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Abs t r ac t .  This paper illustrates the use of a post-mortem call-graph 
profiling tool in the analysis of an SQL query processing application writ- 
ten using BSPIib [4]. Unlike other parallel profiling tools, the architecture 
independent metric of imbalance in size of communicated data is used to 
guide program optimisation. We show that by using this metric, BSPIib 
programs can be optimised in a portable and architecture independent 
manner. Results are presented to support this claim for unoptimised and 
optimised versions of a program running on networks of workstations, 
shared memory multiprocessors and tightly coupled distributed memory 
parallel machines. 

1 I n t r o d u c t i o n  

The Bulk Synchronous Parallel model [8,6] views a parallel machine as a set 
of processor-memory pairs, with a global communicat ion network and a mech- 
anism for synchronising all processors. A BSP program consists of a sequence 
of supersteps. Each superstep involves all of the processors and consists of three 
phases: (1) processor-memory pairs perform a number  of computa t ions  on da ta  
held locally at the start  of a superstep; (2) processors communica te  da ta  into 
other processor's memories; and (3) all processors barrier synchronise. 

The BSP cost model [6] asserts that  globally balancing computa t ion  and 
communicat ion is the key to opt imal  parallel design. The rationale for balancing 
computa t ion  is clear as the barrier tha t  marks  the end of the superstep ensures 
that  all processors have to wait for the slowest processor before proceeding into 
the next superstep. It  is therefore desirable that  all processes enter the barrier 
at about  the same t ime to minimise idle time. In contrast,  the need to balance 
communicat ion is not so clear-cut. The BSP cost model implicitly asserts that  the 
dominat ing cost in communicat ing a message is the cost of crossing the boundary  
of the network, rather than  the cost of internal transit .  This  is largely true for 
today 's  highly-connected networks, as described in detail in [2]. Therefore, a good 
design strategy is to ensure that  all processors inject the same amount  of da ta  
into the network and are consequently equally involved in the communicat ion.  

This paper  explores the use of a call-graph profiling tool [3] that  exposes im- 
balance in either computat ion or communication,  and highlights those portions 
of the program that  are amenable to improvement.  Our hypothesis is tha t  by 



158 

minimising imbalance, significant improvements in the algorithmic complexity 
of parallel algorithms usually follow. In order to test the hypothesis, the call- 
graph profiler is used to optimise a database query evaluation program [7]. We 
show how the profiling tool helps identify problems in the implementation of a 
randomised sample sort algorithm. It is also shown how the profiling tool guides 
the improvement of the algorithm. Results are presented which show that  signif- 
icant performance improvements can be achieved without tailoring algorithms 
to a particular machine or architecture. 

2 P r o f i l i n g  a n  S Q L  D a t a b a s e  A p p l i c a t i o n  

A walk-through of the steps involved in optimising an SQL database query eval- 
uation program is used to demonstrate the use of the call-graph profiling tool. 

A series of relational queries were implemented in BSP. This was done by 
transcribing the queries into C function calls and then linking them with a 
BSPlib library of SQL-like primitives. The test program was designed to take 
as input a sequence of relations (tables), it would then processes the tables and 
yield as output  a sequence of intermediate relations. The input relations were 
distributed among the processors using a simple block-cyclic distribution. Three 
input relations ITEM, QNT and TRAN were defined. Six queries were evaluated 
which created the following intermediary relations: (1) TEMP 1, an aggregate sum 
and a "group-by" rearrangement of the relation TRAN; (2) TEMP2, an equality- 
join of TEMPi and ITEM; (3) TEMP3, an aggregate sum and group-by of TEMP2; (4) 
TEMP4, an equality-join of relations TEMP3 and QNT; (5) TEMPS, a less-than-join of 
relations TEMP4 and ITEM; and (6) a filter (IN "low 1%')  of the relation TEMPJ. 

2.1 Using the Profiler to Optimise SQL Queries 

Figure 2 shows a screen shot of a call-graph profile for the SQL query processing 
program running on a sixteen processor Cray T3E. The call-graph contains a 
series of interior and leaf nodes. The interior nodes represent procedures entered 
during program execution, whereas the leaf nodes represent the textual position 
of the end of a superstep, that is, the line of code containing a call to the barrier 
synchronisation function bsp_sync. The path from a leaf to the root of the graph 
identifies the nesting of procedure calls that  were active when bsp_sync was exe- 
cuted. This path is termed a call-stack and a collection of call-stacks comprise a 
call-graph. The costs of shared procedures can be accurately apportioned to their 
parents via a scheme known as inheritance [5]. This is particularly important  
when determining how costs are allocated to library functions. Instead of simply 
reporting that  all the time was spent in a parallel sorting algorithm for example, 
a call-graph profile also attributes costs to the procedures which contained calls 
to the sort routine. 

In line with superstep semantics, the cost of all communication issued dur- 
ing a superstep is charged to the barrier that  marks the end of the superstep. 
Similarly, all computation is charged to the end of the superstep. Leaf nodes 
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Fig. 1. Screen shot of the call-graph profiling tool 

record the costs accrued during a superstep as: (i) the textual position of the 
bsp_sync call within the program; (ii) the number of times a particular superstep 
is executed; and (iii) summaries of computation cost, communication cost, idle 
time, and the largest amount of data either entering or leaving any process (a h- 
relation). These costs are given as a maximum, average, and minimum cost over 
p processors (the average and minimum costs are given as a percentage of the 
maximum). Interior nodes record similar information to leaf nodes, except that  
the label of the node is a procedure name and the accumulated cost is inherited 
from each of the supersteps executed during the lifetime of that  procedure. 

Critical paths are made visible by shading each of the nodes in the graph with 
a colour ranging from white to red. A red node corresponds to a bottleneck (or 
'hot-spot' !) in the program. In the graphs that  follow, the shading for each node 
is determined by the largest difference between the maximum and average cost, 
and also the largest percentage-wise deviation between maximum and average 
cost [3]. Terms of the form, (12% [ 7%), are used to quantify this balance. This 
states that  the average cost of executing a piece of code on p processors is 12% 
of the cost of the processor that  spent the longest time performing the task; 
whereas the process with the least amount of work took only 7% of the time of 
the most loaded process. In the following sections we refine the algorithms used 
in the SQL program until there is virtually no imbalance, which is identified by 
terms of the form (100% I 100%). 

Q u e r y  E v a l u a t i o n  S tage  1 A portion of the call-graph for the original pro- 
gram (version 1) is shown in Figure 2. The three input relations were initially 
unevenly distributed among the processors. It is to be expected that  an irregular 
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Fig. 2. Query version 1: SQL query evaluation. 

distribution of input relations would produce a considerable amount of imbalance 
in computation and communication when performing operations using these data 
structures. For example, Figure 2 shows a (54% I 21%) imbalance in h-relation 
size. To remedy this imbalance, load balancing functions were introduced into 
the code which ensured that each processor contained approximately an equal 
sized partition of the input relation. 

Query  Evalua t ion  Stage 2 Load balancing the input relations reduced the 
amount of communication and computation imbalance by 26%. Further profiles 
revealed that the imbalance had not been completely eradicated. It appeared 
that the $QL primitives had inherent imbalances in communication even for 
perfectly balanced input data. This can be seen in Figure 3. 

The critical paths identifying the imbalance in communication were followed 
from the select function to elim_dup0. At this point it was easy to identify that 
the major cause of the communication imbalance, (69% I 54%), was attributed to 
the function bspsort  at line 175. This is shown in the screen-shot in Figure 1. 

In the same way, following the imbalance in the computation critical paths, 
(51% I 17%), it was also clear that the primary cause of computation imbalance 
was attributed to the same function bspsort ,  this time at line 188 in Figure 1. 
Figure 1 also shows a pie-chart that gives a breakdown of the accumulated 
computation time at the superstep at line 188 for all the processes. To give 
some idea of the type of computation that may cause problems, the underlying 
algorithm of the bspsort  function is (briefly) described. The function bspsor t  
implements a refined variant of the optimal randomised BSP sorting algorithm 
of [1] 

The algorithm consists of seven stages: (1) each processor locally sorts the 
elements in its possession; (2) each processor selects a random sample of s x p 
elements (where s is the oversampling factor) which are gathered onto process 
zero; (3) the samples are sorted and p regular pivots are picked from the s x 
p2 samples; (4) the pivots are broadcast to all processors; (5) each processor 
partitions the elements in its possession into the p blocks as induced by the 



161 

Fig. 3. Query version 2: SQL query evaluation after load balance. 

pivots; (6) each processor sends partition i to processor i; and (7) a local multi- 
way merge produces the desired effect of a global sort. 

If stages (6) and (7) are not balanced, then this can only be attributed to a 
poor selection of splitters in stage (2). Since the random number generator that 
selects the sample had been extensively tested prior to usage the only possible 
cause for the disappointing performance of the algorithm was the choice of the 
oversampling factor s. The algorithm had however been previously tested and the 
oversampling procedure had been fine tuned by means of extensive experimental 
results using simple timing functions. The experimental results had suggested 
that the oversampling factor established by the theoretical analysis of the algo- 
rithm had been a gross overestimate and, therefore, at the implementation level 
it had been decided to employ a considerably reduced factor. 

Fig. 4. Sorting version 1: experimental oversampling factor. 
Q u e r y  Evaluat ion:  Improv ing  Paral le l  Sor t ing  Experiments continued by 
varying the oversampling factor for the sorting algorithm. A portion of the call- 
graphs for the optimal experimental and theoretical parameters are exhibited in 
figures 4 and 5 respectively. The original experimental results were confirmed by 
the profile, that is, the algorithm utilising the theoretical oversampling factor 
(sort version 2) delivered performance that was approximately 50% inferior to 
that of the algorithm utilising the experimental oversampling factor (sort version 
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Fig. 5. Sorting version 2: theoretical oversampling factor. 

1). The computation imbalance of (49% I 15%) in stage (7) of sort version 1, 
shown at line 188 in Figure 4, shifted to a computation imbalance of (7%[ 0%) 
in stage (2) of sort version 2, shown at line 135 of Figure 5. Similarly, the 
communication imbalance of (60%] 48%) in stage (6) of sort version 1 shifted to 
an imbalance of (12%[ 7%) in stage (3) at line 125 of sort version 2. 

It was noted however that the communication and computation requirements 
of stages (6) and (7) in sort version 2 of Figure 5 are highly balanced, (98%1 97%) 
and (95% I 89%) respectively. Therefore, the theoretical analysis had accurately 
predicted the oversampling factor value required to achieve load balance. Un- 
fortunately, the sustained improvement gained by balancing the communication 
pattern of stage (6) of the underlying sorting algorithm- and consequently, the 
communication requirements of the algorithm - had been largely overwhelmed 
by the cost of communicating and sorting a larger sample in stages (2) and (3). 

To remedy this problem the ideas of [1] were adopted. In particular, the 
unbalanced communication and computation algorithm of stages (2) and (3), 
which collected and sorted a sample on a single process, were replaced with a 
simple and efficient parallel sorting algorithm, which sorted the sample set among 
all the processes. As noted in [1], an appropriate choice for such a parallel sorting 
algorithm is presented by an efficient variant of the bitonic-sort network. 

The introduction of the bitonic sorter caused the data presented in the 
bspsor t  node in Figures 4 and 5 to: Computation (99% I 98%), Communication 
(83% I 70%), and h-relation (99%1 98%). This improved the wall-clock running 
time of the sorting algorithm by 8.5%. 

Q u e r y  Eva lua t ion  Stage 3 As the sorting algorithm is central to the im- 
plementation of most of the SQL queries, a minor improvement in the sorting 
algorithm brings about a marked improvement in the performance of the query 
evaluation as a whole. This can be clearly seen from the lack of any shading of 
critical paths in Figure 6 (contrast with Figure 2)-all the h-rdations in the SQL 
queries are almost perfectly balanced. 

To reinforce the conclusion that these improvements are architecture inde- 
pendent, Table 2.1 shows the wall-clock times for the original and optimised pro- 
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F|g. 6. Query version 3: SQL query evaluation, final version. 

grams running on a variety of parallel machines. The size of the input relations 
was chosen to be small, so that the computat ion time in the algorithms would 
not dominate. This is particularly important  if we are to highlight the improve- 
ments in communication cost. A small relation size also enabled the Network of 
Workstations (NOW) implementation of the algorithm to complete in a reason- 
able amount of time. For all but one of the results, the optimised version of the 
program provides an approximate 20% improvement over the original program. 
This evidence supports our hypothesis that  the call-graph profiling tool provides 
a mechanism that  guides architecture independent program optimisation. As an 
aside, the parallel efficiencies in the table are marginal for the T3E and Origin 
2000, due to the communication intensive nature of this query processing ap- 
plication, in combination with the small amount  of data  held on each process 
(750 records per process at p = 16). In contrast, a combination of the slow 
processors, fast communication, and poor cache organisation on the T3D gives 
super-linear speedup even for this small data  set. However, the communication 
intensive nature of this problem makes it unsuitable for running over loosely 
coupled distributed memory machines For example, the results for a NOW, ex- 
hibit super-linear speedup at p = 2 in the optimised program, yet super-linear 
slowdown in all other configurations 

3 C o n c l u s i o n s  

The performance improvements resulting from the analysis of the call-graph pro- 
files demonstrate that  the tool can be used to optimise programs in a portable 
and architecture independent manner. Unlike other profiling tools, the architec- 
ture independent metric - h-relation size - guides the optimisation process. The 
major benefit of this profiling tool is that  the amount  of information displayed 
when visualising a profile for a parallel program is no more complex than that  
of a sequential program. 

1 A 10Mbps Ethernet network of 266MHz Pentium Pro processors. 
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T a b l e  1. Wall-clock time in seconds for input relations containing 12,000 records 

Optimised N N  
Machine II Pl time Ispeedupll time ]speedupll gain I 

Cray T3E 1 
2 
4 
8 

16 
Cray T3D 1 

2 
4 
8 

16 
SGI Origin 2000 1 

2 
4 
8 

Intel NOW ~ 1 
2 
4 
6 

6.44 1.00 5.37 1.00 17~ 
4.30 1.50 3.38 1.59 21~ 
2.48 2.60 1.85 2.90 25~ 
1.23 5.23 1.04 5.17 15% 
0.68 9.43 0.67 8.02 1% 

27.18 1.00[ 22.411 1.00 18% 
13.18 2.06 10.88 2.06 17% 
6.89 3.94 5.70] 3.93 17% 
3.29 8.25 3.07i 7.30 7% 
1.66 16.34 1.89 11.88 -14~ 
2.99 1.00 2.42 1.00 19% 
1.65 1.81 1.27 1.91 23% 
1.26 2.37 1.11 2.16 12% 
0.88 3.39 0.77 3.15 13% 
4.96 1.00 4.04 1.00 18% 

78.21 0.06 1.65 2.45 98% 
174.77 0.03 88.76 0.05 49% 
216.42 0.02 ,101.33 0.04 53% 
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