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Abs t r ac t .  We consider the problem of efficiently executing a set of par- 
allel jobs on a parallel machine by effectively scheduling the jobs on the 
computer's resources. This problem is one of optimization of resource 
utilization by parallel computing programs and/or the management of 
multi-users requests on a distributed system. We assume that each job is 
parallelizable and can be executed on any number of processors. Various 
on-line scheduling strategies of time/space sharing are presented here. 
The goal is to assign jobs to processors in space and time such that the 
total execution time is optimized. 

1 I n t r o d u c t i o n  

1.1 D e s c r i p t i o n  o f  the Computational M o d e l  

A model of computa t ion  is a description of a computer  together with its program 
execution rules. The interest of a model is to provide a high level and abstract  
vision of the real computer  world such that  the design and the theoretical devel- 
opment  and analysis of algori thms and of their complexity are possible. The most  
commonly adopted parallel computer  model is the P R i M  model [4]. A P R i M  
architecture is a synchronous system consisting of a global shared-memory  and 
an unbounded number  of processors. Each processor owns a small local memory  
and is able to execute any basic instruction in one unit of time. After each basic 
computa t ional  step a synchronization is done and each processor can access a 
global variable (for reading or writing) in one t ime unit. This model  provides 
a powerful basis for the theoretical analysis of algorithms. It  allows in particu- 
lar the classification of problems in te rm of their intrinsic parallelism. Basically, 
the parallel characterization of a problem 7 ) is based on the order of magni tude  
of the t ime T ~  (n) of the best known algori thm to solve an instance of size n. 
T~(n) provides a lower bound for the t ime to solve P in parallel. However, in 
addition to answer the question how fast the problem can be solved ?, one impor-  
tant  characteristic is how efficient is the parallelization ?, i.e. what  is the order 
of magni tude of the number  of processors P ~  (n) needed to achieve T~  (n). This 
is an essential pa ramete r  to deal with in order to implement  an algori thm on 
an actual parallel system with l imited resources. This is best represented by the 
rat io # ~  between the work of the P R i M  algorithm, W ~ ( n )  = T~(n).P~(n) 
and the total  number  of instructions in the algori thm Wtot. In this paper  we con- 
sider a physically-distributed logically-shared memory  machine composed of m 
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identical processors linked by an interconnection network. In the light of modern 
fast processor technology, compared to the PRAM model, communications and 
synchronizations become the most expensive operations and must be considered 
as impor tant  as computations. 

1.2 M o d e l  o f  J o b s  

For reasons of efficiency, algorithms must be considered at a high level of gran- 
ularity, i.e. elementary operations are to be grouped into tasks, linked by prece- 
dence constraints to form programs. A general approach leads to write a parallel 
algorithm for v virtual processors with m ~< v ~< P ~ .  The execution of the 
program needs a scheduling policy a, static and /or  dynamic, which directly 
influences the execution time Tm of the program. We define the work of the 
application on m processors as the space-time product  W,n = m • Tin. Ide- 
ally speaking, one may hope to obtain a parallel t ime equal to T~q/m, where 
T~q denotes the sequential execution t ime of the program. This would imply a 
conservation of the work. Wm=/4? to t .  Such a linear speed-up is hard to reach 
even with an optimal scheduling policy, due mainly to communication delays 
and the intrinsic non-parallelism of the algorithm (even in the PRAM model we 
may have # ~  >~ 1). We introduce the ratio Pm to represent the "penalty" of a 
parallel execution with respect to a sequential one and define it as: 

Wrr~ TYt . T ~  

~/~tot Tseq 

1.3 D i s c u s s i o n  o n  I n e f f i c i e n c y  

The Ine]ficiency factor (pro) is an experimental  parameter  which reflects the 
quality of the parallel execution, even though it can be computed theoretically for 
an application and a scheduling. Let us remark that  the parameter  #m depends 
theoretically on n and on the algorithm itself. Practically speaking, most existing 
implementations of large industrial and /o r  academic scientific codes show a small 
constant upper bound. However, we can assume some general properties about  
the inefficiency that  seem realistic. First, it is reasonable to assume that  the work 
~4;p is an increasing function ofp.  Hence inefficiency is also an increasing function 
of p : pp < #p+l for any p. Moreover, we can also assume that  the parallel t ime 
Tp is a non-increasing function of p, all the less for "reasonable" number of 

1 processors. Hence, ( p +  1)Tp+l < (1 + ~)p Tp =~ Pp+l _< (1 + ~)#v-Developing 

P+q In the inequality, for any number of processors p, q >_ 1 we get #p+q <_ p #p. 

other words, ~ is a non-increasing function of p. As a consequence, and as Pl 
is 1 by definition, pp is bounded by p, which intuitively means that  in the worst 
case the execution of the application on p processors leads in fact to a sequential 
execution, i.e. the application is not parallel. 
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1.4 C o m p e t i t i v i t y  

The factor pp is a performance characteristic of the parallel execution of a pro- 
gram. It can be easily computed a posteriori after an execution in the same way 
than speedup or efficiency. A more theoretical and precise performance guaran- 
tee is the competitive ratio: an algorithm is said to be p(m) competit ive if for 
any instance 2: to be scheduled on m processors, T,~ (Z) < p(m).T~ (Z), where 
Tm (1:) denotes the time of the execution produced by the algorithm and T*(Z)  
is the optimal time on m processors. Our goal is, given multiprocessor tasks 
individually characterized by an inefficiency pp when executed on p processors, 
to determine the competitive ratio for the whole system. 

2 S c h e d u l i n g  I n d e p e n d e n t  J o b s  

We define an application as a set of jobs linked by precedence constraints. Most 
parallel programming paradigms assume that  a parallel program produces inde- 
pendent subproblems, to be treated concurrently. Consider the following prob- 
lem: Given a m-processor parallel machine and a set of N independent paral- 
lelizable jobs (Ji)l,N whose duration is not known until they terminate, what 
competitive ratio can we guarantee for the execution? We assume that  each job 

i when executed on p processors and that  it can be Ji has a certain inefficiency ttp 
preempted. The question can be restated as: Given a set of inefficiencies , what 
is the competitive ratio we may hope for from an on-line scheduling strategy? In 
the following, we denote by T* (g) the optimal execution time and by T~ (2) the 
one of the scheduling strategy a. The competit ive ratio p~ of a is defined as the 
maximum on all the instances Z of the fraction T~ (Z)/T* (Z). Another interesting 
performance guarantee is the comparison between ira (:/:) and the optimal execu- 
tion time T~ (Z) when the parallelization of the jobs is not allowed, i.e. jobs are 
computed one at a time on single processors. We denote by pSaeq the maximum 
on Z of T~ (Z)/T~ (Z). This competit ive ratio will highlight the (possible) gain to 
allow the multiproeessing of jobs compared to the classical approach we present 
below where jobs are purely sequential. 

2.1 T wo  E x t r e m e  Strategies:  Graham and Gang  Schedul ing  

The scheduling of multiprocessor jobs has recently become a mat ter  of much 
research and study. In off-line scheduling theory, several articles have been pub- 
lished by J.Btaiewicz and al. [2, 1], considering multiprocessor tasks but  each one 
requiring a fixed number of processors for execution. If we look at the field of 
on-line scheduling, the most important  contributions focused on the the case of 
one-processor tasks. In this classical approach any task requires only one proces- 
sor for execution. The most famous algorithm is due to Graham [3] and consists 
simply in a greedy affectation of the tasks to the processors such that  a processor 
cannot be idle if there is a remaining unscheduled job. Its competit ive ratio is 
2 -  1 ~ ,  which is the best possible ratio for any deterministic scheduling strategy 
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when the computat ion costs of the tasks are not known till their completion. 
At the other end of the spectrum, the Gang scheduling analyzed recently in 
Scherson [5] assumes multiprocessor jobs and schedule them allowing the whole 
machine, m processors, to all the tasks. For the Happiness  function defined by 
Scherson, the Gang strategy is proved to be the best one for preemptive mul- 
tiprocessor job scheduling. Certainly, if we are concerned with the competit ive 
ratio, the best strategy will be a compromise between allowing one processor per 
job (Graham) and the whole machine to any job (Gang). In particular we hope 
that  multiprocessing of the job may improve the competit ive ratio (2 - I )  of 
Graham. In the following, let denote #v = maxl,N #~. 

L e m m a  1. The competi t ive ratio of  Gang scheduling is equal to tt~n. 

Proof. Consider any instance Z. Let ai be the work of job J/, and 142tot the total  

amount  of work of the program. We have TGang = 1 rn -- rn 
Noticing that  W t o t / m  is always a lower bound of T*, it follows that  p ~ . g  _< #m. 
Consider now a particular instance consisting of m identical jobs of work a. Gang 
scheduling produces an execution time of p,~a, while assigning one processor per 
job produces a schedule of length exactly a. As this schedule is one-processor 
job, it proves that  ~r PG~,g -> pro, which gives the result. [] 

L e l n m a  2. For Graham scheduling, pSeq 1 * r n  Craham = 2 - ~ and PGraham >~ 

Proof. Let consider the scheduling of a single job of size a. Any one-processor 
scheduling delivers an execution t ime of a, while the optimal one is reached 

�9 m [ ]  giving the whole machine to the job. Thus T* = v--~a,~ and so PGraham >- #~ " 

3 S C H E d u l i n g  M u l t i p r o c e s s o r s  E f f i c i e n t l y :  S C H E M E  

A Graham scheduling breaks into two phases: in the first one all processors are 
busy, getting an efficiency of one. Inefficiency happens when less than m tasks 
remain. Our idea is to preempt these tasks and to schedule them with a Gang 
policy in order to avoid idle time. 

Fig.  1. Principle  of  a S C H E M E  scheduling 
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3.1 A n a l y s i s  o f  t h e  S e q u e n t i a l  C o m p e t i t i v i t y  

Let 's  consider first t ime t in the G r a h a m  scheduling when less than  m jobs are 
not completed. Let U'l, �9 �9 Jk, k <_ m -  1, be these unfinished jobs, and denote by 
a l , . . . ,  ak their remaining amount  of work. Let 147 = rn.t be the work executed 
between t ime 0 and t. We have the majora t ion  Tsc(m) < -~ + ~-m Zi=li=k hi. 

Introducing the total  amount  of work of the jobs, ~/~tot i=k = W + ~'~=1 al, and the 
m a x i m u m  amount  of work remaining fQr a job, a = m a x { a l , . . . ,  ak}, it follows 

tha t  Tsc(m) < Wtot /m + ~ i=k 

To obtain an expression of sequential compet i t iv i ty ,  we need to minora te  the 
one-processor opt imal  time. A lower bound is always )/Vtot/m. As we consider a 
one-processor job scheduling, T~ is greater  than  the sequential t ime of any task. 
Hence we have T~ > a. We get the following lemma: 

L e m m a  3. SCHEME has a sequential competitivity of (1 - ~)Pm + 1 

Proof. It  is sufficient to prove tha t  the bound is tight. Consider the following 
instance composed of m - 1 jobs of size m and rn jobs of size 1. The opt imal  
schedule allocate one processor per tasks of size m and assign all the small jobs 
to the last processor. It  realizes an execution t ime rn = }/Ytot/m. A possible 
execution of SCHEME scheduling allocates first one small jobs per processor 
and then uses the gang strategy for the m - 1 large jobs. It  conducts to an 
execution t ime Tsc(m) = 1 + (m - l )#m, which realizes the bound. [] 

3.2 A n a l y s i s  o f  t h e  C o m p e t i t i v e  R a t i o  

We determine here the competi t ive rat io of the SCHEME scheduling compared 
to an opt imal  multiprocessor jobs scheduling. Let consider an instance of the 
problem on m processors, and S* an opt imal  schedule. We decompose S* into 
tempora l  area slices (A~)i, each slice corresponding to the jobs compute  between 
t ime t i -1 and ti defined recursively as follow: to = 0, and ti+l is the maximal  date 
such that  in the t ime interval [ti, t i+l [ no job is preempted or completed.  Notice 
that  in the slice A.* either all the jobs are computed  on one processor, the slice 
is said "one-processored", or at least one job is executed on p > 2 processors. 
Let denote by Ai the area needed in the SCHEME schedule to compute  the 
instructions of A T. Notice that  any piece of job in the SCHEME scheduling is 
either process on one or on m processors. 

�9 Let A* be a one-processored slice. Let denote by Gi the amount  of instruc- 
tions of A* executed on m processors in Ai and by Wi the amount  of instructions 
of A* executed on one processor in Ai. By definition A* = Gi + Wi. At least 
one of the jobs is entirely computed  on one processor in the SCHEME sched- 
ule, hence Wi >_ A~/m.  In Ai, the area to compute  the instruction of Gi is 
increased by a factor #,~. Thus Ai = p, ,Gi + Wi = #mA r - (#m - 1)Wi < 

, s e q  , /~mAi - (pro - 1)-~-- < ((1 - • + •  It  follows that  d i <  Psc (m)A i .  
- -  f n  / F T ~ "  ~ " 

�9 Let A* be a nmlti-processored slice. There exists a job J computes  on p > 
2 processors in the slice. Let a be its amount  of instruction and denote by 
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B = A~ - pea the remaining area less J. In the SCHEME schedule, the area Ai 
needed to execute the instructions of A* is at most  #m(a + B) = pro(A* - 

(pp - 1)a). Moreover A~ < '--X-~a • m. Hence: Ai < pro(1 - ~e-12- )A  * The 
- -  p - -  / ~ p  r n /  

m a x i m u m  ratio appears minimizing the t e rm -~--~p. Noticing that  p/pp and 
, u p  

pp are increasing functions, maximal  value is reached for p = 2. Hence: Ai < 
2 , A* We call the rat io factor ~ a ~ ( m ) .  For any slice A* of S*, 

s e q  a r  we have the corresponding area in S bounded by m a x { p ~  (m), ~ c  (m)}.A~. 
Noticing that  the SCHEME schedule contains no idle time, we get the following 
lemnm: 

L e m m a  4. The competitive ratio of S C H E M E  scheduling is equal to 

1 1 2 - # 2  
p'so(m) = (i - m ) p m  + - - m a x { l ,  pro} 

rn P2 

Proof. To prove that  the ratio is tight, consider the instance composed of m - 2 
jobs of size 1 and one job of size (2///2). A possible schedule allocating one pro- 
cessor per unit job and two for the last job, completes at t ime 1. The SCHEME 

m ~ 2 scheduling leads to t ime execution ~-~-((rn - 2) + -7~)" [] 

4 Concluding Remarks 

We are currently experimenting the mixed s t rategy SCHEME shown to be (the- 
oretically) promising. Other more sophist icated scheduling strategies are also 
under investigation. 
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