
A Graphical Tool for the Visualization and
Animation of Communicat ing Sequential

Processes

All E. Abdallah

Department of Computer Science
The University of Reading

Reading, RG6 6AY, UK
email: A.Abdallah@reading.ac.uk

WWW:http://www.fmse.cs.reading.ac.uk/people/aea

Abstrac t . This paper describes some aspects of an interactive graphical
tool designed to exhibit, through animation, the dynamic behaviour of
parallel systems of communicating processes. The tool, called VisualNets,
provides functionalities for visually creating graphical representations
of processes, connecting them via channels, defining their behaviours
in Hoare's CSP notation and animating the evolution of their visuliza-
tion with time. The tool is very useful for understanding concurrency,
analysing various aspects of distributed message-passing algorithms, de-
tecting deadlocks, identifying computational bottlenecks, and estimating
the performance of a class of parallel algorithms on a variety of MIMD
parallel machines.

1 I n t r o d u c t i o n

The process of developing parallel programs is known to be much harder than
that of developing sequential programs. It is also not as intuitive. This is espe-
cially the case when an explicit message passing model is used. The user usually
takes full responsibility for identifying parallelism, decomposing the system into
a collection of parallel tasks, arranging appropriate communications between
the tasks, and mapping them onto physical processors. Essentially, a parallel
system can be viewed as a collection of independent sequential subsystems (pro-
cesses) which are interconnected through a number of common links (channels)
and can communicate and interact by sending and receiving messages on those
links. While understanding the behaviour of a sequential process in isolation is
a relatively straightforward task, studying the effect of placing a number of such
processes in parallel can be very complex indeed. The behaviour of all the pro-
cesses becomes inter-dependent in ways which are not at first obvious making it
very difficult to comprehend, reason about, and analyse the system as a whole.
Athough part of this difficulty can be at tr ibuted to the introduction of new as-
pects such as synchronizations and communications, the main problem lies in
the inherent complexity of parallel control as opposed to sequential control.

166

Visualizations are used to assist in absorbing large quantities of information
very rapidly. Animations add to their worth by allowing visualizations to evolve
with time and, hence, making apparent the dynamic behaviour of complex sys-
tems. VisualNets is an interactive graphical tool for facilitating the design and
analysis of synchronous networks of communicating systems through visualiza-
tion and animation.

Fig. 1. A screenshot showing the animation of an insertion sort algorithm

The tool, depicted in Fig. 1, allows the user to interactively create graphical
representations of processes, link them via channels to form specific network
configurations, describe the behaviour of each process in the network in Hoare's
CSP notation [11], and study an animated simulation of the network in execution.
The CSP syntax is checked before the animation starts. The visualization of
the network animates communications as they take place by flashing the values
being communicated over channel links. The tool builds a timing diagram to
accompany the animation and allows a more in-depth analysis to be carried
out. Networks can be built either as part of an orchestrated design process, by
systematic refinement of functional specifications using techniques described in
[1,2], or "on the fly" for rapid prototyping.

The benefits of using visualization as an aid for analysing certain aspects
of parallel and distributed systems has long been recognised. The main focus

167

in this area has been on tools for monitoring and visualizing the performance
of parallel programs. These tools usually rely on trace data stored during the
actual execution of a parallel program in order to create various performance
displays. A good overview of relevant work in this area can be found in [10,
13]. A different approach aimed at understanding not only the performance of
parallel and distributed systems but also their logical behaviours is based on
simulation and animation for specific architectures [6, 5, 12].

The remainder of the paper is organised as follows. Section 2 introduces
various features of the tool through a case study and Section 3 concludes the
paper and indicates future directions.

2 A C a s e S t u d y

We will give a brief description of the functionality of the tool through the
development of a distributed sorting algorithm based on insertion sort. Given
a non-empty list of values, the insertion sort algorithm, isort, starts from the
empty list and constructs the final result by successively inserting each element
of the input list at the correct position in an accumulated sorted list. Therefore,
sorting a list, say [al, as, ..an], can be visualized as going through n successive
stages. The i th intermediate stage, say insert_i , holds the value ai, takes the
sorted list isort [al,a2, ..ai-1] as input from the preceeding stage and returns
the the longer list isort [al, a2, ..ai] to the following stage.

Fig. 2. Network configuration for parallel insertion sort

2.1 Creat ing a Graphical Ne twork

The network configuration for sorting the list [8, 5, 3, 9,8,4, 5] is depicted in
Fig. 2. Each process in the network is represented graphically as a box with some
useful information, such as values of local parameters and process name, inside it.
Processes in the network can be linked via channels to form any topographical
configuration. The construction of a network involves operations for adding,
removing, and editing both processes and channels. The interface allows these
operations to be carried out visually and interactively.

168

Fig. 3. A CSP definition of INSERT(a)

2.2 Defining Process Behaviour

Having defined the network configuration, the next stage is to define the be-
haviour of each process in the network. This is done using a subset of CSP.
?he screen shot captured in Fig. 3 shows the CSP definition for the process
VSERT(a) which is stored in a l ibrary of useful processes. The processes
rSERT_i, 1 < i < 7, depicted in the above sorting network are all defined as

lJecific instances of the library process INSERT(a) by appropriate ly instanti-
ating the value parameter a and renaming the channels left and right.

Fig. 4. Animation of the network

In CSP, outputing a specific value v on a channel c is denoted by the event
c!v, inputing any value v on channel c and storing it in a local variable x is
denoted by the event c?x. The arrow --+ denotes prefixing an event to a process.
The notat ion P ~: b :~ Q , where b is a boolean expression and P and Q are
processes, is just an infix form for the tradit ional selection construct i f b t h e n
P e lse Q. Note that the prefix and conditional operators associate to the right.
The special message cot is used to indicate the end of a s t ream of messages
t ransmit ted on a channel. The process COPY denotes a one place buffer. For

169

any lists s, the process Prd(s) outputs the values of s in the same order on
channel right and followed by the message eot. The process GEN is Prd(~).

Fig. 5. Timing diagram for the network

2.3 A n i m a t i o n o f t h e N e t w o r k

Having created the network and defined each process, we can now graphically
animate the execution of the network by selecting the run but ton for continuous
animation, or the step but ton to show the new state of each process in the
network after one t ime step. Channels in each process are colour coded to reflect
the state of the process as follows: red for unable to communicate , green for
ready to communicate , and white when the process has successfully terminated.
When the indicators of a channel between two processes are both green, the
communicat ion takes place at the next t ime step.

Fig. 4 clearly illustrates that on the next t ime step, communicat ions can
only happend on channels with green (light grey) colour on both ends of the
links. These are, channels c2, c4, c6, and cs. Fig. 5 illustrates the t iming d iagram
for animating the network. It contains a record of all communicat ions on each
channel in the network coupled with the appropriate t ime s tamp.

The evolution of each individuM process in the network can be dynamical ly
monitored during the animation of the network. An indicator highlights the
exact place in the code of the process which will be executed at the next t ime
step. For example, the cursor in Fig. 6 indicates tha t the process INSERT_2 is
willing to output the value 8 at the next t ime step.

170

F ig . 6. Monitoring control within an individual process during network animation

F ig . 7. The process INS(a, s, t).

F ig . 8. Timing diagram for the execution of the new network.

171

2.4 Alternative Designs

The process INSERT(a) is just a valid implementation of the function insert(a)
which takes a sorted list of values and inserts the value a at the appropiate
position so that the extended list is also sorted. Another process INSERT' (a)
which also correctly implements insert(a) can be defined as depicted in Fig. 7.
In this definition, the additional variable s (and t resp.) is used to accumulate
the list of input values which are stricly less than a (and greater or equal to a
respectively).

INSERT'(a) = INS(a, ~, 9)

The timed diagram of the new network is shown in Fig. 8. The behaviour of
the network is completely sequential. Parallelism is only syntactic; each stage
in the pipeline needs to completely terminates before the following stage starts.
One of the strengths of VisuaINets is that it allows the user to alter the network
being investigated very quickly, so that variations can be tested and compared
interactively. After each change the user can immediately run the network again,
view the animation and the timing diagram as in Fig. 8. until a good design is
reached.

3 C o n c l u s i o n s a n d F u t u r e W o r k s

In this paper we have presented a graphical tool for the visualization, simula-
tion, and animation of systems of communicating sequential processes. A brief
overview of the functionality of the tool is described through the process of de-
veloping a distributed solution to a specific problem. Such a tool is of a great
educational value in assisting the understanding of concurrency and in illustrat-
ing many distributed computing problems and the techniques underlying their
solutions. Perhaps the most important aspect of the tool is the ability to visu-
ally alter a design, experiment with ideas for overcoming specific problems, and
investigate, through animations, the potential consequences of certain design de-
cisions. The tool proved very useful in detecting, through animation, undesirable
behaviours such as bottlenecks deadlock [3]. However, currently VisuaINets can-
not deal with non-deterministic processes our underlying visualisation techniques
are not easily scalable.

Work is presently in progress on a new version of the tool, rewritten in Sun
Microsystems' Java language. The tool is platform-independant and will operate
on UNIX or Windows-based systems. The new tool implements a considerably
larger set of CSP operators, and can deal with networks that synchronise on
events as well as on channel input or output. Internal parallelism within processes
is supported, permitting a smaller network to be visualised as a single process
and later zoomed to display the detail of the internal communications. The
emphasis of the new project is on developing an advanced visualisation and
animation tool and integrating it within an environment which allows higher
level of abstractions and capabilities for systematic specification refinement and
program transformation.

172

A c k n o w l e d g e m e n t s

The work reported in this paper has evolved over several years and is the result of
working very closely with several final year and postgraduate Computer Science
students at the University of Reading, UK. In particular, I would like to thank
Aiden Devine, Robin Singleton (for the implementation of the current tool) and
Mark Green for developing the new Java implementation.

References

1. A. E. Abdallah, Derivation of Parallel Algorithms from Functional Specifications
to CSP Processes, in: Bernhard Mgller, ed., Mathematics of Program Construction,
LNCS 047, (Springer Verlag, 1995) 67-96.

2. A. E. Abdallah, Synthesis of Massively Pipelined Algorithms for List Manipulation,
in L. Boug, P. Fraigniaud, A. Mignotte, and Y. Robert, eds, Proceedings of the
European Conference on Parallel Processing, EuroPar'96, LNCS 1024, (Springer
Verlag, 1996), pp 911-920.

3. A. E. Abdallah, Visualization and Animation of Communicating Processes, in N.
Namazi and K. Matthews, eds, Proc. of IASTED Int. Conference on Signal and
Image Processing, SIP-96, Orlando, Florida, USA. (IASTED/ACTA Press, 1996),
357-362.

4. R. S. Bird, and P. Wadler, Introduction to Functional Programming, (Prentice-
Hall, 1988).

5. Rajive L. Bagrodia and Chien-Chung Shen, MIDAS: Integrated Design and Sim-
ulation of Distributed Systems, IEEE Transactions On Software Engineering, 17
(10), 1993, pp. 1042-1058.

6. Daniel Y. Chao and David T. Wang, An Interactive Tool for Design, Simulation,
Verification and Synthesis of Protocols, Software and Experience, 24 (8), 1994, pp.
747-783.

7. Jim Davies, Specification and Proof in Real-Time CSP, (Cambridge University
Press, 1993).

8. H. Diab and H. Tabbara, Performance Factors in Parallel Programs, Submitted
for publication, 1996.

9. Michael T. Heath and Jennifer A. Etheridge, Visualizing the Performance of Par-
allel Programs, IEEE Software, 8 (5), 1991, pp. 29-39.

10. Michael T. Heath, Visualization of Parallel and Distributed Systems, in A. Zomaya
(ed), Parallel and Distributed Computing Handbook, (McGraw-Hill, 1996)

11. C. A. R. Hoare, Communicating Sequential Processes. (Prentice-Hall, 1985).
12. T. Ludwig, M. Oberhuber, and R. Wismller, An Open Monitoring System for

Parallel and Distributed Programs, in L. Boug, P. Fraigniaud, A. Mignotte, and
Y. Robert, eds, Proceedings of the European Conference on Parallel Processing,
EuroPar'96, LNCS 1123 (Springer, 1996) 78-83.

13. Guido Wirtz, A Visual Approach for Developing, Understanding and Analyzing
Parallel Programs, in E.P. Glinert, editor, Proc. Int. Symp. on Visual Program-
ming, (IEEE CS Press, 1993) 261-266.

