
On-Line Scheduling of Parallelizable Jobs

Christophe Rapine 1, Isaac D. Scherson 2 and Denis Trys t r am 1

1 LMC - IMAG, Domaine Universitaire, BP 53, 38041 GRENOBLE cedex 9, France
2 University of California, Irvine, Department of Information and Computer Science,

lrvine, CA 92717-3425, U.S.A.

Abs t r ac t . We consider the problem of efficiently executing a set of par-
allel jobs on a parallel machine by effectively scheduling the jobs on the
computer's resources. This problem is one of optimization of resource
utilization by parallel computing programs and/or the management of
multi-users requests on a distributed system. We assume that each job is
parallelizable and can be executed on any number of processors. Various
on-line scheduling strategies of time/space sharing are presented here.
The goal is to assign jobs to processors in space and time such that the
total execution time is optimized.

1 I n t r o d u c t i o n

1.1 D e s c r i p t i o n o f the Computational M o d e l

A model of computa t ion is a description of a computer together with its program
execution rules. The interest of a model is to provide a high level and abstract
vision of the real computer world such that the design and the theoretical devel-
opment and analysis of algori thms and of their complexity are possible. The most
commonly adopted parallel computer model is the P R i M model [4]. A P R i M
architecture is a synchronous system consisting of a global shared-memory and
an unbounded number of processors. Each processor owns a small local memory
and is able to execute any basic instruction in one unit of time. After each basic
computa t ional step a synchronization is done and each processor can access a
global variable (for reading or writing) in one t ime unit. This model provides
a powerful basis for the theoretical analysis of algorithms. It allows in particu-
lar the classification of problems in te rm of their intrinsic parallelism. Basically,
the parallel characterization of a problem 7) is based on the order of magni tude
of the t ime T ~ (n) of the best known algori thm to solve an instance of size n.
T~(n) provides a lower bound for the t ime to solve P in parallel. However, in
addition to answer the question how fast the problem can be solved ?, one impor-
tant characteristic is how efficient is the parallelization ?, i.e. what is the order
of magni tude of the number of processors P ~ (n) needed to achieve T~ (n). This
is an essential pa ramete r to deal with in order to implement an algori thm on
an actual parallel system with l imited resources. This is best represented by the
rat io # ~ between the work of the P R i M algorithm, W ~ (n) = T~(n).P~(n)
and the total number of instructions in the algori thm Wtot. In this paper we con-
sider a physically-distributed logically-shared memory machine composed of m

323

identical processors linked by an interconnection network. In the light of modern
fast processor technology, compared to the PRAM model, communications and
synchronizations become the most expensive operations and must be considered
as impor tant as computations.

1.2 M o d e l o f J o b s

For reasons of efficiency, algorithms must be considered at a high level of gran-
ularity, i.e. elementary operations are to be grouped into tasks, linked by prece-
dence constraints to form programs. A general approach leads to write a parallel
algorithm for v virtual processors with m ~< v ~< P ~ . The execution of the
program needs a scheduling policy a, static and /or dynamic, which directly
influences the execution time Tm of the program. We define the work of the
application on m processors as the space-time product W,n = m • Tin. Ide-
ally speaking, one may hope to obtain a parallel t ime equal to T~q/m, where
T~q denotes the sequential execution t ime of the program. This would imply a
conservation of the work. Wm=/4? to t . Such a linear speed-up is hard to reach
even with an optimal scheduling policy, due mainly to communication delays
and the intrinsic non-parallelism of the algorithm (even in the PRAM model we
may have # ~ >~ 1). We introduce the ratio Pm to represent the "penalty" of a
parallel execution with respect to a sequential one and define it as:

Wrr~ TYt . T ~

~/~tot Tseq

1.3 D i s c u s s i o n o n I n e f f i c i e n c y

The Ine]ficiency factor (pro) is an experimental parameter which reflects the
quality of the parallel execution, even though it can be computed theoretically for
an application and a scheduling. Let us remark that the parameter #m depends
theoretically on n and on the algorithm itself. Practically speaking, most existing
implementations of large industrial and /o r academic scientific codes show a small
constant upper bound. However, we can assume some general properties about
the inefficiency that seem realistic. First, it is reasonable to assume that the work
~4;p is an increasing function ofp. Hence inefficiency is also an increasing function
of p : pp < #p+l for any p. Moreover, we can also assume that the parallel t ime
Tp is a non-increasing function of p, all the less for "reasonable" number of

1 processors. Hence, (p + 1)Tp+l < (1 + ~)p Tp =~ Pp+l _< (1 + ~)#v-Developing

P+q In the inequality, for any number of processors p, q >_ 1 we get #p+q <_ p #p.

other words, ~ is a non-increasing function of p. As a consequence, and as Pl
is 1 by definition, pp is bounded by p, which intuitively means that in the worst
case the execution of the application on p processors leads in fact to a sequential
execution, i.e. the application is not parallel.

324

1.4 C o m p e t i t i v i t y

The factor pp is a performance characteristic of the parallel execution of a pro-
gram. It can be easily computed a posteriori after an execution in the same way
than speedup or efficiency. A more theoretical and precise performance guaran-
tee is the competitive ratio: an algorithm is said to be p(m) competit ive if for
any instance 2: to be scheduled on m processors, T,~ (Z) < p(m).T~ (Z), where
Tm (1:) denotes the time of the execution produced by the algorithm and T*(Z)
is the optimal time on m processors. Our goal is, given multiprocessor tasks
individually characterized by an inefficiency pp when executed on p processors,
to determine the competitive ratio for the whole system.

2 S c h e d u l i n g I n d e p e n d e n t J o b s

We define an application as a set of jobs linked by precedence constraints. Most
parallel programming paradigms assume that a parallel program produces inde-
pendent subproblems, to be treated concurrently. Consider the following prob-
lem: Given a m-processor parallel machine and a set of N independent paral-
lelizable jobs (Ji)l,N whose duration is not known until they terminate, what
competitive ratio can we guarantee for the execution? We assume that each job

i when executed on p processors and that it can be Ji has a certain inefficiency ttp
preempted. The question can be restated as: Given a set of inefficiencies , what
is the competitive ratio we may hope for from an on-line scheduling strategy? In
the following, we denote by T* (g) the optimal execution time and by T~ (2) the
one of the scheduling strategy a. The competit ive ratio p~ of a is defined as the
maximum on all the instances Z of the fraction T~ (Z)/T* (Z). Another interesting
performance guarantee is the comparison between ira (:/:) and the optimal execu-
tion time T~ (Z) when the parallelization of the jobs is not allowed, i.e. jobs are
computed one at a time on single processors. We denote by pSaeq the maximum
on Z of T~ (Z)/T~ (Z). This competit ive ratio will highlight the (possible) gain to
allow the multiproeessing of jobs compared to the classical approach we present
below where jobs are purely sequential.

2.1 T wo E x t r e m e Strategies: Graham and Gang Schedul ing

The scheduling of multiprocessor jobs has recently become a mat ter of much
research and study. In off-line scheduling theory, several articles have been pub-
lished by J.Btaiewicz and al. [2, 1], considering multiprocessor tasks but each one
requiring a fixed number of processors for execution. If we look at the field of
on-line scheduling, the most important contributions focused on the the case of
one-processor tasks. In this classical approach any task requires only one proces-
sor for execution. The most famous algorithm is due to Graham [3] and consists
simply in a greedy affectation of the tasks to the processors such that a processor
cannot be idle if there is a remaining unscheduled job. Its competit ive ratio is
2 - 1 ~ , which is the best possible ratio for any deterministic scheduling strategy

325

when the computat ion costs of the tasks are not known till their completion.
At the other end of the spectrum, the Gang scheduling analyzed recently in
Scherson [5] assumes multiprocessor jobs and schedule them allowing the whole
machine, m processors, to all the tasks. For the Happiness function defined by
Scherson, the Gang strategy is proved to be the best one for preemptive mul-
tiprocessor job scheduling. Certainly, if we are concerned with the competit ive
ratio, the best strategy will be a compromise between allowing one processor per
job (Graham) and the whole machine to any job (Gang). In particular we hope
that multiprocessing of the job may improve the competit ive ratio (2 - I) of
Graham. In the following, let denote #v = maxl,N #~.

L e m m a 1. The competi t ive ratio of Gang scheduling is equal to tt~n.

Proof. Consider any instance Z. Let ai be the work of job J/, and 142tot the total

amount of work of the program. We have TGang = 1 rn -- rn
Noticing that W t o t / m is always a lower bound of T*, it follows that p ~ . g _< #m.
Consider now a particular instance consisting of m identical jobs of work a. Gang
scheduling produces an execution time of p,~a, while assigning one processor per
job produces a schedule of length exactly a. As this schedule is one-processor
job, it proves that ~r PG~,g -> pro, which gives the result. []

L e l n m a 2. For Graham scheduling, pSeq 1 * r n Craham = 2 - ~ and PGraham >~

Proof. Let consider the scheduling of a single job of size a. Any one-processor
scheduling delivers an execution t ime of a, while the optimal one is reached

�9 m [] giving the whole machine to the job. Thus T* = v--~a,~ and so PGraham >- #~ "

3 S C H E d u l i n g M u l t i p r o c e s s o r s E f f i c i e n t l y : S C H E M E

A Graham scheduling breaks into two phases: in the first one all processors are
busy, getting an efficiency of one. Inefficiency happens when less than m tasks
remain. Our idea is to preempt these tasks and to schedule them with a Gang
policy in order to avoid idle time.

Fig. 1. Principle of a S C H E M E scheduling

326

3.1 A n a l y s i s o f t h e S e q u e n t i a l C o m p e t i t i v i t y

Let 's consider first t ime t in the G r a h a m scheduling when less than m jobs are
not completed. Let U'l, �9 �9 Jk, k <_ m - 1, be these unfinished jobs, and denote by
a l , . . . , ak their remaining amount of work. Let 147 = rn.t be the work executed
between t ime 0 and t. We have the majora t ion Tsc(m) < -~ + ~-m Zi=li=k hi.

Introducing the total amount of work of the jobs, ~/~tot i=k = W + ~'~=1 al, and the
m a x i m u m amount of work remaining fQr a job, a = m a x { a l , . . . , ak}, it follows

tha t Tsc(m) < Wtot /m + ~ i=k

To obtain an expression of sequential compet i t iv i ty , we need to minora te the
one-processor opt imal time. A lower bound is always)/Vtot/m. As we consider a
one-processor job scheduling, T~ is greater than the sequential t ime of any task.
Hence we have T~ > a. We get the following lemma:

L e m m a 3. SCHEME has a sequential competitivity of (1 - ~)Pm + 1

Proof. It is sufficient to prove tha t the bound is tight. Consider the following
instance composed of m - 1 jobs of size m and rn jobs of size 1. The opt imal
schedule allocate one processor per tasks of size m and assign all the small jobs
to the last processor. It realizes an execution t ime rn = }/Ytot/m. A possible
execution of SCHEME scheduling allocates first one small jobs per processor
and then uses the gang strategy for the m - 1 large jobs. It conducts to an
execution t ime Tsc(m) = 1 + (m - l)#m, which realizes the bound. []

3.2 A n a l y s i s o f t h e C o m p e t i t i v e R a t i o

We determine here the competi t ive rat io of the SCHEME scheduling compared
to an opt imal multiprocessor jobs scheduling. Let consider an instance of the
problem on m processors, and S* an opt imal schedule. We decompose S* into
tempora l area slices (A~)i, each slice corresponding to the jobs compute between
t ime t i -1 and ti defined recursively as follow: to = 0, and ti+l is the maximal date
such that in the t ime interval [ti, t i+l [no job is preempted or completed. Notice
that in the slice A.* either all the jobs are computed on one processor, the slice
is said "one-processored", or at least one job is executed on p > 2 processors.
Let denote by Ai the area needed in the SCHEME schedule to compute the
instructions of A T. Notice that any piece of job in the SCHEME scheduling is
either process on one or on m processors.

�9 Let A* be a one-processored slice. Let denote by Gi the amount of instruc-
tions of A* executed on m processors in Ai and by Wi the amount of instructions
of A* executed on one processor in Ai. By definition A* = Gi + Wi. At least
one of the jobs is entirely computed on one processor in the SCHEME sched-
ule, hence Wi >_ A~/m. In Ai, the area to compute the instruction of Gi is
increased by a factor #,~. Thus Ai = p, ,Gi + Wi = #mA r - (#m - 1)Wi <

, s e q , /~mAi - (pro - 1)-~-- < ((1 - • + • It follows that d i < Psc (m)A i .
- - f n / F T ~ " ~ "

�9 Let A* be a nmlti-processored slice. There exists a job J computes on p >
2 processors in the slice. Let a be its amount of instruction and denote by

327

B = A~ - pea the remaining area less J. In the SCHEME schedule, the area Ai
needed to execute the instructions of A* is at most #m(a + B) = pro(A* -

(pp - 1)a). Moreover A~ < '--X-~a • m. Hence: Ai < pro(1 - ~e-12-)A * The
- - p - - / ~ p r n /

m a x i m u m ratio appears minimizing the t e rm -~--~p. Noticing that p/pp and
, u p

pp are increasing functions, maximal value is reached for p = 2. Hence: Ai <
2 , A* We call the rat io factor ~ a ~ (m) . For any slice A* of S*,

s e q a r we have the corresponding area in S bounded by m a x { p ~ (m), ~ c (m)}.A~.
Noticing that the SCHEME schedule contains no idle time, we get the following
lemnm:

L e m m a 4. The competitive ratio of S C H E M E scheduling is equal to

1 1 2 - # 2
p'so(m) = (i - m) p m + - - m a x { l , pro}

rn P2

Proof. To prove that the ratio is tight, consider the instance composed of m - 2
jobs of size 1 and one job of size (2///2). A possible schedule allocating one pro-
cessor per unit job and two for the last job, completes at t ime 1. The SCHEME

m ~ 2 scheduling leads to t ime execution ~-~-((rn - 2) + -7~)" []

4 Concluding Remarks

We are currently experimenting the mixed s t rategy SCHEME shown to be (the-
oretically) promising. Other more sophist icated scheduling strategies are also
under investigation.

References

1. J. Blaiewicz, P. Dell'Olmo, M. Drozdowski, and M.G. Speranza. Scheduling mul-
tiprocessors tasks on three dedicated processors. In]orrnation Processing Letters,
41:275-280, April 1992.

2. J. Bla~ewicz, M. Drabowski, and]. W~glarz. Scheduling multiprocessor tasks to
minimize schedule length. IEEE Transactions on Computers, 35(5):389-393, 1986.

3. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17(2):416-429, March 1969.

4. R.M. Karp. On the computational complexity of combinatorial problems. Networks,
5:45--68, 1975.

5. I. D. Scherson, R. Subramanian, V. L. M. Reis, and L. M. Campos. Schedul-
ing computationally intensive data parallel programs. In Placement dynamique
et rdpartition de charge : application aux syst~mes parall~les et rdpartis (Ecole
Franfaise de Paralldlisme, Rgseaux et Syst~me), pages 107-129. Inria, July 1996.

