
Net-dbx: A Java Powered Tool for Interactive
Debugg ing of MPI Programs Across the Internet

Neophytos Neophytou and Paraskevas Evripidou

Department of Computer Science
University of Cyprus

P.O. Box 537
CY-1678 Nicosia, Cyprus

skevos@turing.cs.ucy.ac.cy
Tel: -t-357-2-338705 (FAX 339062)

Abs t rac t . This paper describes Net-dbx, a tool that utilizes Java and
other WWW tools for the debugging of MPI programs from anywhere in
the Internet. Net-dbx is a source level interactive debugger with the full
power of gdb augmented with the debug functionality of LAM-MPI. The
main effort was on a low overhead but yet powerful graphical interface
that would be supported by low bandwidth connections. The portability
of the tool is of great importance as well because it enables us to use it
on heterogeneous nodes that participate in an MPI multicomputer. Both
needs are satisfied a great deal by the use of Internet Browsing tools and
the Java programming language. The user of our system simply points
his browser to the URL of the Net-dbx page, logs in to the destination
system, and starts debugging by interacting with the tool just like any
GUI environment. The user has the ability to dynamically select which
MPI-processes to view/debug. A working prototype has already been
developed and tested successfully.

1 I n t r o d u c t i o n

This paper presents Net-dbx, a tool that uses W W W capabilities in general and
Java applets in particular for portable parallel and distributed debugging across
the Internet. Net-dbx is now a working prototype of a full fiedged development
and debugging tool. It has been tested for the debugging of both Fortran and C
MPI programs.

Over the last 3-4 years we have seen an immense growth of the Internet and
a very rapid development of the tools used for browsing it. The most common of
form of data traveling in gigabytes all over the net is W W W pages. In addition
to information formatted with text, graphics, sound and various gadgets, W W W
enables and enhances a new way of accomplishing tasks: Teleworking.

Although, teleworking was introduced earlier, it has been well accepted and
enhanced through the use of the web. A lot of tasks, mostly transactions, are
done in the browser's screen, enabling us to order and buy things from thousands

182

of miles away, edit a paper, move files along to machines in different parts of the
world. Until recently, all these tasks were performed using CGI scripts 1

The CGI scripts are constrained in exchanging information only through
text-boxes and radio buttons in a s tandard Web Fo rm. The Java language [1][2]
is now giving teleworking a new enhanced form. Java applets allow the user
to manipula te graphics with his mouse and keyboard and send information, in
real time, anywhere in the Internet. Graphical web applications are now able to
use low bandwidth connections, since the interaction with the server does not
demand huge amounts of X-Protocol [3] data. This even makes it possible to
perform the task of remote program development and debugging from anywhere
in the net.

Developing and debugging parallel programs has proven to be one of the
most hazardous tasks of program development. When running a parallel pro-
gram, many things can go wrong in many places (processing nodes). It can lead
to deadlock situations when there are bugs in the message distribution (in dis-
t r ibuted machines), or when access to the common memory is not well controlled.
Some processing nodes may crash under some circumstances in which the pro-
g rammer may or may not be responsible. To effectively debug parallel programs
we should know what went wrong in each of these cases [4].

In order to effectively monitor the programs execution, there are two ap-
proaches: Post mor t em and runtime debugging. In post mor t em debugging, dur-
ing execution, the compiled program, or the environment, keeps track of every-
thing tha t happens and writes every event in special files called trace files. These
trace files are then parsed using special tools to help the user guess when and
what went wrong during execution of a buggy program. Runt ime tools, on the
other side, have access to the programs memory, on each machine, and using
operating system calls they can stop or resume program execution on any exe-
cution node. These tools can change variables during the execution and break
the program flow under certain conditions.

The prototype described in this paper is a runt ime source-level debugging
tool. It enhances the capabilities of the gdb debugger [5],[6], and the monitor ing
facilities of LAM [7][8] into a graphical environment. Using Java, we developed
a tool that integrates these two programs in a collection of applets in a single
Web Page. Our tool acts as an interface to the two existing tools, which provides
the user with a graphical interaction environment, and in addition, it optimizes
interaction between LAM and gdb.

2 A r c h i t e c t u r e o f N e t - d b x

Net-dbx is a client-server package. The server side is the actual MPI-Network,
that is the group of workstations of processors part icipating in an MPI-Mult i-
computer. It consists of tools that are to be installed locally on each Node and

1 CGI stands for Common Gateway Interface. It consists of a server program, residing
on the HTTP server, which responds to a certain form of input (usually entered in
web forms) and produces an output Web page to present results to the user.

183

for individually debugging the processes running on tha t Node. These tools in-
clude the MPI runtime environment (we currently use the LAM implementat ion)
and a source level runtime debugger (we currently use gdb). On the client side
there should be a tool that integrates debugging of each Node and provides the
user with a wider view of the MPI program which runs on the whole Multicom-
puter. The program residing in the client side is an applet writ ten in Java. I t
is used to integrate the capabilities of the tools which rely on the server side.
We can see Net-dbx as an environment consisting of two layers: the lower layer
which is the MPI Network and the higher layer as the applet on the Web browser
running on the user's workstation.

To achieve effective debugging of an MPI Parallel Program, one must fol-
low the execution flow on every node of the mul t icomputer network. The status
of messages and status of the MPI processes have to be monitored. Net-dbx is
designed to relieve the user from the tedious procedure of manual parallel debug-
ging. This procedure would involve him capturing PIDs as a parallel p rogram is
started, connecting to each node he wants to debug via telnet, and at taching the
running processes to a debugger. There are also several synchronization issues
tha t make this task even more difficult to achieve. In addition, Net-dbx offers
a graphical environment as an integrated parallel debugging tool, and it offers
means of controll ing/monitoring processes individually or in groups.

2.1 I n i t i a l i z a t i o n S c h e m e

As mentioned above, to at tach a process for debugging you need its PID. But
tha t is not known until the process starts to run. In order to stall the processes,
until they are all captured by the debugger, a small piece of code has to be added
in the source code of the program. An endless loop, depending on a variable and
two MPI_Barriers that can hold the processes waiting until they are captured.
In a Fortran program the synchronization code looks like the following:

if (m y i d .eq. 0) then
dummydebug=l
doMhile (dummydebug .eq. i)
enddo

endif
call HPI_BARRIER(MPI_COMM WORLD, ierr)
call HPI_BARRIER(MPI_COMM WORLD, ierr)

The variable myid represents the process' Rank. As soon as all the processes
are attached to the debugger, we can proceed to setting a breakpoint on the
second MPI_BARRIER line and then setting the dummydebug variable on the
root process to 0 so that it will get out of the loop and allow the MPI__Barriers
to unlock the rest of the processes. After that the processes are ready to be
debugged. The d u m m y code is to be added by the tool using s tandard searching
techniques to find the main file and then compile the code t ransparent ly to the
u s e r .

184

2.2 T e l n e t Sess ions to P r o c e s s i n g N o d e s

Telnet Sessions are the basic means of communication between the client and
the server of the system. For every process to be debugged, the Java applet
initiates a telnet connection to the corresponding node. It also has to initiate
some extra telnet connections for message and process task monitoring. The I /O
communication with this connection is done by exchanging strings, just like a
terminal where the user sends input from the keyboard and expects output on
the screen. In our case, the Telnet Session must be smart enough to recognize
and extract information from the connections response. The fact that s tandard
underlying tools are used guarantees same behavior for all the target platforms.

Standard functionality that is expected from the implementation of the Tel-
net Sessions role is to provide abstractions to:

- sett ing/unsett ing breakpoints,

- s tart ing/stopping/continuing execution of the program,
- setting up and reporting on variable watches,

- evaluating/changing value of expressions and
- providing the source code (to the graphical interface).
- Capturing the Unix PIDs of every active process on the network (for the

telnet session used to start the program to be debugged).

In addition, the telnet Session needs to implement an abstraction for the
synchronization procedure in the beginning. That is, if it is process 0 the session
should wait for every process to attach and then proceed to release (get out
of the loop) the stalled program. If it is a process ranked 1..n, then it should
just attach to the debugger, set the breakpoints and wait. This can be achieved
using a semaphore that will be kept by the object which will "own" all the telnet
Sessions. In programming telnet session's role, standard Java procedures were
imported and used, as well as third-party downloaded code, incorporated in the
telnet part of our program. To the existing functionality we added interaction
procedures with Unix shell, GNU Debugger (gdb), and with LAM-MPI so that
the above abstractions were implemented.

One of the major security constraints posed in Java is the rule that applets
can have an Internet connection (of any kind-telnet, FTP, HTTP, etc) only
with their H T T P server host [9], [10]. This was overcome by having all telnet
connections to the server and then rsh to the corresponding nodes. This approach
assumes that the server can handle a large number of telnet connections and that
the user will be able to login to the server and then rsh to the MPI network nodes.

Telnet Sessions need to run in their own thread of execution and thus need
to be attached to another object which will create and provide them with that
thread. A Telnet Session can be attached either to a graphical DebugWindow,
or to a non-graphical global control wrapper. Both of these wrappers acquire
control to the process under debugging using the abstractions offered by the
telnet session.

185

2.3 Integration/Coordination

As mentioned above, several telnet sessions are needed in order to debug an
MPI program in the framework that we use. All these sessions need a means of
coordination. The coordinator should collect the start ing da ta (which process
runs on which processing node) from the initial connection and redistribute this
information to the other sessions so that they can telnet to the right node and
at tach the right process to the debugger.

A large array holds all the telnet sessions. The size is determined by the
number of processes that the program will run. Several pointers of the array will
be null, as the user might not want to debug all the running processes. The other
indices are pointing to the wrappers of the according telnet sessions that will be
debugged. The wrapper of a telnet session can be either a graphical DebugWin-
dow, described in the next subsection, or a non-graphicM TelnetSession Wrapper,
which only provides a thread of execution to the telnet session. Additionally it
provides the methods required for the em coordinator to control the process to-
gether with a group of other processes. The capabili ty of dynamical ly init iating
a telnet session to a process not chosen from the beginning is a feature under
development.

As the user chooses, using the user interface, which processes to visualize, and
which are in the group controlled by the coordinator, the wrapper of the affected
process will be changed from a TelnetSessionWrapper to a DebugWindow and
vice-versa.

When LAM MPI starts the execution of a parallel program it reports which
machines are the processing nodes, where each MPI process is executed and what
is its Unix PID. The interpreted da ta is placed in an AllConnectionData object,
which holds all the necessary s tar tup information that every telnet session needs
in order to be initialized. After acquiring all the da ta needed, the user can decide
with the help of the graphical environment which of the processes need to be
initiated for debugging.

After that , the coordinator creates ConnectionData objects for each of the
processes to be started and triggers the start of the initialization process. I t acts
as a semaphore holder for the purposes of the initial synchronization.

Another duty of the coordinator is to keep a copy of each source file down-
loaded so that every source file is downloaded only once. All the source files have
to be acquired using the list command on the debugger residing on the server
side. These are kept as string arrays on the client side, since access to the user 's
local files is not allowed to a Java applet. A future optimizat ion will be the use
of F T P connections to acquire the needed files.

3 G r a p h i c a l E n v i r o n m e n t

As mentioned in the introduction the user Interface is provided as an applet
housed in a Web Page. Third-par ty packages 2 are specially formed to build a

2 We modified and used the TextV~ew component which was uploaded to the garaelan
Java directory [11] by Ted Phelps at DTSC Australia. The release version will use

186

Fig. 1. A snapshot of the Net-dbx debugger in action.

187

fast and robust user interface. The graphical environment that is shown in the
main browser screen (see figure 1) is consisted of:

- The Process coordinator window (control panel) which is the global control
panel of the system.

- The debugging windows, where all the debugging work is done
- The interaction console, where the user can interact with the main console

of the program to be debugged
- The message window, where all the pending messages are displayed.

The Process coordinator window provides a user Interface to the coordinator
which is responsible for getting the login data from the user, starting the debug-
ging procedure and coordinating the several telnet sessions. It provides means
for entering all the necessary data to start a debugging session such as UserID,
Password, Program Path which are given by the user. The user is also enabled
to select which processes are going to be active, visualized, or controlled within
a global process group.

The most important visual object used in this environment is the Debug
Window in which the code of the program is shown. In addition to the code, as
mentioned before, this object has to implement behaviors such as showing the
current line of execution and by indicating which lines are set as breakpoints.
These behaviors are shown using painted text (red color) for the breakpoints,
painted text for the line numbers (blue color), and painted and highlighted text
for the current line. The appropriate buttons to set/unset breakpoints, next and
continue are also provided.

The interaction console is actually a typical telnet application. It is the user
interface to a special telnet session used by the coordinator to initialize the
debugging procedure. After initialization and capturing of all the needed data,
the interaction console is left as a normal telnet window within which the user
I /O takes place.

The message view is the applet responsible for showing the message status.
It displays all the information that is given by the LAM environment when an
mpimsg command is issued. All the pending messages are shown in a scrolling
List object.

4 R e l a t e d W o r k

A survey on all the existing graphical debugging tools would be beyond the scope
of this paper. However we present the tools that appear to be most similar to
Net-dbx. For an overview of most of the existing parallel tools, the interested
reader can visit the Parallel Tools Consortium home page [12].

the IFC Java widget set as it appears to be one of the fastest and most robust 100~
Compatibility certified Java toolkits.

188

4.1 X M P I

XMPI [7] is a graphical environment for visualization and debugging, created by
the makers of the LAM- MPI environment at the Ohio Supercomputer Center.
It basically features graphical representation of the program's execution and
message traffic with respect to what each process is doing. XMPI uses a special
trace produced by the LAM-MPI environment during the execution. Although
XMPI can be used at runtime it is actually a post-mortem tool and uses the
LamTraces for every function that it provides. XMPI seems to be more of a
visualization tool for displaying the program execution, but not controlling it.
It is supported on DEC, HP, SGI, IBM and Sun platforms.

4.2 T o t a l V i e w

This package is a commercial product of Dolphin Interconnect Solutions [13]. It
is a runtime tool and supports source level debugging on MPI programs, targeted
to the MPICH implementation by Argonne National Labs. Its capabilities are
similar to those of dbx or gdb, which include changing variables during execution
and setting conditional breakpoints. It is a multiprocess graphical environment,
offering an individual display for each process, showing source code, execution
stack etc. TotalView is so far implemented on Sun4 with SunOS 4.1.x platforms,
Digital Alpha with Digital Unix system and IBM RS/6000.

4.3 p2d2

Another ongoing project is the p2d2 Debugger [14] being developed at the NASA.
Ames Research Center. It is a parallel debugger based on the client/server
paradigm. It is based on an Object Oriented framework that uses debugging
abstractions for use in graphical environments. It relies on the existence of a
debugging server on each of the processing nodes. The debugging server pro-
vides abstractions, according to a predefined framework and can be attached
to the graphical environment at runtime. Following this architecture the tool
achieves portability and heterogeneity on the client side, whereas it depends on
the implementation of the server on the server side.

5 C o n c l u d i n g R e m a r k s a n d F u t u r e W o r k

In this paper we have presented Net-dbx, a tool that utilizes standard W W W
tools and Java for fully interactive parallel and distributed debugging. The work-
ing prototype we developed provides proof of concept that we will soon be able
to apply teleworking for the development debugging and testing of parallel pro-
grams for very large machines. A task that , up to now, is mostly confined to the
very few supercomputer centers worldwide.

Net-dbx provides runtime source level debugging on multiple processes and
message monitoring capabilities. The prototype provides a graphical user inter-
face at minimal overhead. It can be run from anywhere in the Internet even using

189

a low bandwidth dialup connection (33KBps). Most importantly, Net-dbx is su-
perior over similar products in compatibili ty and heterogeneity issues. Being a
Java applet, it can run with no modifications on virtually any console, requiring
only the presence of a Java enabled W W W browser on the client side.

The tool at it 's present implementat ion is being utilized in the Parallel Pro-
cessing class at the University of Cyprus. After this alpha testing, it will be ready
for beta testing on other sites as well. We are currently working on extending
the prototype presented, to an integrated MPI-aware environment for p rogram
development, debugging and execution. For more information of the Net-dbx
debugger 's current implementation state, one can visit the Net-dbx home page
[15].

References

1. Laura Lemay and Charlse L. Perkins, Teach yourself Java in 21 days, Sams.net
Publishing, 1996

2. The JavaSoft home page, h t t p : / / j a v a , sun. corn, The main java page at Sun Cor-
poration. This address is widely known as the JAVA HOME

3. X Window System, The Open Group,
ht tp: / /www.opengroup.org/ tech/desktop/x/ , The Open Group's information
page on the X-Window System.

4. Charles E. McDowell, David P. Helmbold, Debugging concurrent programs, ACM
Computing Surveys Voh 21, No. 4 (Dec. 1989), Pages 593-622

5. Richard M. Stallman and Roland H. Pesch, Debugging with GDB, The GNU
Source-Level Debugger, Edition 4.09, for GDB version 4.9

6. GNU Debugger information,
http://www'physik'fu-berlin'de/edv-d~176176

7. LAM / MPI Parallel Computing, Ohio Supercomputer Center,
http://www.osc.edu/lam.html, The info and documentation page for LAM. It
also includes all the documentation on XMPI

8. Ohio Supercomputer Center, The Ohio State University, MPI Primer Development
With LAM

9. J. Steven Fritzinger, Marianne Mueller, Java Security white Paper, Sun Microsys-
tems Inc., 1996

10. Joseph A. Bank, Java Security,
http ://www-swiss. ai. mit. edu/- jbank/j avapapaer/j avapaper, html

II. The GameLan home page, http://www.gamelan, com. Here resides the most com-
plete and well known java code collection in the Internet

12. The Parallel Tools Consortium home page, ht tp: / /www.ptools , org/
13. Dolphin Toolworks, Introduction to the Tot alView Debugger,

http ://www. dolphinics, com/TINDEX, html
14. Doreen Cheng and Robert Hood, A Portable Debugger for Parallel and Distributed

Programs, Supercomputing '94
15. The Net-dbx home page, h t tp ://www. cs. ucy. ac. cy/~net-dbx/

