
Experimental Studies in Load Balancing*

Azzedine Boukerche and Sajal K. Das

Department of Computer Sciences, University of North Texas, Denton, TX. USA

A b s t r a c t . This paper takes an experimental approach to the load bal-
ancing problem for parallel simulation applications. In particular, it fo-
cuses upon a conservative synchronization protocol, by making use of
an optimized version of Chandy&Misra null message method, and pro-
pose a dynamic load balancing algorithm which assumes no compile time
knowledge about the workload parameters. The proposed scheme is also
implemented on an Intel Paragon A4 multicomputer, and the perfor-
mance results for several simulation models are reported.

1 I n t r o d u c t i o n

A considerable number of research projects on load balancing in parallel and
distributed systems in general has been carried out in the li terature due to the
potential performance gain from this service. However, all of these algori thms
are not suitable for parallel simulation since the synchronization constraints ex-
acerbate the dependencies between the LPs. In this paper, we consider the load
balancing problem associated with the conservative synchronization protocol
that makes use of an optimized version of Chandy-Misra Null messages protocol
[3]. Our pr imary goal is to minimize the synchronization overhead in conserva-
tive parallel simulation, and significantly reduce the total execution t ime of the
simulation by evenly distributing the workload among processors [1, 2].

2 Load Balancing Algorithm

Before the load balancing algorithm can determine the new assignment of pro-
cesses, it must receive information from the processes. We propose to implement
the load balancing facility as two kinds of processes: load balancer and process
migration processes. A load balancer makes decision on when to move which
process to where, while migration process carries out the decision made by the
load balancer to move processes between processors.

To prevent the bottleneck and reduce the message traffic over a fully dis-
t r ibuted approach, we propose a Centralized approach (CL), and a Multi-Level
(ML) hierarchical scheme; where processors are grouped and work loads of pro-
cessors are balanced hierarchically through multiple levels. At the present t ime,

* Part of this research is supported by Texas Advanced Technology Program grant
TATP-003594031

319

we settle with a Two-Level scheme. In level 1, we use a centralized approach
that makes use of a (Global) Load Balancing Facitilty, (GLBF), and the global
state consisting of process/processors mapping table. The motivat ion for this is
that many contemporary parallel computers are usually equipped with a front-
end host processor (e.g., hypercube multiprocessor machines). The load balancer
(GLBF) sends periodically a message < Request_Load > to a specific proces-
sor, called first_proc, within each clusters requesting the average load of each
processor within each groups.

In level 2, the processors are parti t ioned into clusters, and the processors
within each group are structured as a virtual ring, and operate in parallel to
collect the work loads of processors. A virtual ring is designed to be traversed by a
token which originates at a particular processor, called first_proc, passes through
intermediate processors, and ends it traversal at a preidentified processor called
last_proc. Each of the ring will have its own circulating token, so that information
(i.e., work loads) gathering within the rings is concurrent. As the token travels
through the processors of the ring, it accumulates the information (the load of
each processors and id of the processors that contain the highest/lowest loads),
so that when it arrives at the last_proc, information have been gathering from
all processors of the ring. When all processors have responded, the load balancer
(GLBF) computes the new load balance. Once the load balancer makes the
decision on when to move which LP to where, it sends Migrateft~q~e,t to the
migration process which in turns initiates the migration mechanism. Then, the
migration process sends the (heavily overloaded) selected process to the lighted
underloaded neighbor processor.

The computat ional load in our parallel simulation model consists of executing
the null and the real messages. We wish to distribute the null messages and the
real messages among all available processors. We define the (normalized) Load
at each processor (Prk) as follows Loadk k k ~ k = f (R a v g , Na.g) = Rang~Rang + (1 -

k k c~)Navg/Navg ; where Ravg,and Nkavg are respectively the average CPU-queue
length for real messages and null messages at each processor Prk; and (~ and (1
- ~) are respectively the relative weights of the corresponding parameters. The
value of c~ was determined empirically.

3 Simulation Experiments

The experiments have been conducted on a 72 nodes Intel Paragon, and we ex-
amined a general distributed communication model (DCM), see Fig. 1, modeling
a national network consisting of four regions where the subnetworks are a toroid,
a circular loops, a fully connected, and a pipeline networks. These regions are
connected through four centrally located delays. A node in the network is repre-
sented by a process. Final message destinations are not known when a message is
createad. Hence, no routing algorithm is simulated. Instead one third of arrival
messages are forwarded to the neighboring nodes. A uniform distribution is em-
ployed to select which neigbor receives a message. Consequently the volumes of
messages between any two nodes is inversely proportional to their hop distance.

320

Fig. 1. Distributed Communication Model

Messages may flow between any two nodes and typically several paths may be
employed. Nodes receive messages at varying rates that are dependant on traffic
patterns. Since there are numerous deadlocks in this model, it provides a stress
test for any conservative synchronization mechanisms. In fact, deadlocks occurs
so frequently and null messages are generated so often that the load balancing
strategy is almost a necessity in this model.

Various simulation conditions were created by mimicking the daily load fluc-
tuation found in large communication network operating across various t ime
zones in the nation [1]. In the pipline region, for instance, we arranged the sub-
region into stages, and all processes in the same stages perform the same normal
distribution with a standard deviation 25%. The t ime required to execute a mes-
sage is significantly larger than the t ime to raise an event message in the next
stage (message passing delay).

The experimental data was obtained by averaging several trial runs. The
execution time (in seconds) as function of the number of processors are presented
in the form of graphs. We also report the synchronization overhead in the form
of null message ratio (NMR) which is defined as the number of null messages
processed by the simulation using Chandy-Misra null-message approach divided
by the number of real messages processed, the performance of our dynamic load
balancing algorithms were compared with a static partitioning.

Figure 2 depicts the results obtained for the DCM model. We observe that
the load balancing algorithm improves the running time. In other words, the
running time for both network models, ie., Fully Connected and Distributed
Communication, decreases as we increase the number of processors. The results
in Fig. 6 indicate a reduction of 50% in the running t ime using the CL dynamic
load balancing strategy compared with the static one when the number of pro-
cessors is increased from 32 to 64, and about 55-60% reduction when we use the
ML dynamic load balancing algorithm.

Figure 3 displays N M R as a function of the number of processors employed
in the network models. We observe a significant reduction of null-messages for all
load balancing schemes. The results show that N M R increases as the number
of processors increases for both population levels. For instance, If we confine
ourselves to less than 4 processors, we see approximately 30-35% reduction of

I ~ ~ CL cy#*ml~
R13$~ ,~. ML Oyn=mlr
U
N 11s0 "~%

T ?so " " " ' ,

I ~ L~

E ~so ~..~_~___._~ .~

2 4 8 16 32 48

P R O C E S S O R S

6 4

Fig. 2. Run Time Vs. Nbr of Processors

6 5

N 5s

U 45

R
35

25

15

321

I Static -
CL- Dynamic . . /~ " "

2 4 8 16 32 48 64

P R O C E S S O R S

Fig. 8. NMR Vs. Nbr of Processors

the synchronization overhead using the CL dynamic load balancing algorithm
over the static one. Increasing the number of processors from 4 to 16, we observe
about 35-40% reduction of NMR. We also observe a 45% reduction using CL
strategy over the static one, when 64 processors, are used, and a reduction of
more than 50% using ML scheme over the static one.

These results conclude that the multi-level load balancing strategy signif-
icantly reduces the synchronization overhead when compared to a centralized
method. In other words, a careful dynamic load balancing improves the perfor-
mance of a conservative parallel simulation.

4 C o n c l u s i o n a n d F u t u r e W o r k

We have described a dynamic load balancing algorithm based upon a notion
of CPU-queue length utilization, and in which process migration takes place
between physical processors. The synchronization protocol makes use of Chandy-
Misra null message approach. Our results indicate that careful load balancing
can be used to further improve the performance of Chandy-Misra's approach. We
note that a Multi-Level approach seems to be a promising solution in reducing
further the execution time of the simulation. An improvement between 30% and
50% in the event throughput were also noted which resulted in a significant
reduction in the running time of the simulation models.

R e f e r e n c e s

1. Boukerche, A., Das, S. K.: Dynamic Load Balancing Strategies For Parallel Simu-
lations. TR-98. University of North Texas.

2. Boukerche, A., and Tropper C., "A Static Partitioning and Mapping Algorithm for
Conservative Parallel Simulations", [EEE/ACM PADS'94, 1994, 164-172.

3. Misra, J., "Distributed Discrete-Event Simulation", ACM Computing Surveys, Vol.
18, No. 1, 1986, 39-65.

