
Analysing an SQL Application
with a BSPlib Call-Graph Profiling Tool

Jonathan M.D. Hill, Stephen A. Jarvis,
Constantinos Siniolakis, and Vasil P. Vasilev

Oxford University Computing Laboratory, UK.

Abs t r ac t . This paper illustrates the use of a post-mortem call-graph
profiling tool in the analysis of an SQL query processing application writ-
ten using BSPIib [4]. Unlike other parallel profiling tools, the architecture
independent metric of imbalance in size of communicated data is used to
guide program optimisation. We show that by using this metric, BSPIib
programs can be optimised in a portable and architecture independent
manner. Results are presented to support this claim for unoptimised and
optimised versions of a program running on networks of workstations,
shared memory multiprocessors and tightly coupled distributed memory
parallel machines.

1 I n t r o d u c t i o n

The Bulk Synchronous Parallel model [8,6] views a parallel machine as a set
of processor-memory pairs, with a global communicat ion network and a mech-
anism for synchronising all processors. A BSP program consists of a sequence
of supersteps. Each superstep involves all of the processors and consists of three
phases: (1) processor-memory pairs perform a number of computa t ions on da ta
held locally at the start of a superstep; (2) processors communica te da ta into
other processor's memories; and (3) all processors barrier synchronise.

The BSP cost model [6] asserts that globally balancing computa t ion and
communicat ion is the key to opt imal parallel design. The rationale for balancing
computa t ion is clear as the barrier tha t marks the end of the superstep ensures
that all processors have to wait for the slowest processor before proceeding into
the next superstep. It is therefore desirable that all processes enter the barrier
at about the same t ime to minimise idle time. In contrast, the need to balance
communicat ion is not so clear-cut. The BSP cost model implicitly asserts that the
dominat ing cost in communicat ing a message is the cost of crossing the boundary
of the network, rather than the cost of internal transit . This is largely true for
today 's highly-connected networks, as described in detail in [2]. Therefore, a good
design strategy is to ensure that all processors inject the same amount of da ta
into the network and are consequently equally involved in the communicat ion.

This paper explores the use of a call-graph profiling tool [3] that exposes im-
balance in either computat ion or communication, and highlights those portions
of the program that are amenable to improvement. Our hypothesis is tha t by

158

minimising imbalance, significant improvements in the algorithmic complexity
of parallel algorithms usually follow. In order to test the hypothesis, the call-
graph profiler is used to optimise a database query evaluation program [7]. We
show how the profiling tool helps identify problems in the implementation of a
randomised sample sort algorithm. It is also shown how the profiling tool guides
the improvement of the algorithm. Results are presented which show that signif-
icant performance improvements can be achieved without tailoring algorithms
to a particular machine or architecture.

2 P r o f i l i n g a n S Q L D a t a b a s e A p p l i c a t i o n

A walk-through of the steps involved in optimising an SQL database query eval-
uation program is used to demonstrate the use of the call-graph profiling tool.

A series of relational queries were implemented in BSP. This was done by
transcribing the queries into C function calls and then linking them with a
BSPlib library of SQL-like primitives. The test program was designed to take
as input a sequence of relations (tables), it would then processes the tables and
yield as output a sequence of intermediate relations. The input relations were
distributed among the processors using a simple block-cyclic distribution. Three
input relations ITEM, QNT and TRAN were defined. Six queries were evaluated
which created the following intermediary relations: (1) TEMP 1, an aggregate sum
and a "group-by" rearrangement of the relation TRAN; (2) TEMP2, an equality-
join of TEMPi and ITEM; (3) TEMP3, an aggregate sum and group-by of TEMP2; (4)
TEMP4, an equality-join of relations TEMP3 and QNT; (5) TEMPS, a less-than-join of
relations TEMP4 and ITEM; and (6) a filter (IN "low 1%') of the relation TEMPJ.

2.1 Using the Profiler to Optimise SQL Queries

Figure 2 shows a screen shot of a call-graph profile for the SQL query processing
program running on a sixteen processor Cray T3E. The call-graph contains a
series of interior and leaf nodes. The interior nodes represent procedures entered
during program execution, whereas the leaf nodes represent the textual position
of the end of a superstep, that is, the line of code containing a call to the barrier
synchronisation function bsp_sync. The path from a leaf to the root of the graph
identifies the nesting of procedure calls that were active when bsp_sync was exe-
cuted. This path is termed a call-stack and a collection of call-stacks comprise a
call-graph. The costs of shared procedures can be accurately apportioned to their
parents via a scheme known as inheritance [5]. This is particularly important
when determining how costs are allocated to library functions. Instead of simply
reporting that all the time was spent in a parallel sorting algorithm for example,
a call-graph profile also attributes costs to the procedures which contained calls
to the sort routine.

In line with superstep semantics, the cost of all communication issued dur-
ing a superstep is charged to the barrier that marks the end of the superstep.
Similarly, all computation is charged to the end of the superstep. Leaf nodes

159

Fig. 1. Screen shot of the call-graph profiling tool

record the costs accrued during a superstep as: (i) the textual position of the
bsp_sync call within the program; (ii) the number of times a particular superstep
is executed; and (iii) summaries of computation cost, communication cost, idle
time, and the largest amount of data either entering or leaving any process (a h-
relation). These costs are given as a maximum, average, and minimum cost over
p processors (the average and minimum costs are given as a percentage of the
maximum). Interior nodes record similar information to leaf nodes, except that
the label of the node is a procedure name and the accumulated cost is inherited
from each of the supersteps executed during the lifetime of that procedure.

Critical paths are made visible by shading each of the nodes in the graph with
a colour ranging from white to red. A red node corresponds to a bottleneck (or
'hot-spot' !) in the program. In the graphs that follow, the shading for each node
is determined by the largest difference between the maximum and average cost,
and also the largest percentage-wise deviation between maximum and average
cost [3]. Terms of the form, (12% [7%), are used to quantify this balance. This
states that the average cost of executing a piece of code on p processors is 12%
of the cost of the processor that spent the longest time performing the task;
whereas the process with the least amount of work took only 7% of the time of
the most loaded process. In the following sections we refine the algorithms used
in the SQL program until there is virtually no imbalance, which is identified by
terms of the form (100% I 100%).

Q u e r y E v a l u a t i o n S tage 1 A portion of the call-graph for the original pro-
gram (version 1) is shown in Figure 2. The three input relations were initially
unevenly distributed among the processors. It is to be expected that an irregular

160

Fig. 2. Query version 1: SQL query evaluation.

distribution of input relations would produce a considerable amount of imbalance
in computation and communication when performing operations using these data
structures. For example, Figure 2 shows a (54% I 21%) imbalance in h-relation
size. To remedy this imbalance, load balancing functions were introduced into
the code which ensured that each processor contained approximately an equal
sized partition of the input relation.

Query Evalua t ion Stage 2 Load balancing the input relations reduced the
amount of communication and computation imbalance by 26%. Further profiles
revealed that the imbalance had not been completely eradicated. It appeared
that the $QL primitives had inherent imbalances in communication even for
perfectly balanced input data. This can be seen in Figure 3.

The critical paths identifying the imbalance in communication were followed
from the select function to elim_dup0. At this point it was easy to identify that
the major cause of the communication imbalance, (69% I 54%), was attributed to
the function bspsort at line 175. This is shown in the screen-shot in Figure 1.

In the same way, following the imbalance in the computation critical paths,
(51% I 17%), it was also clear that the primary cause of computation imbalance
was attributed to the same function bspsort , this time at line 188 in Figure 1.
Figure 1 also shows a pie-chart that gives a breakdown of the accumulated
computation time at the superstep at line 188 for all the processes. To give
some idea of the type of computation that may cause problems, the underlying
algorithm of the bspsort function is (briefly) described. The function bspsor t
implements a refined variant of the optimal randomised BSP sorting algorithm
of [1]

The algorithm consists of seven stages: (1) each processor locally sorts the
elements in its possession; (2) each processor selects a random sample of s x p
elements (where s is the oversampling factor) which are gathered onto process
zero; (3) the samples are sorted and p regular pivots are picked from the s x
p2 samples; (4) the pivots are broadcast to all processors; (5) each processor
partitions the elements in its possession into the p blocks as induced by the

161

Fig. 3. Query version 2: SQL query evaluation after load balance.

pivots; (6) each processor sends partition i to processor i; and (7) a local multi-
way merge produces the desired effect of a global sort.

If stages (6) and (7) are not balanced, then this can only be attributed to a
poor selection of splitters in stage (2). Since the random number generator that
selects the sample had been extensively tested prior to usage the only possible
cause for the disappointing performance of the algorithm was the choice of the
oversampling factor s. The algorithm had however been previously tested and the
oversampling procedure had been fine tuned by means of extensive experimental
results using simple timing functions. The experimental results had suggested
that the oversampling factor established by the theoretical analysis of the algo-
rithm had been a gross overestimate and, therefore, at the implementation level
it had been decided to employ a considerably reduced factor.

Fig. 4. Sorting version 1: experimental oversampling factor.
Q u e r y Evaluat ion: Improv ing Paral le l Sor t ing Experiments continued by
varying the oversampling factor for the sorting algorithm. A portion of the call-
graphs for the optimal experimental and theoretical parameters are exhibited in
figures 4 and 5 respectively. The original experimental results were confirmed by
the profile, that is, the algorithm utilising the theoretical oversampling factor
(sort version 2) delivered performance that was approximately 50% inferior to
that of the algorithm utilising the experimental oversampling factor (sort version

162

Fig. 5. Sorting version 2: theoretical oversampling factor.

1). The computation imbalance of (49% I 15%) in stage (7) of sort version 1,
shown at line 188 in Figure 4, shifted to a computation imbalance of (7%[0%)
in stage (2) of sort version 2, shown at line 135 of Figure 5. Similarly, the
communication imbalance of (60%] 48%) in stage (6) of sort version 1 shifted to
an imbalance of (12%[7%) in stage (3) at line 125 of sort version 2.

It was noted however that the communication and computation requirements
of stages (6) and (7) in sort version 2 of Figure 5 are highly balanced, (98%1 97%)
and (95% I 89%) respectively. Therefore, the theoretical analysis had accurately
predicted the oversampling factor value required to achieve load balance. Un-
fortunately, the sustained improvement gained by balancing the communication
pattern of stage (6) of the underlying sorting algorithm- and consequently, the
communication requirements of the algorithm - had been largely overwhelmed
by the cost of communicating and sorting a larger sample in stages (2) and (3).

To remedy this problem the ideas of [1] were adopted. In particular, the
unbalanced communication and computation algorithm of stages (2) and (3),
which collected and sorted a sample on a single process, were replaced with a
simple and efficient parallel sorting algorithm, which sorted the sample set among
all the processes. As noted in [1], an appropriate choice for such a parallel sorting
algorithm is presented by an efficient variant of the bitonic-sort network.

The introduction of the bitonic sorter caused the data presented in the
bspsor t node in Figures 4 and 5 to: Computation (99% I 98%), Communication
(83% I 70%), and h-relation (99%1 98%). This improved the wall-clock running
time of the sorting algorithm by 8.5%.

Q u e r y Eva lua t ion Stage 3 As the sorting algorithm is central to the im-
plementation of most of the SQL queries, a minor improvement in the sorting
algorithm brings about a marked improvement in the performance of the query
evaluation as a whole. This can be clearly seen from the lack of any shading of
critical paths in Figure 6 (contrast with Figure 2)-all the h-rdations in the SQL
queries are almost perfectly balanced.

To reinforce the conclusion that these improvements are architecture inde-
pendent, Table 2.1 shows the wall-clock times for the original and optimised pro-

163

�9 . . , ~ , , , ~ �9 �9 . �9 ~

F|g. 6. Query version 3: SQL query evaluation, final version.

grams running on a variety of parallel machines. The size of the input relations
was chosen to be small, so that the computat ion time in the algorithms would
not dominate. This is particularly important if we are to highlight the improve-
ments in communication cost. A small relation size also enabled the Network of
Workstations (NOW) implementation of the algorithm to complete in a reason-
able amount of time. For all but one of the results, the optimised version of the
program provides an approximate 20% improvement over the original program.
This evidence supports our hypothesis that the call-graph profiling tool provides
a mechanism that guides architecture independent program optimisation. As an
aside, the parallel efficiencies in the table are marginal for the T3E and Origin
2000, due to the communication intensive nature of this query processing ap-
plication, in combination with the small amount of data held on each process
(750 records per process at p = 16). In contrast, a combination of the slow
processors, fast communication, and poor cache organisation on the T3D gives
super-linear speedup even for this small data set. However, the communication
intensive nature of this problem makes it unsuitable for running over loosely
coupled distributed memory machines For example, the results for a NOW, ex-
hibit super-linear speedup at p = 2 in the optimised program, yet super-linear
slowdown in all other configurations

3 C o n c l u s i o n s

The performance improvements resulting from the analysis of the call-graph pro-
files demonstrate that the tool can be used to optimise programs in a portable
and architecture independent manner. Unlike other profiling tools, the architec-
ture independent metric - h-relation size - guides the optimisation process. The
major benefit of this profiling tool is that the amount of information displayed
when visualising a profile for a parallel program is no more complex than that
of a sequential program.

1 A 10Mbps Ethernet network of 266MHz Pentium Pro processors.

164

T a b l e 1. Wall-clock time in seconds for input relations containing 12,000 records

Optimised N N
Machine II Pl time Ispeedupll time]speedupll gain I

Cray T3E 1
2
4
8

16
Cray T3D 1

2
4
8

16
SGI Origin 2000 1

2
4
8

Intel NOW ~ 1
2
4
6

6.44 1.00 5.37 1.00 17~
4.30 1.50 3.38 1.59 21~
2.48 2.60 1.85 2.90 25~
1.23 5.23 1.04 5.17 15%
0.68 9.43 0.67 8.02 1%

27.18 1.00[22.411 1.00 18%
13.18 2.06 10.88 2.06 17%
6.89 3.94 5.70] 3.93 17%
3.29 8.25 3.07i 7.30 7%
1.66 16.34 1.89 11.88 -14~
2.99 1.00 2.42 1.00 19%
1.65 1.81 1.27 1.91 23%
1.26 2.37 1.11 2.16 12%
0.88 3.39 0.77 3.15 13%
4.96 1.00 4.04 1.00 18%

78.21 0.06 1.65 2.45 98%
174.77 0.03 88.76 0.05 49%
216.42 0.02 ,101.33 0.04 53%

R e f e r e n c e s

1. A. V. Gerbessiotis and C. J. Siniolakis. Deterministic sorting and randomized me-
dian finding on the BSP model. In Proceedings of the 8 th A CM Symposium on
Parallel Algorithms and Archictures, Padova, Italy, June 1996. ACM Press.

2. J. M. D. Hill, S. Donaldson, and D. Skillicorn. Stability of communication per-
formance in practice: from the Cray T3E to networks of workstations. Technical
Report PRG-TR-33-97, Programming Research Group, Oxford University Comput-
ing Laboratory, October 1997.

3. J. M. D. Hill, S. Jarvis, C. Siniolakis, and V. P. Vasilev. Portable and architec-
ture independent parallel performance tuning using a call-graph profiling tool. In
6th EuroMicro Workshop on Parallel and Distributed Processing (PDP'98). IEEE
Computer Society Press, January 1998.

4. J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,
T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The BSP Programming Library.
Parallel Computing, to appear 1998. see www.bsp-worldwide, org for more details.

5. S. A. Jarvis. Profiling large-scale lazy functional programs. PhD thesis, Computer
Science Department, University of Durham, 1996.

6. D. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and answers about BSP.
Scientific Programming, 6(3):249-274, Fall 1997.

7. K. R. Sujithan and J. M. D. Hill. Collection types for database programming in
the BSP model. In 5th EuroMicro Workshop on Parallel and Distributed Processing
(PDP'97). IEEE Computer Society Press, Jan. 1997.

8. L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-111, August 1990.

