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A b s t r a c t .  This paper takes an experimental approach to the load bal- 
ancing problem for parallel simulation applications. In particular, it fo- 
cuses upon a conservative synchronization protocol, by making use of 
an optimized version of Chandy&Misra null message method, and pro- 
pose a dynamic load balancing algorithm which assumes no compile time 
knowledge about the workload parameters. The proposed scheme is also 
implemented on an Intel Paragon A4 multicomputer, and the perfor- 
mance results for several simulation models are reported. 

1 I n t r o d u c t i o n  

A considerable number  of research projects on load balancing in parallel and 
distributed systems in general has been carried out in the li terature due to the 
potential  performance gain from this service. However, all of these algori thms 
are not suitable for parallel simulation since the synchronization constraints ex- 
acerbate the dependencies between the LPs. In this paper,  we consider the load 
balancing problem associated with the conservative synchronization protocol 
that  makes use of an optimized version of Chandy-Misra  Null messages protocol 
[3]. Our pr imary  goal is to minimize the synchronization overhead in conserva- 
tive parallel simulation, and significantly reduce the total  execution t ime of the 
simulation by evenly distributing the workload among processors [1, 2]. 

2 Load Balancing Algorithm 

Before the load balancing algorithm can determine the new assignment of pro- 
cesses, it must  receive information from the processes. We propose to implement  
the load balancing facility as two kinds of processes: load balancer and process 
migration processes. A load balancer makes decision on when to move which 
process to where, while migration process carries out the decision made  by the 
load balancer to move processes between processors. 

To prevent the bottleneck and reduce the message traffic over a fully dis- 
t r ibuted approach, we propose a Centralized approach (CL), and a Multi-Level 
(ML) hierarchical scheme; where processors are grouped and work loads of pro- 
cessors are balanced hierarchically through multiple levels. At the present t ime, 
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we settle with a Two-Level scheme. In level 1, we use a centralized approach 
that  makes use of a (Global) Load Balancing Facitilty, (GLBF), and the global 
state consisting of process/processors mapping table. The motivat ion for this is 
that many contemporary parallel computers are usually equipped with a front- 
end host processor (e.g., hypercube multiprocessor machines). The load balancer 
(GLBF) sends periodically a message < Request_Load > to a specific proces- 
sor, called first_proc, within each clusters requesting the average load of each 
processor within each groups. 

In level 2, the processors are parti t ioned into clusters, and the processors 
within each group are structured as a virtual ring, and operate in parallel to 
collect the work loads of processors. A virtual ring is designed to be traversed by a 
token which originates at a particular processor, called first_proc, passes through 
intermediate processors, and ends it traversal at a preidentified processor called 
last_proc. Each of the ring will have its own circulating token, so that  information 
(i.e., work loads) gathering within the rings is concurrent. As the token travels 
through the processors of the ring, it accumulates the information (the load of 
each processors and id of the processors that  contain the highest/lowest loads), 
so that  when it arrives at the last_proc, information have been gathering from 
all processors of the ring. When all processors have responded, the load balancer 
(GLBF) computes the new load balance. Once the load balancer makes the 
decision on when to move which LP to where, it sends Migrateft~q~e,t to the 
migration process which in turns initiates the migration mechanism. Then, the 
migration process sends the (heavily overloaded) selected process to the lighted 
underloaded neighbor processor. 

The computat ional  load in our parallel simulation model consists of executing 
the null and the real messages. We wish to distribute the null messages and the 
real messages among all available processors. We define the (normalized) Load 
at each processor ( Prk ) as follows Loadk k k ~ k = f ( R a v g ,  Na.g)  = Rang~Rang + (1 - 

k k c~)Navg/Navg ; where Ravg,and Nkavg are respectively the average CPU-queue 
length for real messages and null messages at each processor Prk; and (~ and (1 
- ~) are respectively the relative weights of the corresponding parameters.  The 
value of c~ was determined empirically. 

3 Simulation Experiments 

The experiments have been conducted on a 72 nodes Intel Paragon, and we ex- 
amined a general distributed communication model (DCM), see Fig. 1, modeling 
a national network consisting of four regions where the subnetworks are a toroid, 
a circular loops, a fully connected, and a pipeline networks. These regions are 
connected through four centrally located delays. A node in the network is repre- 
sented by a process. Final message destinations are not known when a message is 
createad. Hence, no routing algorithm is simulated. Instead one third of arrival 
messages are forwarded to the neighboring nodes. A uniform distribution is em- 
ployed to select which neigbor receives a message. Consequently the volumes of 
messages between any two nodes is inversely proportional  to their hop distance. 
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Fig. 1. Distributed Communication Model 

Messages may flow between any two nodes and typically several paths may be 
employed. Nodes receive messages at varying rates that  are dependant  on traffic 
patterns. Since there are numerous deadlocks in this model, it provides a stress 
test for any conservative synchronization mechanisms. In fact, deadlocks occurs 
so frequently and null messages are generated so often that  the load balancing 
strategy is almost a necessity in this model. 

Various simulation conditions were created by mimicking the daily load fluc- 
tuation found in large communication network operating across various t ime 
zones in the nation [1]. In the pipline region, for instance, we arranged the sub- 
region into stages, and all processes in the same stages perform the same normal 
distribution with a standard deviation 25%. The t ime required to execute a mes- 
sage is significantly larger than the t ime to raise an event message in the next 
stage (message passing delay). 

The experimental data  was obtained by averaging several trial runs. The 
execution time (in seconds) as function of the number of processors are presented 
in the form of graphs. We also report the synchronization overhead in the form 
of null message ratio (NMR) which is defined as the number of null messages 
processed by the simulation using Chandy-Misra null-message approach divided 
by the number of real messages processed, the performance of our dynamic load 
balancing algorithms were compared with a static partitioning. 

Figure 2 depicts the results obtained for the DCM model. We observe that  
the load balancing algorithm improves the running time. In other words, the 
running time for both network models, ie., Fully Connected and Distributed 
Communication, decreases as we increase the number of processors. The results 
in Fig. 6 indicate a reduction of 50% in the running t ime using the CL dynamic 
load balancing strategy compared with the static one when the number of pro- 
cessors is increased from 32 to 64, and about 55-60% reduction when we use the 
ML dynamic load balancing algorithm. 

Figure 3 displays N M R  as a function of the number of processors employed 
in the network models. We observe a significant reduction of null-messages for all 
load balancing schemes. The results show that  N M R  increases as the number 
of processors increases for both population levels. For instance, If we confine 
ourselves to less than 4 processors, we see approximately 30-35% reduction of 
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the synchronization overhead using the CL dynamic load balancing algorithm 
over the static one. Increasing the number of processors from 4 to 16, we observe 
about 35-40% reduction of NMR. We also observe a 45% reduction using CL 
strategy over the static one, when 64 processors, are used, and a reduction of 
more than 50% using ML scheme over the static one. 

These results conclude that  the multi-level load balancing strategy signif- 
icantly reduces the synchronization overhead when compared to a centralized 
method. In other words, a careful dynamic load balancing improves the perfor- 
mance of a conservative parallel simulation. 

4 C o n c l u s i o n  a n d  F u t u r e  W o r k  

We have described a dynamic load balancing algorithm based upon a notion 
of CPU-queue length utilization, and in which process migration takes place 
between physical processors. The synchronization protocol makes use of Chandy- 
Misra null message approach. Our results indicate that  careful load balancing 
can be used to further improve the performance of Chandy-Misra's approach. We 
note that  a Multi-Level approach seems to be a promising solution in reducing 
further the execution time of the simulation. An improvement between 30% and 
50% in the event throughput  were also noted which resulted in a significant 
reduction in the running time of the simulation models. 
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