
Communicat ion Pre-evaluation in H P F

Pierre Boulet 1 and Xavier Redon 2

1 LIP,]~cole Normale Sup@rieure de Lyon, 46, all@e d'Italie, F-69364 Lyon cedex 07,
France

2 LIFL, Univerist@ des Sciences et Technologies de Lille, Bgtiment M3, Cit6
Scientifique, F-59655 Villeneuve d'Ascq cedex, France

Abs t r ac t . Parallel computers are difficult to program efficiently. We
believe that a good way to help programmers write efficient programs
is to provide them with tools that show them how their programs be-
have on a parallel computer. Data distribution is the major performance
factor of data-parallel programs and so automatic data layout for High
Performance Fortran programs has been studied by many researchers
recently. The communication volume induced by a data distribution is a
good estimator of the efficiency of this data distribution.
We present here a symbolic method to compute the communication vol-
ume generated by a given data distribution during the program writ-
ing phase (before compilation). We stay machine-independent to assure
portability. Our goal is to help the programmer understand the data
movements its program generates and thus find a good data distribu-
tion. Our method is based on parametric polyhedral computations. It
can be applied to a large class of regular codes.

1 I n t r o d u c t i o n

Parallel computing has become the solution of choice for heavy scientific comput-
ing programs. Unfortunately parMlel computers require considerable knowledge
and programming skills to exploit their full potential. A major mean to reduce
the programming complexity is to use high-level languages. High Performance
Fortran (HPF) is such a language. I t follows the data-parallel p rogramming
parad igm where the computat ions are directed by the data. Indeed, the com-
putat ions occur on the processor tha t "owns" the da ta being written. So the
da ta distribution is a very impor tant efficiency factor when p rogramming with
a data-parallel language.

Our goal is to help the programmer find a good data-distr ibution. We want
a tool tha t is executed when the program is being written. Work on such a tool
has s tar ted at the LIFL with HPF-builder [6], a tool that interactively displays
the arrays as they are distributed and aligned by the HPF directives. This tool
also allows to change the da ta distribution graphically.

We propose here a new step in the development of a tool tha t helps the pro-
g rammer understand how data move in its program. Given a data-distr ibut ion,
we are able to compute the volume of the communicat ions generated by a pro-
gram. We use symbolic computat ion tools to stay free of the problem size. All

264

this is done at the language level, thus retaining portabili ty and machine inde-
pendence. This tool is intended as a mean to write a reasonably efficient program
that can be tuned for a particular parallel machine with profiling systems later.

The sequel of this paper is organized as follows. In Sect. 2 we briefly review
related works, then in Sect. 3 we describe the problem we consider and present
its modelization in Sect. 4. We then detail the tools used to solve our problem
along with an example in Sect. 5. And we finally conclude in Sect. 6.

2 R e l a t e d W o r k

M any researchers [1,9, 10, 13-15] have studied automatic data distribution. Esti-
mating communication costs has been the key factor to determine the quality of
a data distribution. Most of the previous works [12, 7, 11] have studied compile-
time estimation of these communication costs. Indeed, they use the fact that
most program parameters are known at that t ime and in many cases, these
studies also use machine (and compiler) dependent data. Our work differs from
previous work by the techniques used and the stage of program development we
focus on: the program writing phase. We also use exact parameterized methods
and we stay compiler and machine independent, we work at the language level.

D e s c r i p t i o n o f t h e P r o b l e m

3.1 G e n e r a l R e m a r k s

The problem we study in this paper is the evaluation of the communication vol-
ume in a HPF program before compilation. The goal is to help the programmer
understand the communications generated by his program and find a good da ta
distribution (or a more efficient way to code his algorithm).

The communications we.consider are at the PROCESSORS level: as in HPF, we
use an abstract target machine. We stay at the language level, thus allowing to
find a data distribution that is well suited to the problem, and thus retaining
portability. Our aim is not to find the best da ta distribution for a given machine,
but a good one for any machine (and compiler).

In the future, if some compiler optimization techniques such as overlap areas
to vectorize communications are used by most compilers, we could adapt our
evaluation techniques to these optimizations. In a first step, though, we remain
at the language level to validate our approach. We believe indeed that a good
data distribution at the language level should not be a bad one for any compiler,
regardless of the compilation techniques used.

3.2 M o d e l i z a t i o n

We consider that the only communication generation statements are storage
statements, we do not take into account I /O statements. For each of these storage

265

statements , the surrounding loops define an iteration domain that "shapes" the
communicat ion pat tern.

Given the mathemat ica l tools we use in the following, we have to restrict
ourselves to loop bounds that define a polyhedron, that is loop bounds defined
as ex t rema of affine functions of the surrounding loop indices and parameters .
For the same reason, we restrict the array access functions to affine functions.
This class of loops contains most of the linear algebra routines.

To simplify the following discussion, we make the hypotheses below without
loss of generality:

- Scalar values are described as arrays with one element.
- Storage s tatements read only one array reference that may not be aligned

with the result value. Indeed, any more complex s ta tement can be decom-
posed in a sequence of such s tatements with t emporary storage [3, 2].

- All the arrays of the considered storage s ta tement are aligned with respect
to the same templa te T. This restriction makes sense since the distributions
of computat ion related arrays should be related in some way. ActuMly most
H P F programs contain only one templa te with all the arrays aligned onto.
The domain of this template T is noted "D T

Given the previous restrictions, a storage s ta tement S is represented by:

Ws (I)) = fs (ns (r (I))) (1)

where the iteration vector [has vMue in the iteration domain Ds defined by the
surrounding loops. Ws and Ra are arrays and Cws and CRs are affine access
functions.

We cM1 operation an instance S(1) of a s ta tement S for a given value I of
the iteration vector.

The number of communications generated by a given s ta tement is the number
of array elements that need to be communicated for some operat ion generated
by this s tatement . There is a communicat ion when the array elements being read
are not on the same virtuM processor than the one the writ ten element is. As
array elements can be replicated, we will focus on the template elements.

4 A l g e b r a i c M e t h o d t o E v a l u a t e H P F C o m m u n i c a t i o n s

As said in the previous section, we evaluate the communicat ion cost in a H P F
program by counting the number of communicat ions between templa te elements.

4.1 F o r m u l a fo r C o m m u n i c a t i o n C o s t E v a l u a t i o n

There is a communicat ion between two templa te elements if they are not dis-
t r ibuted onto the same virtual processor and if the computa t ion of a value to be
stored in the first template element uses a value stored in the second one.

To be more precise, let us consider a storage s ta tement 3 (as defined in the
previous section) and a template T. We also need to define some functions:

266

- Function O~, gives, for an element J of 7)T, the set of storage operations
from $ which compute values to be stored in T (J) ;

- Function 7- gives, for an operation o from S, the set of template subscripts
from where o may read its data.

- Last, function ~'T is the distribution function which maps the template T on
the virtual processors.

The number of template communications generated by statement ,~ is equal to
the number of elements in the union of the sets Ca(S):

C (8) = [J C j (S) = LJ { (J ' ~ 1 7 6 ~T(J) r (2)
J6DT J61)T

Note that C(S) is a set of couples and not of mere operations. Indeed we may have
to count several times the same operation, so we added the template subscript
to distinguish different occurrences of the same operation. Computing the set
C(S) implies the application of a change of basis on the program loop nests.
Indeed, in the original program, the loops are used to enumerate the operations
in the program execution order and the set C(8) enumerates them following the
template iteration space.

4 .2 F o r m a l R e p r e s e n t a t i o n o f H P F A l i g n m e n t s

To perform this change of basis the only informations needed are the HPF ACIal~
directives. Basically HPF alignments are a sub-set of linear alignments but a
replication symbol * has been added. Because of the replication symbol, a HPF
alignment cannot be defined by a linear transformation from the array space to
the template space.

A convenient way to represent a HPF alignment c~ is to use two linear trans-
formations 7 and 5. Transformation 5 defines the replication part of the align-
ment. Let I be a subscript of an array h aligned on a template T using c~. The
set of the subscripts of T on which the data h(I) is stored is:

{ g I J E /) T , 7(1) : 5 (J) } : 5 - 1 (7 (I)) .

Let us consider the alignment:

!HPF$ ALIGN A(i) WITH T(i,*)

The first transformation from the array space to an intermediate template space
is obtained by removing the replication symbols in the directive: 7 : i F-+ i.
The second transformation is the projection from the template space to the

intermediate template space: 5 : (~) ~--~ i.

With this representation of a HPF alignment one can explicit the function r
of Sect. (4.1). Let us consider a statement S as defined in (1) and an alignment
rRs for array Rs on the template T defined by (TRs, 5Rs). In this context, the
following holds:

u 6 I)T, r (S(I)) r u , (r - i = = 5 n . (r (I))) .

267

4.3 E n u m e r a t i o n of Opera t ions in the Templa te I t e r a t i o n Space

The main problem of enumerating operations in the template space is that there
may be several operations corresponding to a template element T(J) . I.e. more
than one operation may produce a value to be stored in T(J) . In fact, the solution
lies again in the formal representation of HPF alignments. Let us denote by rws
the alignment for array Ws. According to Sect. 4.2, the alignment can be written
as rws = 7ws o 5wls. Therefore, the set (9~(J) introduced in the beginning of
this section is defined by:

O~(Y) = {$(I) [I e 7)s, Cws(I) e 7wls (~ws(J)} .

Let us consider the code fragment below:

!HPF$ ALIGN M (i , j) WITH T (i , *)
DO i= l ,n

DO j=l,m
M(i,j) = ... (sl)

END DO

END DO

Theal igmentofaonTisdef inedby:(7 : (~) ~ + i , 6 : (j) ~+ i) . Since

the subscript function for M is the identity, the set (~p1 is such that:

This means that a template element r(i,j) owns the full row of rank i of array A.
In conclusion, the set C(S) may be computed using the subscript functions

in S for Ws and/~s, the alignments of Ws and Rs on the template T and the
distribution of T on the virtual processors:

C(S)= U { (J , $ (I)) 1 1 6 0 w ~ s (J) , 7rT(J) f~r~,(4'ns(I))} (3)
J 6"DT

with the functions ~w~ and ~n~ defined as follows:

Cws = 7"Ws ~ r = ws o Tws O CWs ,

Cfts = ~'l~s o CRs -- n~ o ~;Rs o CRs �9

4.4 Formal Rep re sen t a t i on of H P F Dis t r ibu t ions

A HPF distribution directive for a template T can be represented using a projec-
tion PT and an integer vector ~T of size the dimension of the virtual processors
grid P. Projection pT selects the dimensions of T to be distributed on P. The
dimension of T projected on the ith dimension of P is distributed according
to the pattern CYCLIC((t~T)i). We denote by A rain (respectively by A raax) the

268

vector of lower bounds (respectively the vector of upper bounds) for array A. In
this context the distribution 71" T can be explicited:

~rT(j) = pmin + (P T (J -- T min) -- t~T)%(P max -- pmin + 11) . (4)

In the previous expression, the operator - (respectively the operator %) rep-
resents an element-wise integer division (respectively modulo) on vectors. One

may remark that a BLOCK distribution can be achieved on the ith dimension of
P using a relevant (n:r)i value:

= min§
(~T) i | p - - ~ p]u{n +

5 T o o l s f o r t h e E v a l u a t i o n o f H P F C o m m u n i c a t i o n s

In the previous section we have reduced the problem of evaluating H P F commu-
nications of a statement $ to counting the elements of a set C(S). This section
presents the tools used to automatically build C (S) and to count its elements.
We illustrate the use of these tools on the following HPF program:

Program Matlnit
!HPF$ PROCESSORS P(8,8)
!HPF$ TEMPLATE T(n,m)
!HPF$ DISTRIBUTE T(CYCLIC,CYCLIC) ONTO P
real A(n,m), B(n)

!HPF$ ALIGN A(i,j) WITH T(i,*)
!HPF$ ALIGN B(i) WITH T(i,l)

do i=l,n
do j=l,m

A(i,j)=B(i) (S 1)

end do
end do

end

We have integrated the different tools into an interactive program called
CIPOL. CIPOL provides a lisp-like textual interface to the tools, and pretty-
prints their results.

5.1 M a n i p u l a t i o n o f P o l y h e d r a

Our main tool is the polyhedral library developed by Wilde [16]. Most of the
operations on polyhedra (union, intersection, image, etc.) are implemented in
this library which allows to define a polyhedron by a set of constraints or a set
of rays. For our application, we only need the first definition scheme.

The generic sets ~Wls (Y) and ~Rs (I) described in the previous section are
computed using the image and p r e - i m a g e functions of the polyhedral library.

T h e gener ic sets for our example are:

. . . . {~ <j l < nAil----j1 $1<_il <nAJ~ =il
�9 A 01 , :~ ,~ ,m) = ~ i~ < ,~ ,~B(i l , i~ ,~ , , ,) = IJ~ = 1 -

T h e first set m eans t ha t the i th row of a r r a y A is dup l ica ted on each e lement of the i th
row of t e m p l a t e T. T h e second set shows t h a t a r r a y B is a l igned wi th the first co lumn of
t e m p l a t e T .

269

5.2 U s i n g t h e P I P S o f t w a r e to Compute I n c l u s i o n

The evaluation of the non inclusion in definition (2) is not easy to implement
since it implies that a generic condition must be verified for each value from a
given set. It is simpler to verify an inclusion condition. In this case we just have
to verify that a condition is verified for one value from a given set. Hence an
inclusion condition can be modelized by an integer programming problem and
can be resolved by a software such as PIP (see [8]). So, in place of counting the
number of elements in C(S) we compute the number of elements in the set C(S):

C(S)= U {(J'S(I)) l l 6 ~was(J)' 7rT(J) e rrT(~ns(I))} " (5)
J E'D T

The final result is obtained using the following relation:

J 6T) T

The PIP software is able to find the lexicographical minimum of a parametr ic
set of integer vectors defined by a set of linear constraints S(P). It may also take
into account linear constraints on the parameters, this other set of constraints
C is called the context. We denote by lexmin(C, S(P)) the result computed by
PIP. Since the initial set of integer vectors is parametric, PIP does not return
an unique vector but a quast (Quasi-Affine Selection Tree). Indeed, the mini-
mum depends on the values of the parameters, hence PIP splits the domain of
the parameters in sub-domains on which the minimum can be expressed in a
parametric way. If there is no solution for a sub-domain of the parameter space
(because for these values of the parameters S(P) is void), PIP denotes by _k the
lack of solution.

Let us solve the following integer program:

l exmin(C,S(I ,J)) , C = Gewls (j) , S (I , J) = rrT(J) = 7rT(J) . (7)

Consider now the sub-domains of the parameter space for which PIP gives a
solution other than _l_. It is easy to deduce, from what we said about PIP, that
the number of elements in these sub-domains is equal to the number of elements
in g(8).

Remember that PIP only deals with linear constraints with respect to the
parameters and the variables of the problem. Function rrT involves euclidian
divisions but there is a well known method to linearize 7rT that may be found
in [5]. We just have to introduce three new integer vectors to replace the initial
definition (4) of the distribution function by a definition which gives 7rT(J) as
the solution of the following system (the * operator is an element-wise vector
multiplication):

{ ~ T ! J - - rmin) : N$1~T -~- R A N ~ (~* (rme*x-- pmin--l- ll) --~lrT(J) -- P mht
P'" <~T(J)<P~'~AN>OA > OAO<R< ~;r

270

One may note that iV/ gives the block number for T (J) with respect to the /th
dimension. The previous system is effectively linear only if nT and pmax _ p m i n

are constant vectors. Computat ion of a parametric solution in other cases is left
for future work but it is possible to obtain a result by asking the user to provide
the values of some key parameters.

Integer program (7) may so be rewritten with only linear constraints.

For our p rog ram example II~ttInit, the t e m p l a t e is d i s t r i bu t ed on t he p rocessor gr id
us ing two CYCLIC pa t t e rns , hence the d i s t r i bu t ion is defined by:

OT j2 = j~ , ~T =

The in teger p rob lem to solve is lexmin (C(n, m), S(i l , i2, J l , j 2)) w i th

C (n , m) = { 1 < _ j l < h A 1 < j 2 < _ m A i l = j l ^ l < _ i ~ < m ,
.i A "j ~1 = i l 3 2 - ~ 1 A 1 < p l <_ 8 A 1 <_p~ < 8

S (i t , i 2 , j t , j 2) = j l - - l = S q l + p l - - l A j 2 - - 1 = 8 q 2 + p 2 - - 1
Jl - 1 = 8q~ + pl -] ^ J; - 1 = Sq~ + p2 - 1
ql _> 0 ^ q 2 > 0 ^ q C ;> 0 h q ; >__ 0

One may no te t ha t , in th is example , there is no var iable represen t ing the r e m a i n d e r in the
divis ion by ~T (as _R in (5.2)) since the block sizes are equal to 1. The resu l t of P I P is t h a t
there ex is t s a so lu t ion no t equa l to 2. in the po lyhedron defined by:

g (n , m) = { 1 <_jl < n ^ l <_j2 < m a i l = j l A 1 <_ i2 < m h j 2 -- 1 = 8qA q >_ 0

The new p a r a m e t e r q is used to express t h a t j2 - 1 mus t be a mul t ip le of 8.

5.3 Counting t h e E l e m e n t s o f t h e Communicat ion Set

The last stage of our method consists in counting the number of integer vectors
in the sub-domains computed by PIP. These parametric sub-domains D (I , J , P)

are defined in function of a parameter J representing the subscript of a gen-
eral template element T (J) , in function of a parameter I which represents the
subscript of an operation storing a value on T (J) and in function of a vector
of program parameters P. We need to compute the number of integer vectors
in D (I , J , P) in function of the program parameters. Fortunately, Loechner and
Wilde have extended the polyhedron library to include a function able to count
the number of integer vectors in a parametric polyhedron (see [4]). Like PIP,
this function splits the parameter space in sub-domains on which the result can
be given by a parametric expression. Hence, to apply relation (6) one has to
implement an addition on Quasts.

For the example MatIni t the final resul t (in the contex t n _> 1 and m >_ 1) is

C o u n t (C (n , m)) - C o u n t (C (n , m)) = n . r n - 0, S , 4 , 8 , 2 , 8 , 4 , ,n

The bracke ts on the previous expression deno te a per iod ic number: if we deno te by v the
vec tor (0,~,7 7,a g,s $,1 g,a 7,1 ~) , the value of the per iod ic number is Vm%s.

W h e n the p a r a m e t e r m is a mul t ip le of 8 we have the e x p e c t e d resu l t of 7'~'srn~ a t o m i c
commun ica t i ons at the t e m p l a t e level.

For a detailled description of how the pre-evaluation can be done in an au-
tomatic way take a look at the report available at the URL
f t p : / / f t p , l i f l . f r /pub/ repor t s/AS-publi/an98/as-182, ps. gz

271

6 C o n c l u s i o n

Data part i t ioning is a major performance factor in H P F programs. To help
the p rogrammer design a good da ta distribution strategy, we have studied the
evaluation of the communication cost of a program during the writing of this
program.

We have presented here a method to compute the communicat ion volume of
a H P F program. This method is based on the polyhedral model. So, we are able
to handle loop nests with affine loop bounds and affine array access functions.
Our method is parameterized and machine independent. Indeed all is done at
the language level. An implementat ion is done using the polyhedral l ibrary and
the PIP software.

Ongoing work includes extending this method to a larger class of programs
and adding compiler optimizations in the model. The last point is quite impor-
tant since the pure counting of elements exchanged is only one of the factors
in the actual communication costs. We will have to recognize special communi-
cations pat terns as broadcasts which can be implemented more efficiently than
general communications.

We are also integrating this method in the HPF-builder tool [6].

R e f e r e n c e s

1. Jennifer M. Anderson and Monica S. Lain. Global optimizations for parallelism
and locality on scalable parallel machines. ACM Sigplan Notices, 28(6):112-125,
June 1993.

2. Vincent Bouchitte, Pierre Boulet, Alain Darte, and Yves Robert. Evaluating array
expressions on massively parallel machines with communication/computation over-
lap. International Journal of Supercomputer Applications and High Performance
Computing, 9(3):205-219, 1995.

3. S. Chatterjee, $. R. Gilbert, R. S. Schreiber, and S.-H. Tseng. Automatic array
alignment in data-parallel programs. In ACM Press, editor, Twentieth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 16-28, Charleston, South Carolina, January 1993.

4. Philippe Clauss, Vincent Loechner, and Doran Wilde. Deriving formulae to count
solutions to parameterized linear systems using ehrhart polynomials: Applications
to the analysis of nested-loop programs. Technical Report RR 97-05, ICPS, apr
1997.

5. Fabien Coelho. Contributions to HPF Compilation. Phi) thesis, Ecole des mines
de Paris, October 1996.

6. Jean-Luc Dekeyser and Christian Lefebvre. Hpf-builder: A visual environment
to transform fortran 90 codes to hpf. International Journal of Supercomputing
Applications and High Performance Computing, 11(2):95-102, 1997.

7. Thomas Fahringer. Compile-time estimation of communication costs for data
parallel programs. Journal of Parallel and Distributed Computing, 39(1):46-65,
November 1996.

8. Paul Feautrier. Parametric integer programming. RAIRO Recherche
Opdrationnelle, 22:243-268, September 1988.

272

9. Paul Feautrier. Towards automatic distribution. Parallel Processing Letters,
4(3):233-244, 1994.

10. M. Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers.
PhD thesis, College of Engineering, University of Illinois at Urbana-Champaign,
September 1992.

11. Manish Gupta and Prithviraj Banerjee. Compile-time estimation of communication
costs of programs. Journal of Programming Languages, 2(3):191-225, September
1994.

12. Ken Kennedy and Ulrich Kremer. Automatic data layout for High Performance
Fortran. In Sidney Karin, editor, Proceedings of the 1995 A CM/IEEE Supercom-
puting Conference, December 3-8, 1995, San Diego Convention Center, San Diego,
CA, USA, New York, NY 10036, USA and 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1995. ACM Press and IEEE Computer Society Press.

13. Kathleen Knobe, Joan D. Lukas, and Guy L. Steele. Data optimization: Allocation
of arrays to reduce communication on SIMD machines. Journal of Parallel and
Distributed Computing, 8:102-118, 1990.

14. Jingke Li and Marina Chen. Index domain alignment: Minimizing cost of cross-
referencing between distributed arrays. In Frontiers 90: The 3rd Symposium on
the Frontiers of Massively Parallel Computation, College Park, MD, October 1990.

15. S. Wholey. Automatic data mapping for distributed-memory parallel computers.
In ACM, editor, Conference proceedings / 1992 International Conference on Su-
percomputing, July 19-23, 1992, Washington, DC, INTERNATIONAL CONFER-
ENCE ON SUPERCOMPUTING 1992; 6th, pages 25-34, New York, NY 10036,
USA, 1992. ACM Press.

16. Doran Wilde. A library for doing polyhedral operations. Master's thesis, Oregon
State University, Corvallis, Oregon, dec 1993.

