and the terminal costs are not always required. 

Specifying this more general model requires the values of m, r and a, as well 
as stating whether the optional parts of the model are included. The values of 

~ and p[~ are da ta  to be read from files at runtime if required. p j ,  ~i, v j ,  qj 

Thus, the previous Interface File (Fig. 1) would be replaced by Fig. 2. 

5 T h e  A p p l i c a t i o n  G e n e r a t o r  

The prototype AG implements the generic model above. It accepts an Interface 
File as input and generates the required parallel programs using templates based 
on the codes described in section 3. The user supplies an Interface File as above, 
or alternatively is prompted for parameters at a simple command-line interface. 
Each of the CALIBRATE, BOOTSTRAP,  OPTIMISE sections is optional. 

Using the results of section 3, cMibration only exploits parallelism in the SIM 
evaluation, whereas bootstrapping and optimisation use maximum parallelism 
in the application, subject to limits imposed by the model size, derived from the 
NZ and MZ parameters. Thus, within the constraints of the program structure 
chosen, the values of Papp and Pmod give optimal execution time. 

The use of a generic model can lead to superfluous and time-consuming 
computations, such as adding 0 when optional parts of the computat ion are not 
present, and needless exponentiation when ALPHA has its (common) vMue 1. 
The AG removes all such redundant computat ion,  bringing execution times of 
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SIM 

MODTYP=O 

DETFUN=exp 

O_ACTIVITY=I 

D_FACILITY=I 

CFLAG=O 

TFLAG=O 

PFLAG=O 

QFLAG=O 

ALPHA=I.O 

CALIBRATE 

ERROR=maxlike 

BOOTSTRAP 

BSIZE=256 

OPTIMISE 

LOC=7 

DATASIZES 

NZ=I0764 

MZ=I0764 

MAXTRP=586645 

number of activities at origins 

number of facilities at destinations 

travel costs NOT included in optimisation 

terminal and unit travel costs NOT included 

revenue costs NOT included in optimisation 

transaction costs NOT included in optimisation 

value of alpha 

Fig .  2. Interface file with generic SIM 

generated code very close to hand-coded versions. Table 3 shows overheads of less 
than 2% on the Cray T3D for a variety of model types, application components 
and values of P (with 10764-zone model). 

Source code for the AG is a mix of Fortran, Perl and Unix scripts. The 
templates consist of 2700 lines of code totalling some 97 kbytes, and the rest of 
the AG consists of 2500 lines (77 kbytes). It has been implemented and tested on 
an SGI Power Challenge, a Cray T3D, and various Sun and SGI workstations. 

6 E v a l u a t i o n  a n d  C o n c l u s i o n s  

The prototype AG shows that  it is possible to generate non-trivial parallel appli- 
cations from very high-level specifications, with small overheads compared with 
direct coding. This is made possible by a restricted application domain, which 
nevertheless is useful in practice and benefits from parallelism. 

The current tool is not yet of industrial-strength, on several counts. It has 
not been adequately evaluated by real users, does not cover the full range of 
spatial interaction modelling variants, and is limited in the outputs produced. 
Further generalisation will require more detailed inputs from domain experts, 
including a standardisation of data  formats in a flexible way to permit greater 
generality. More control over the optimisation process (such as specifying the 
number of generations for the genetic algorithm) is desirable. Lastly, the user 
interface betrays the system's Fortran origins and would benefit from a graphical 
presentation. 



Table 3. Overheads of application generator 

application type model constraint 
calibration origin 

calibration double 

optimisation origin 

P overheads (%) 
1 1 
2 1.26 
8 1.4 
1 1.8 
2 1.7 
8 1.6 
1 1.6 
4 1.85 
16 1.9 
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Despite its limitations, we believe this work is valuable in showing that  rapid 
parallel application development through a skeleton-like approach can be made 
to work effectively in an appropriate, well-defined application domain. 

References  

l. C. Barnes and C. Wadsworth. Portable software tools for parallel architectures. In 
Proceedings o] PPECC'95, 1995. 

2. M. Birkin, M. Clarke, and F. George. The use of parallel computers to solve non- 
linear spatial optimisation problems. Environment and Planning A, 17:1049-1068, 
1994. 

3. M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. 
Pitman/MIT Press, 1989. 

4. W. Essah, J. R. Davy, and S. Openshaw. Systematic exploitation of parallelism in 
spatial interaction models. In Proceedings of PDPTA '97, July 1997. 

5. F. George. Hybrid genetic algorithms with immunisation to optimise networks of 
car dealerships. Edinburgh Parallel Computing Centre, EPCC-PAR-GMAP, 1994. 

6. I. Turton and S. Openshaw. Parallel spatial interaction models. Geographical and 
Environmental Modelling, 1:179-197, 1997. 

7. A. G. Wilson. A family of spatial interaction models, and associated developments. 
Environment and Planning, 3:1-32, 1971. 


