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Abstract .  This paper deals with the measure of Aspect Ratio for mesh 
partitioning and gives hints why, for certain solvers, the Aspect Ratio of 
partitions plays an important role. We define and rate different kinds 
of Aspect Ra$io, present a new center-based partitioning method which 
optimizes this measure implicitly and rate several existing partitioning 
methods and tools under the criterion of Aspect Ratio. 

1 I n t r o d u c t i o n  

Almost all numerical scientific simulation codes belong to the class of data- 
parallel applications: their parallelization executes the same kind of operations on 
every processor but on different parts of the data. This requires the partitioning 
of the mesh into equal-sized subdomains as preprocessing step. Together with 
the additional constraint of minimizing the number of cut edges (i.e. minimizing 
the total interface length in the case of FE-mesh partitioning), the problem is 
NP-complete.  Thus, a number of graph (mesh) partitioning heuristics have been 
developed in the past (e.g. [8]), and used in practical applications. 

Most of the existing graph partitioning algorithms optimize the balance of 
subdomains plus the number of cut edges, the cut size. This is sufficient for 
many applications, because an equal balance is necessary for a good utilization 
of the processors of a parallel system and the cut size indicates the amount of 
data  to be transfered between different steps of the algorithms. The efficiency 
of parallel versions of global iterative methods like (relaxed) Jacobi, Conjugate 
Gradient (CG) or Multigrid is (mainly) determined by these two measures. But 
if the decomposition is used to construct pre-conditioners (DD-PCG) [1, 2], cut 
and balance may not longer be the only efficiency determining factors. The shape 
of subdom~ins heavily influences the quality of pre-conditioning and, thus, the 
overall execution time [10]. First at tempts at optimizing the Aspect Ratio of 
subdomains weigh elements depending on their distance from a subdomain's 
center (e.g. [5]) and include this weight into the cost function of local iterative 
search algorithms like the Kernighan-Lin heuristic [6]. 

In the following section we will define the Aspect Ratio of subdomains and 
give hints why it can improve the overall execution time of domain decomposition 
methods. Section 3 introduces a new mesh partitioning heuristic which implicitly 
optimizes the Aspcct Ratio and Section 4 finishes with experimental results. 
Further information on this topic can be found in [4]. 
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2 A s p e c t  R a t i o s  

An example that  cut size is not always the right measure in mesh parti t ioning 
can be found in Fig. 1. The sample mesh is partit ioned into two parts with dif- 
ferent AR's and different cuts. A Poisson problem with homogeneous Dirichlet-0 
boundary conditions is solved with DD-PCG. It can be observed that  the number 
of iterations is determined by the Aspect Ratio and that the cut size (number 
of neighboring elements) would be the wrong measure. 

cut =4, An = 1.001 #rt's  = 5 

F i g .  1 .  Aspect Ratio v s .  Cut Size. 

Fig. 2. Different defmitions of Aspect Ratio AR: 
Lm~ -~, n--~ and C2 
Lmi n ~ 1--~"  

Possible definitions of A R  can be found in Fig. 2. The first two are moti- 
vated by common measures in triangular mesh generation where the quality of 
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triangles are expressed in either ~L~.~n (longest to shortest boundary edge) or ~-~ 

(area of smallest circle containing the domain to area of largest inscribed circle). 
R 2 

The definition of A R  -= ~ expresses the fact that  circles are perfect shapes. 

Unfortunately, the circles are quite expensive to find for arbitrary polygons: us- 
ing Voronoi-diagrams, both can be determined in O(2nlogn) steps where n is 

number of nodes of the polygon. A R  -= ~ (A is the area of the domain) is 
another measure favoring circle-like shapes. It still requires the determination 
of the smallest outer circle but turns out to be better in practice. We can do a 
further step and approximate Ro by the length C of the boundary of the do- 
main (which can be determined fast and updated incrementally in O(1)). The  

C 2 definition of A R  = ~ additionally assumes that  squares are perfect domains. 
Circles offer a better circumfence/area ratio but  force neighboring domains to 
become non-convex (Fig. 3). For a sub-domain with area A and circumfence C 

C 2 A R  = ~ is the ratio between the area of a square with circumfence C and A. 

For irregular meshes and partitions, the first definition A R  = Lm~x does not 
L m i n  

express the shape properly. Fig. 4 shows an example. P1 is perfectly shaped, 
but  as the boundary towards P4 is very short, Lmax is large. The circle-based 

Lmin  
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Fig. 3. Circles as per- 
fect shapes? Fig. 4. Lmax ? 

Lmla �9 

R 2 

Fig. 5. Problems of AR := R2- 

measures usually fail to rate complex boundaries like "zig-zags" or inscribed 
corners. Fig. 5 shows examples which have the same A R  each but are very 
different in shape. 

3 Mesh Partitioning 

The task of mesh partitioning is to divide the set of elements of a mesh into 
a given number of parts. The usual optimization criteria are the balance and 
the cut, which is the number of crossing edges of the element graph (the el- 
ement graph expresses the data-dependencies between elements in the mesh). 
The calculation of a balanced partition with minimum cut is NP-complete. We 
will consider methods included in the tools J O S T L E  [11], M E T I S  [7] and 
P A R T Y  [9]. 

The coordinate partitioning (COO)  method cuts the mesh by a straight line 
perpendicular to the axis of the longest elongation such that  both parts have 
an equal number of elements, resulting in a stripe-wise partition. If used recur- 
sively (COO_R) ,  it usually results in a more box-wise partition. There are many 
examples for greedy methods , in which one element after another is added to 
a subdomain. We will consider the variations in which the next element to be 
added is either chosen in a breadth-first manner (BFS)  or as the one which 
increases the cut least of all (CFS) .  

The new method Bubble ( P U B )  is designed to create compact domains and 
the idea is to grow subdomains simultaneously from different seed elements. A 
part i t ion is represented by a set of (initiM random) seeds, one for each part .  
Starting from the seeds, the parts are grown in a breadth-first manner  until 
all elements are assigned to a subdomain. Each subdomain then computes its 
center based on the graph distance measure, i.e. it determines the element which 
is "nearest" to all others in the subdomain. These center-elements are taken as 
new seeds and the process is started again. The iteration stops if the seeds do 
not move any more, or if an already evaluated configuration is visited again. In 
general, the method stops after few iterations and produces connected and very 
compact parts, i.e. the shape of the parts is naturally smooth. As drawback, 
the parts do not have to contain the same number of elements. Therefore we 
integrated a global load balancing step based on the diffusion method [3] as 
post-processing trying to optimize either the cut ( P U B + C U T )  or the Aspect 
Ratio ( B U B + A R ) .  
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We also implemented the meta-heuristic Simulated Annealing (SA) for the 
c z 

shape optimization and used A R  = ~ as optimization function. If the param- 
eters are chosen carefully, SA is able to find very good solutions. Unfortunately, 
it also requires a very large number of steps. 

4 R e s u l t s  

We compare the described approaches with respect to the number of global 
iterations, the cut size and the Aspect Ratio in Fig. 6 and 7. Methods 1-7 are 
included in PARTY and 8-11 are default settings of the tools. The partitions are 
listed with the method numbers with increasing number of iterations. 

#I ts  
Cut 

LJnax/L,Jnln ~ �9 
R o/R I ~ 

Ro / -A~  
C*CT16A ~ .  

, , , , , , , , , 

10 ~1 B 6 7 12 2 I 3 4 

Fig. 6. Results of example turin 
(531 elements) into 8 parts. 

1 :COO 40 
2:COO_R 
3:BFS 3o 
4:CFS g 2s 
5:BUB ~- 
6:BUD+CUT 
7:BUB-t-AR ~ ,s ,0 
8:PARTY 
9:JOSTLE 
10:KMETIS 
11 :PMETIS 
12:SA 

#Its 
j ~  Cut 

L,_max/L,_mln 
R o /R I  ~ 

G*C/16A 

Fig. 7. Results of example cooler 
(749 elements) into 8 parts. 

6 2 The Aspect Ratios ~ and ~ do not, whereas the values of -~ and 16A 
r a  . i . 

roughly follow the number of iterations. A low cut also leads to a fairly low 
number of iterations. The coordinate and greedy methods usually result in very 
high, whereas the bubble variations in adequate iteration numbers. Very low 
iteration numbers can be observed for the tools and Simulated Annealing. 
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