
White-Box Benchmarking

Emilio Herns 1 and Tony Hey 2

1 Departamento de Computacidn,
Universidad Sim6n Bolivar, Apartado 89000, Caracas, Venezuela,

emilio@usb, ve

2 Department of Electronics and Computer Science,
University of Southampton, Southampton SO17 1B J, UK

aj gh@ecs, soton, ac. uk

Abs t r ac t . Structural performance analysis of the NAS parallel bench-
marks is used to time code sections and specific classes of activity, such
as communication or data movements. This technique is called white-
box benchmarking because, similarly to white-box methodologies used
in program testing, the programs are not treated as black boxes. The
timing methodology is portable, which is indispensable to make compar-
ative benchmarking across different computer systems. A combination
of conditional compilation and code instrumentation is used to measure
execution time related to different aspects of application performance.
This benchmarking methodology is proposed to help understand parallel
application behaviour on distributed-memory parallel platforms.

1 I n t r o d u c t i o n

Computer evaluation methodologies based on multi-layered benchmark suites,
like Genesis [1], EuroBen [2] and Parkbench [3] have been proposed. The lay-
ered approach is used for characterising the performance of complex benchmarks
based on the performance models inferred f rom the execution of low-level bench-
marks. However, it is not straightforward to relate the performance of the low-
level benchmarks with the performance of more complex benchmarks.

The study of the relationship between the performance of a whole p rogram
and the performance of its components may help establish the relevance of using
low-level benchmarks to characterise the performance of more complex bench-
marks. For this reason we propose the structural performance analysis of com-
plex benchmarks. A benchmarking methodology, called white-box benchmarking,
is proposed to help understand parallel application performance. The proposed
methodology differs from standard profiling in that it is not procedure oriented.
Part ial execution times are not only associated to code sections but also to ac-
t ivity classes, such as communication or da ta movements. These execution t imes
may be compared to the results of simpler benchmarks in order to assess their
predictive properties. The proposed methodology is portable. It only relies on
MPI_WTIME (the MPI [4] t iming function) and the availability of a source code
preprocessor for conditional compilation, for instance, a s tandard C preproces-
sor.

221

T i m i n g M e t h o d . The proposed timing method is simple enough to be portable.
It is based on the combination of two basic techniques: incremental conditional
compilation and section timing. Incremental conditional compilation consists of
selecting code fragments from the original benchmark to form several kernels
of the original benchmark. A basic kernel of a parallel benchmark can be built
by selecting the communication skeleton. A second communication kernel can
contain the communication skeleton plus data movements related to communi-
cation (e.g. data transfers to communication buffers). By measuring the elapsed
time of both kernels, we know the total communication time (the time measured
for the first kernel) and the time spent in data movements (the difference in the
execution time of both benchmarks). The net computation time can be obtained
by subtracting the execution time of the second kernel from the execution time
of the complete benchmark. Not every program is suitable for this type of code
isolation, see [5] for a more detailed discussion. Section timing is used on code
fragments that take a relatively long time to execute, for example, the subrou-
tines at the higher level of the call tree. Three executable files may be produced,
the communication kernel, the communication plus data movements kernel and
the whole benchmark. Optionally, if information by code section is required, an
additional compile-time constant has to be set to include the timing functions
that obtain the partial times. The use of MPI_WTIME allows us to achieve code
portability. Two out of these three benchmark executions are usually fast be-
cause they will not execute "real" computation, but only communication and
data movements. Section 2 presents an example of the use of the methodology
with the NAS parallel Benchmarks [6]. In section 3 we present our conclusions.

2 C a s e S t u d y w i t h N A S P a r a l l e l B e n c h m a r k s

The NAS Parallel Benchmarks [6] are a widely recognized suite of benchmarks
derived from important classes of aerophysics applications. In this work we used
the application benchmarks (LU, BT and SP) and focused on the communication
kernels extracted from these benchmarks. The main visible difference between
these communication kernels comes from the fact that LU sends a larger number
of short messages, while SP and BT send fewer and longer messages. This means
that the LU communication kernel should benefit from low latency interconnect
subsystems, while BT and SP communication kernels would execute faster on
networks with a greater bandwidth.

2.1 E x p e r i m e n t s

Several experiments with the instrumented version of the NAS benchmarks were
conducted on a Cray T3D and a IBM SP2. For a description of the hardware
and software configurations see [5]. Several experiments were conducted using
the white-box methodology described here. These experiments are also described
in detail in [5].

222

NAS Application Benchmarks (Class A size)

Fig. 1. Communication time and communication-related data movement time on T3D
and SP2 (16 processors).

Figure 1 compares communication overhead in the T3D and the SP2 for
LU, BT and SP. The communication kernel of LU runs marginally faster on
the SP2 than on the T3D, while SP and BT communication kernels execute
faster on the T3D. The execution of the communication kernels indicates that
communication performance is not substantially better in the SP2 or the T3D.
The main difference, in favour of the T3D, is the time spent in data movements
related to communication, rather than communication itself.

Measurements made with COMMS1 (the Parkbench ping-pong benchmark),
slightly modified for transmitting double precision elements, show that the T3D
has a startup time equal to 104.359#sec and a bandwidth equal to 3.709 Mdp/sec,
while the SP2 has a startup time equal to 209.458#sec and a bandwidth equal
to 4.210 Mdp/sec, where Mdb means "millions of double precision elements".

As mentioned above, the LU communication kernel should run faster on low
latency networks, while BT and SP communication kernels would execute faster
on networks with a greater bandwidth. The observed behaviour of LU, BT and
SP, seems to contradict the expected behaviour of these benchmarks, based on
the COMMS1 results. Apart from bandwidth and startup time, many other
factors may be playing an important role in communication performance, which
are not measured by COMMS1. Some of these factors are network contention,
the presence of collective communication functions, the fact that messages are
sent from different memory locations, etc. In other words, it is clear from these
experiments that communication performance may not be easily characterized

223

by low level communication parameters (latency and bandwidth) obtained from
simpler benchmarks.

3 Conc lus ions

White-box benchmarking is a portable and comparatively effortless performance
evaluation methodology. A few executions of each benchmark are necessary to get
the information presented in this article, one for the complete benchmark and the
rest for the extracted kernels. A benchmark visualisation interface like GBIS [7]
may easily be enhanced to incorporate query and visualisation mechanisms to
facilitate the presentation of results related to this methodology.

Useful information has been extracted from the NAS parallel benchmarks
case study using white-box benchmarking. Communication-computation pro-
files of the NAS parallel benchmarks may easily indicate the balance between
communication and computation time. Communication kernels obtained by iso-
lating the communication skeleton of selected applications may give us a better
idea about the strength of the communication subsystem. Additionally, some be-
haviour characteristics can be exposed using white-box benchmarking, like load
balance and a basic execution profile.

This methodology may be used in benchmark design rather than in appli-
cation development. Programs specifically developed as benchmarks may incor-
porate code for partial measurements and kernel selection. A description of the
instrumented code sections may also be useful and, consequently, could be pro-
vided with the benchmarks. The diagnostic information provided by white-box
benchmarking is useful to help understand the variable performance of parallel
applications on different platforms.

R e f e r e n c e s

l. C. A. Addison, V.S. Getov, A.J.G. Hey, R.W. Hockney, and I.C. Wolton. The
genesis distributed-memory benchmarks. In J. Dongarra and W. Gentzsch, editors,
Computer Benchmarks, pages 257-271. North-Holland, 1993.

2. A. van der Steen. Status and Direction of the EuroBen Benchmark. Supcrcomputer,
11(4):4-18, 1995.

3. J. Dongarra and T. Hey. The PARKBENCH Benchmark Collection. Supercomputer,
11(2-3):94-114, 1995.

4. Message Passing Interface Forum. The message passing interface standard. Tech-
nical report, Univeristy of Tennessee, Knoxville, USA, April 1994.

5. E. Hern~dez and T. Hey. White-Box Benchmarking (longer version). Available at
h t tp ://www. usb. r e / emilio/WhiteBox, ps, 1998.

6. D. Bailey et. al. The NAS Parallel Benchmarks. Technical Report RNR-94-007,
NASA Ames Research Center, USA, March 1994.

7. M. Papiani, A.J.G. Hey, and R.W. Hockney. The Graphical Benchmark Information
Service. Scientific Programming, 4(4), 1995.

