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Abs t r ac t .  Parallel computers are difficult to program efficiently. We 
believe that a good way to help programmers write efficient programs 
is to provide them with tools that show them how their programs be- 
have on a parallel computer. Data distribution is the major performance 
factor of data-parallel programs and so automatic data layout for High 
Performance Fortran programs has been studied by many researchers 
recently. The communication volume induced by a data distribution is a 
good estimator of the efficiency of this data distribution. 
We present here a symbolic method to compute the communication vol- 
ume generated by a given data distribution during the program writ- 
ing phase (before compilation). We stay machine-independent to assure 
portability. Our goal is to help the programmer understand the data 
movements its program generates and thus find a good data distribu- 
tion. Our method is based on parametric polyhedral computations. It 
can be applied to a large class of regular codes. 

1 I n t r o d u c t i o n  

Parallel computing has become the solution of choice for heavy scientific comput-  
ing programs.  Unfortunately parMlel computers  require considerable knowledge 
and programming  skills to exploit their full potential.  A major  mean  to reduce 
the programming complexity is to use high-level languages. High Performance 
Fortran (HPF) is such a language. I t  follows the data-parallel  p rogramming  
parad igm where the computat ions  are directed by the data.  Indeed, the com- 
putat ions  occur on the processor tha t  "owns" the da ta  being written. So the 
da ta  distribution is a very impor tant  efficiency factor when p rogramming  with 
a data-parallel  language. 

Our goal is to help the programmer  find a good data-distr ibution.  We want 
a tool tha t  is executed when the program is being written. Work on such a tool 
has s tar ted at the LIFL with HPF-builder  [6], a tool that  interactively displays 
the arrays as they are distributed and aligned by the HPF  directives. This tool 
also allows to change the da ta  distribution graphically. 

We propose here a new step in the development of a tool tha t  helps the pro- 
g rammer  understand how data  move in its program. Given a data-distr ibut ion,  
we are able to compute the volume of the communicat ions generated by a pro- 
gram. We use symbolic computat ion tools to stay free of the problem size. All 
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this is done at the language level, thus retaining portabili ty and machine inde- 
pendence. This tool is intended as a mean to write a reasonably efficient program 
that  can be tuned for a particular parallel machine with profiling systems later. 

The  sequel of this paper is organized as follows. In Sect. 2 we briefly review 
related works, then in Sect. 3 we describe the problem we consider and present 
its modelization in Sect. 4. We then detail the tools used to solve our problem 
along with an example in Sect. 5. And we finally conclude in Sect. 6. 

2 R e l a t e d  W o r k  

M any researchers [1,9, 10, 13-15] have studied automatic data  distribution. Esti- 
mating communication costs has been the key factor to determine the quality of 
a data  distribution. Most of the previous works [12, 7, 11] have studied compile- 
time estimation of these communication costs. Indeed, they use the fact that  
most program parameters are known at that  t ime and in many cases, these 
studies also use machine (and compiler) dependent data. Our work differs from 
previous work by the techniques used and the stage of program development we 
focus on: the program writing phase. We also use exact parameterized methods 
and we stay compiler and machine independent, we work at the language level. 

D e s c r i p t i o n  o f  t h e  P r o b l e m  

3.1 G e n e r a l  R e m a r k s  

The problem we study in this paper is the evaluation of the communication vol- 
ume in a HPF program before compilation. The goal is to help the programmer 
understand the communications generated by his program and find a good da ta  
distribution (or a more efficient way to code his algorithm). 

The communications we.consider are at the PROCESSORS level: as in HPF,  we 
use an abstract target machine. We stay at the language level, thus allowing to 
find a data  distribution that  is well suited to the problem, and thus retaining 
portability. Our aim is not to find the best da ta  distribution for a given machine, 
but a good one for any machine (and compiler). 

In the future, if some compiler optimization techniques such as overlap areas 
to vectorize communications are used by most compilers, we could adapt  our 
evaluation techniques to these optimizations. In a first step, though, we remain 
at the language level to validate our approach. We believe indeed that  a good 
data  distribution at the language level should not be a bad one for any compiler, 
regardless of the compilation techniques used. 

3.2 M o d e l i z a t i o n  

We consider that  the only communication generation statements are storage 
statements, we do not take into account I /O statements. For each of these storage 
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statements ,  the surrounding loops define an iteration domain that  "shapes" the 
communicat ion pat tern.  

Given the mathemat ica l  tools we use in the following, we have to restrict 
ourselves to loop bounds that  define a polyhedron, that  is loop bounds defined 
as ex t rema  of affine functions of the surrounding loop indices and parameters .  
For the same reason, we restrict the array access functions to affine functions. 
This class of loops contains most  of the linear algebra routines. 

To simplify the following discussion, we make the hypotheses below without  
loss of generality: 

- Scalar values are described as arrays with one element. 
- Storage s tatements  read only one array reference that  may  not be aligned 

with the result value. Indeed, any more complex s ta tement  can be decom- 
posed in a sequence of such s tatements  with t emporary  storage [3, 2]. 

- All the arrays of the considered storage s ta tement  are aligned with respect 
to the same templa te  T. This restriction makes sense since the distributions 
of computat ion related arrays should be related in some way. ActuMly most  
H P F  programs contain only one templa te  with all the arrays aligned onto. 
The  domain of this template  T is noted "D T 

Given the previous restrictions, a storage s ta tement  S is represented by: 

Ws (I)) = fs (ns (r (I))) (1) 

where the iteration vector [ has vMue in the iteration domain  Ds  defined by the 
surrounding loops. Ws and Ra are arrays and Cws and CRs are affine access 
functions. 

We cM1 operation an instance S(1) of a s ta tement  S for a given value I of 
the iteration vector. 

The  number  of communications generated by a given s ta tement  is the number  
of array elements that  need to be communicated for some operat ion generated 
by this s tatement .  There is a communicat ion when the array elements being read 
are not on the same virtuM processor than the one the writ ten element is. As 
array elements can be replicated, we will focus on the template  elements. 

4 A l g e b r a i c  M e t h o d  t o  E v a l u a t e  H P F  C o m m u n i c a t i o n s  

As said in the previous section, we evaluate the communicat ion cost in a H P F  
program by counting the number  of communicat ions between templa te  elements. 

4.1 F o r m u l a  fo r  C o m m u n i c a t i o n  C o s t  E v a l u a t i o n  

There is a communicat ion between two templa te  elements if they are not dis- 
t r ibuted onto the same virtual processor and if the computa t ion  of a value to be 
stored in the first template  element uses a value stored in the second one. 

To be more precise, let us consider a storage s ta tement  3 (as defined in the 
previous section) and a template  T. We also need to define some functions: 
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- Function O~, gives, for an element J of 7)T, the set of storage operations 
from $ which compute values to be stored in T ( J ) ;  

- Function 7- gives, for an operation o from S, the set of template subscripts 
from where o may read its data. 

- Last, function ~'T is the distribution function which maps the template T on 
the virtual processors. 

The number of template communications generated by statement ,~ is equal to 
the number of elements in the union of the sets Ca(S): 

C ( 8 ) =  [ J  C j ( S ) =  LJ { ( J ' ~ 1 7 6  ~T(J ) r  (2) 
J6DT J61)T 

Note that  C(S) is a set of couples and not of mere operations. Indeed we may have 
to count several times the same operation, so we added the template subscript 
to distinguish different occurrences of the same operation. Computing the set 
C(S) implies the application of a change of basis on the program loop nests. 
Indeed, in the original program, the loops are used to enumerate the operations 
in the program execution order and the set C(8) enumerates them following the 
template iteration space. 

4 .2  F o r m a l  R e p r e s e n t a t i o n  o f  H P F  A l i g n m e n t s  

To perform this change of basis the only informations needed are the HPF ACIal~ 
directives. Basically HPF alignments are a sub-set of linear alignments but  a 
replication symbol * has been added. Because of the replication symbol, a HPF 
alignment cannot be defined by a linear transformation from the array space to 
the template space. 

A convenient way to represent a HPF alignment c~ is to use two linear trans- 
formations 7 and 5. Transformation 5 defines the replication part of the align- 
ment. Let I be a subscript of an array h aligned on a template T using c~. The 
set of the subscripts of T on which the data  h(I) is stored is: 

{ g  I J E / ) T ,  7(1)  : 5 ( J ) }  : 5 - 1 ( 7 ( I ) )  . 

Let us consider the alignment: 

!HPF$ ALIGN A(i) WITH T(i,*) 

The first transformation from the array space to an intermediate template space 
is obtained by removing the replication symbols in the directive: 7 : i F-+ i. 
The second transformation is the projection from the template space to the 

intermediate template space: 5 : ( ~ )  ~--~ i. 

With this representation of a HPF alignment one can explicit the function r 
of Sect. (4.1). Let us consider a statement S as defined in (1) and an alignment 
rRs for array Rs on the template T defined by (TRs, 5Rs). In this context, the 
following holds: 

u 6 I)T, r (S( I ) )  r u , ( r  - i  = = 5 n .  ( r  ( I ) ) )  . 
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4.3 E n u m e r a t i o n  of  Opera t ions  in the  Templa te  I t e r a t i o n  Space 

The main problem of enumerating operations in the template space is that there 
may be several operations corresponding to a template element T(J ) .  I.e. more 
than one operation may produce a value to be stored in T(J) .  In fact, the solution 
lies again in the formal representation of HPF alignments. Let us denote by rws 
the alignment for array Ws.  According to Sect. 4.2, the alignment can be written 
as rws = 7ws o 5wls. Therefore, the set (9~(J) introduced in the beginning of 
this section is defined by: 

O~(Y) = {$(I) [ I e 7)s, Cws(I)  e 7wls (~ws(J)} . 

Let us consider the code fragment below: 

!HPF$ ALIGN M ( i , j )  WITH T ( i , * )  
DO i= l  ,n 

DO j=l,m 
M(i,j) = ... (sl) 

END DO 

END DO 

Theal igmentofaonTisdef inedby:(7  : ( ~ ) ~ + i ,  6 : ( j )  ~+ i )  . Since 

the subscript function for M is the identity, the set (~p1 is such that: 

This means that a template element r(i,j) owns the full row of rank i of array A. 
In conclusion, the set C(S) may be computed using the subscript functions 

in S for Ws and/~s,  the alignments of Ws and Rs on the template T and the 
distribution of T on the virtual processors: 

C(S)=  U { ( J , $ ( I ) ) 1 1 6 0 w ~ s ( J ) ,  7rT(J) f~r~,(4'ns(I))} (3) 
J 6"DT 

with the functions ~w~ and ~n~ defined as follows: 

Cws = 7"Ws ~ r = ws o Tws O CWs , 

Cfts = ~'l~s o CRs -- n~ o ~;Rs o CRs �9 

4.4 Formal  Rep re sen t a t i on  of H P F  Dis t r ibu t ions  

A HPF distribution directive for a template T can be represented using a projec- 
tion PT and an integer vector ~T of size the dimension of the virtual processors 
grid P. Projection pT selects the dimensions of T to be distributed on P. The 
dimension of T projected on the ith dimension of P is distributed according 
to the pattern CYCLIC((t~T)i). We denote by A rain (respectively by A raax) the 
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vector of lower bounds (respectively the vector of upper bounds) for array A. In 
this context the distribution 71" T can be explicited: 

~rT( j )  = pmin + ( P T ( J  -- T min) -- t~T)%(P max -- pmin + 11) . (4) 

In the previous expression, the operator - (respectively the operator %) rep- 
resents an element-wise integer division (respectively modulo) on vectors. One 

may remark that  a BLOCK distribution can be achieved on the ith dimension of 
P using a relevant (n:r)i value: 

=  min§ 
(~T) i  | p - - ~  p]u{n + 

5 T o o l s  f o r  t h e  E v a l u a t i o n  o f  H P F  C o m m u n i c a t i o n s  

In the previous section we have reduced the problem of evaluating H P F  commu- 
nications of a statement $ to counting the elements of a set C(S). This section 
presents the tools used to automatically build C ( S )  and to count its elements. 
We illustrate the use of these tools on the following HPF program: 

Program Matlnit 
!HPF$ PROCESSORS P(8,8) 
!HPF$ TEMPLATE T(n,m) 
!HPF$ DISTRIBUTE T(CYCLIC,CYCLIC) ONTO P 
real A(n,m), B(n) 

!HPF$ ALIGN A(i,j) WITH T(i,*) 
!HPF$ ALIGN B(i) WITH T(i,l) 

do i=l,n 
do j=l,m 

A(i,j)=B(i) ( S 1 )  

end do 
end do 

end 

We have integrated the different tools into an interactive program called 
CIPOL. CIPOL provides a lisp-like textual interface to the tools, and pretty- 
prints their results. 

5.1 M a n i p u l a t i o n  o f  P o l y h e d r a  

Our main tool is the polyhedral library developed by Wilde [16]. Most of the 
operations on polyhedra (union, intersection, image, etc.) are implemented in 
this library which allows to define a polyhedron by a set of constraints or a set 
of rays. For our application, we only need the first definition scheme. 

The generic sets ~Wls (Y) and ~Rs (I) described in the previous section are 
computed using the image  and p r e - i m a g e  functions of the polyhedral library. 

T h e  gener ic  sets for our  example  are: 

. . . .  {~ <j l  < nAil----j1 $1<_il <nAJ~ =il  
�9 A 01 , :~ ,~ ,m)  = ~ i~ < ,~ ,~B( i l , i~ ,~ , , , )  = IJ~ = 1 - 

T h e  first set m eans  t ha t  the  i th row of a r r a y  A is dup l ica ted  on each e lement  of the  i th 
row of t e m p l a t e  T.  T h e  second set shows t h a t  a r r a y  B is a l igned wi th  the  first  co lumn  of 
t e m p l a t e  T .  
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5.2 U s i n g  t h e  P I P  S o f t w a r e  to Compute I n c l u s i o n  

The evaluation of the non inclusion in definition (2) is not easy to implement 
since it implies that  a generic condition must be verified for each value from a 
given set. It is simpler to verify an inclusion condition. In this case we just  have 
to verify that  a condition is verified for one value from a given set. Hence an 
inclusion condition can be modelized by an integer programming problem and 
can be resolved by a software such as PIP (see [8]). So, in place of counting the 
number of elements in C(S) we compute the number of elements in the set C(S): 

C(S)=  U {(J'S(I)) l l 6 ~was(J)' 7rT(J) e rrT(~ns(I))} " (5) 
J E'D T 

The final result is obtained using the following relation: 

J 6T) T 

The PIP software is able to find the lexicographical minimum of a parametr ic  
set of integer vectors defined by a set of linear constraints S(P).  It may also take 
into account linear constraints on the parameters, this other set of constraints 
C is called the context. We denote by lexmin(C, S(P)) the result computed by 
PIP. Since the initial set of integer vectors is parametric, PIP does not return 
an unique vector but a quast (Quasi-Affine Selection Tree). Indeed, the mini- 
mum depends on the values of the parameters, hence PIP splits the domain of 
the parameters in sub-domains on which the minimum can be expressed in a 
parametric way. If there is no solution for a sub-domain of the parameter  space 
(because for these values of the parameters S(P) is void), PIP denotes by _k the 
lack of solution. 

Let us solve the following integer program: 

l exmin(C,S( I ,J ) ) ,  C =  Gewls ( j )  , S ( I , J ) =  rrT(J) = 7rT(J) . (7) 

Consider now the sub-domains of the parameter  space for which PIP gives a 
solution other than _l_. It is easy to deduce, from what we said about PIP, that  
the number of elements in these sub-domains is equal to the number of elements 
in g(8). 

Remember that  PIP only deals with linear constraints with respect to the 
parameters and the variables of the problem. Function rrT involves euclidian 
divisions but  there is a well known method to linearize 7rT that  may be found 
in [5]. We just  have to introduce three new integer vectors to replace the initial 
definition (4) of the distribution function by a definition which gives 7rT(J) as 
the solution of the following system (the * operator is an element-wise vector 
multiplication): 

{ ~ T ! J - -  rmin) : N$1~T -~- R A N  ~ (~* (rme*x-- pmin--l- ll) --~lrT(J) -- P mht 
P'" <~T(J)<P~'~AN>OA > OAO<R< ~;r 
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One may note that iV/ gives the block number for T ( J )  with respect to the /th 
dimension. The previous system is effectively linear only if nT and pmax _ p m i n  

are constant vectors. Computat ion of a parametric solution in other cases is left 
for future work but it is possible to obtain a result by asking the user to provide 
the values of some key parameters. 

Integer program (7) may so be rewritten with only linear constraints. 

For our  p rog ram example  II~ttInit,  the  t e m p l a t e  is d i s t r i bu t ed  on t he  p rocessor  gr id  
us ing two CYCLIC pa t t e rns ,  hence the d i s t r i bu t ion  is defined by: 

OT j2 = j~ , ~T = 

The  in teger  p rob lem to solve is lexmin (C(n, m), S( i l ,  i2, J l ,  j 2 ) )  w i th  

C ( n , m ) =  { 1 < _ j l  < h A 1  < j 2  < _ m A i l  = j l ^ l < _ i ~  < m  , 
.i A "j ~1 = i l  3 2 - ~ 1 A 1  < p l  <_ 8 A 1  <_p~ < 8 

S ( i t , i 2 , j t , j 2 ) =  j l - - l = S q l + p l - - l A j 2 - - 1 = 8 q 2 + p 2 - - 1  
Jl - 1 = 8q~ + pl  - ] ^ J; - 1 = Sq~ + p2 - 1 
ql _> 0 ^ q 2  > 0 ^ q  C ;> 0 h q ;  >__ 0 

One may  no te  t ha t ,  in th is  example ,  there  is no var iable  represen t ing  the  r e m a i n d e r  in the  
divis ion by ~T (as _R in (5.2)) since the  block sizes are equal  to 1. The  resu l t  of P I P  is t h a t  
there  ex is t s  a so lu t ion  no t  equa l  to  2. in the  po lyhedron  defined by: 

g ( n , m )  = { 1  <_jl < n ^ l  <_j2 < m a i l  = j l A  1 <_ i2 < m h j 2  -- 1 = 8qA q >_ 0 

The  new p a r a m e t e r  q is used to  express  t h a t  j2  - 1 mus t  be a mul t ip le  of 8. 

5.3 Counting t h e  E l e m e n t s  o f  t h e  Communicat ion  Set 

The last stage of our method consists in counting the number of integer vectors 
in the sub-domains computed by PIP. These parametric sub-domains D ( I ,  J ,  P )  

are defined in function of a parameter J representing the subscript of a gen- 
eral template element T ( J ) ,  in function of a parameter I which represents the 
subscript of an operation storing a value on T ( J )  and in function of a vector 
of program parameters P.  We need to compute the number of integer vectors 
in D ( I ,  J ,  P )  in function of the program parameters. Fortunately, Loechner and 
Wilde have extended the polyhedron library to include a function able to count 
the number of integer vectors in a parametric polyhedron (see [4]). Like PIP, 
this function splits the parameter space in sub-domains on which the result can 
be given by a parametric expression. Hence, to apply relation (6) one has to 
implement an addition on Quasts. 

For the example  MatIni t  the final resul t  (in the  contex t  n _> 1 and m >_ 1) is 

C o u n t ( C ( n , m ) ) - C o u n t ( C ( n , m ) )  = n . r n  - 0, S , 4 , 8 , 2 , 8 , 4 ,  ,n 

The  bracke ts  on the previous expression deno te  a per iod ic  number:  if we deno te  by v the  
vec tor  (0,~,7 7,a g,s $,1 g,a 7,1 ~) ,  the  value of the  per iod ic  number  is Vm%s. 

W h e n  the p a r a m e t e r  m is a mul t ip le  of 8 we have the  e x p e c t e d  resu l t  of 7'~'srn~ a t o m i c  
commun ica t i ons  at  the t e m p l a t e  level. 

For a detailled description of how the pre-evaluation can be done in an au- 
tomatic  way take a look at the report available at the URL 
f t p : / / f t p ,  l i f l .  f r /pub/ repor  t s/AS-publi/an98/as-182, ps. gz 
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6 C o n c l u s i o n  

Data  part i t ioning is a major  performance factor in H P F  programs.  To help 
the p rogrammer  design a good da ta  distribution strategy, we have studied the 
evaluation of the communication cost of a program during the writing of this 
program.  

We have presented here a method to compute  the communicat ion volume of 
a H P F  program. This method is based on the polyhedral model. So, we are able 
to handle loop nests with affine loop bounds and affine array access functions. 
Our method is parameterized and machine independent. Indeed all is done at 
the language level. An implementat ion is done using the polyhedral l ibrary and 
the PIP  software. 

Ongoing work includes extending this method to a larger class of programs 
and adding compiler optimizations in the model. The last point is quite impor-  
tant  since the pure counting of elements exchanged is only one of the factors 
in the actual communication costs. We will have to recognize special communi-  
cations pat terns as broadcasts which can be implemented more efficiently than  
general communications.  

We are also integrating this method in the HPF-builder  tool [6]. 
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