
Schedul ing Data -Para l l e l C o m p u t a t i o n s on
H e t e r o g e n e o u s and T i m e - S h a r e d E n v i r o n m e n t s

Salvatore Orla.udo 1 and Raffaele Perego u

Dip. di Matematica Appl. ed hfformat.ica, Universith Ca' Foscari di Venezia, Italy
lstituto CNUCE, Cousiglio Nazionale delle Ricerche (CNR), Pisa, Italy

A b s t r a c t . This paper addresses the problem of load balancing data-parallel
computations on heterogeneous and time-shared parallel computing environ-
ments, where load imbalance may be introduced hy tbe different capacities of
processors populating a computer, or by the sharlng of tile same computational
resources among several users. To solve this problem we propose a run-time
support for pazallel loops based upon a hybrid (static -t- dynamic) scheduling
strategy. The main features of our technique are the absence of centralization
avail syn(:lnrowlzation pohfl,s, I.he i)vefel.rhivtg of work toward slower processors,
and the overlapphlg of communication latencies with useful computation.

1 Introduction

It is widely held that distr ibuted and parallel computing disciplines are converging. Ad-
vances in network technology have ill fact strongly increased the network bandwidth of
state--of- the--art distributed systems. A gap still exists with respect to communicat ion
latencies, but this difference too is now nmch less dramatic . Furthermore, most Mas-
sively Parallel Systems (MPSs) a.re now built around tile same off- the-shelf superscalar
processors that are used in high pcrfortrtance workstations, so tha t fine-grain paral-
lelism is now exploited intra-proccssor rather than inter-processor. The convergence
of parallel and distri l lutcd computix~g disciplines is also more evident if we consider the
programming nlodels and clwironmcnts which dominate current parallel programming:
MPI, PVM and IIigh Performance Fortran (I1PF) are now available for both MPSs and
NOWs.

'['his trend h ~ a direct iml)act ou the research carried out on tile two converging
disciplines. For example, parallel COml)Ul.ing research has to deal with problems in-
troduced by heterogeneil,y in para.llel systems. This is a typical feature of dis t r ibuted
sysl~ems, but nowadays heterogeneous NOWs arc increasingly used a.s i)arallei COlnt)ut-
ing resources [2], while MPSs may be populated with different off-the--shelf processors
(e.g. a SG I/Cr~ly T3E system at the time of I,his writ, lug may be i)opulated with 300 or
450 Mllz DEC Alpha processors). Furthermore, some MPSs, which were normally used
as batch machines in space sharing, may now be concurrently used by different users
as time shared mult iprogrammed environments (e.g. an IBM SP2 system can be con-
figured in a way that allows users to specify whether the processors must be acquired
as shared or dedicated resources). This paper focuses on one of the main problems pro-
grammers thus have to deal with on both parallel and distr ibuted systems: the problem

357

of "system" load imbalance due to heterogeneity and t i m e sharing of resources. Here we
restrict our view to dat~-parallel computations expressed by means of parallel loops.

In previous works we considered imbalances introduced by non-uniform data-
parallel computations to be run on homogeneous, distributed memory, MIMD parallel
systems [ll,.q, l(}]. We devised a novel compiling technique for parallel loops and a
rela.tc(I run time support (Stll'l'l,l~). This paper shows how StI1)I'I,F, can also be uti-
lized to implement loops in all the cases where load imbalance is not a characteristic of
the user code, but is caused by variations in capacities of processing nodes. Note that,
much other research has been conducted in the field of run-time supports and compila-
tion methods for irregular problems [13, 12, 7]. In our opinion, besides SUPPLE, many
of these techniques can be also adopted when load imbalance derives from the use of
a time-shared or heterogeneous parallel system. These techiques should also be com-
pared wil.h those specifically devised to face load imbalance in NOW envirotmlents [4,
8].
SUPPLE is based upon a hybrid scheduling strategy, which dynamically adjusts the
worldoaxls in I.he presence of variations of proee.~sor capacities. Tlae main features of
SI/IWIA,] arc, the ellicient implementa l.io. of regular sLencil communications, the hy-
brid (static + dynamic) scheduling of chunks of iterations, and the exploitation of
aggressive chunk prefetching to reduce waiting times by overlapping communication
with useful computation. We report performance results of many experiments carried
out on an SGI/Cray T3E and ma IBM SP2 system. The synthetic benchmarks used for
the experiments allowed us to model different situations by varying a few important
parameters such ms the computational grain and the capacity of each processor. The
results obtained suggest that, in the absence of a priori knowledge about the relative
cal)acitics of the processors that will actually e• the program, the hybrid strategy
adopted in SIJPPLE yields very good performauce.

The paper is organized as folh)ws. Section 2 presents the synthetic benchmarks and
the machines used for the experiments. Section 3 describes our run-tilne support and
its load balancing strategy. 'Fhc experimental results are reported and discussed in
Section 4, and, linally, thc conclusions are drawn in Section 5.

2 B e n c h m a r k s

We adopted a. very simple benchmark program that resembles a very common pattern of
parallelism (e.g. solvers for differential equations, simulations of physical phenomena,
and image processing applications). The pattern is data-parallel and "regular", and
thus considered e~sy to implenlent on homogeneous and dedicated parallel systems.
In the benchmark a bidimensional array is updated iteratively on the b~is of the old
values of its elements, while array data referenced are modeled by a five-point stencil.
The simple IIPF code illustrating thc benchmark is shown below.

REAL ~(N1,N2) ~ B(NI~N2)
!HPF$ TEMPLATE D(N1,N2)
L.HPFt ~ISTP.Iet~T~ O(I~LOC~,eLOCK)
!HPF$ ALIGN A (i , j) , B(i,J) WITH V(i , j)

358

FORALL (i : 2 :n l - l , j= 2:N2-1)
B(i,j) = Coap(ICi,j), ACi-l,j), ACi,j-i), A(i+i,j), A(I,J.}i))

r~ND FORALL
A = B

END DO

Note the III, OCK (listrilJution to exploit data locality by reducing off local-memory
data references. The actual COluputation performed by the benchmark above is hidden
by the fimction Comp(). We thus prepared several versions of the same benchmark
where Comp() was replaced with a dummy computation characterized by known and
fixed costs. Moreover, since it is important to observe the performance of our loop sup-
port when we increase the number of processors, for each different grid P of processors
we modified the dimensions of the data set to keep the size of the block of data allo-
cated to each processor constant. Finally, another feature that we changed during the
tests is Iq_ITER, the number of iterations of the external sequential loop. This was done
to simulate the behavior of real apl)lications such as solvers of differential equations,
which require the same r)arallcl lool)s to bc cxecute(I many times, and image filtcring
al)plications, which usually perform the update of the inl)ut image in jl,st one st(q).

3 T h e S U P P L E A p p r o a c h

SUPPLE (SUPport for Parallel Loop Execution) is a portable run-time support for
parallel loops [9, i1, 10]. It is written in C with calls to tile MPI library.

Tile main innovative feature of SUPPLE [9] is its ability to allow data and compu-
tation to be dynamically migrated, wit]lout losing the ability to exploit all the static
optimizations that can be adopted to efficiently implement stencil data references.

Stencil implementation is s|.ra.ightforward, (luc to the regularity of the blocking data
layout adopted. For each array involved SUPPLE allocates to each processor enough
memory to host the block partition, logically subdivided into an inner and a perimeler
region, and a surrounding ghost region. The ghost region is used to buffer the parts
of the perimeter regions of the adjacent partitions that are owned by neighboring
processors, and are accessed through non local references. The inner region contains
data elements that can be computed without fetching external data, while to compute
data elements belonging to the perimeter region these external data have to be waitc(l
for. Loop iterations are statically assigned to each processor according to the owner
compules rule, but, to overlap comnmnications with usefid computations, iterations
are reordered [3]: the iterations that assign data items belonging to the inner region
(wl,ich refer k)cal data only) are scheduled between the asynchronous sending of the
perimeter rrgion to ,leighl)oring l)roc('ssors and the receiviug of the corresponding data
into I.hc ghosl region. This si,atic scheduling ma.y bc cha,gt,d at run-time by migratillg
iterations, but, in order to avoid the introduction of irregularities in the implementation
of stencil data reference, only iterations updating the inner region can be migrated. We
group these iterations into chunks of fixed size g, by statically tiling the inner region.
SUPPLE migrates chunks and associated data tiles instead of single iterations.

At the beginning, to reduce overheads, each processor statically executes its chunks,
which are stored in a queue Q, hereafter local queue. Once a processor understands that

359

its local queue is becoming empty, it autonomously decides to start the dynamic part of
its scheduling policy, It tries to balance the processor workloads by asking overloaded
partners for migrating both chunks and corresponding data tiles. Note that, due to
stencil d~d,a references, to allow l, he remote execution of a elnmk, the ,associated tile
must be accompanied by a surrotmding area, whose size depends on the specific stencil
features. Migrated clmnks and data tiles are stored by each receiving processor in a
queue RQ, called remote. Since load balancing is started by underloaded processors,
our technique can be classified as ~veeiver initiated [6, 14]. In the following we detail
our hybrid scheduling algorithm.

During the initial static phase, each processor only executes local chunks in Q and
measures their computational cost. Note that, since the possible load imbalance may
only derive from different "speeds" of the processors involved, chunks that will possibly
be migrated and stored in RQ will be considered as having the same cost as the ones
stored in Q. Thus, on the basis of the knowledge of the chunk costs, each processor
estimates its cur~ent load by simply insl)ecting the size of its queues Q and RQ.
When the estimated local load becomes Iowa," I,han a machine-dependent Threshold,
each I)rocessor autonomously sl,arts tim dynamic I)arl, el the scheduling I.echnique and
starts asking other processors for re,note chunks. Corresl)ondingly, a processor pj, which
receives a migration request from a processor pi, will grant the request by moving some
of its workload to pj only if its current load is higher than Threshold. To reduce the
overheads which might derive from requests for remote chunks which cannot be served,
each processor, when its current load becomes lower than Threshold, broadcasts a so-
called termination message. Therefore the round-robin strategy used by underloaded
processors to choose a partner to be ,'~sked for further work skips terminated proces-
sors. Once an overloaded processor decides to grant a migration request, it must choose
the most appropriate mnnber of chunks to I)e migrated. '17o this end, SUPPLE uses a
modified Factorin 9 scheme [5], which is a Self Scheduling heuristics formerly proposed
to address the elficient implementation of parallel loops on shared-nmnlory multipro-
cessors
Finally, the policies exploited by SUPPLE to manage data coherence and termination
detection are also fully distributed and asynchronous. A full/empty-like technique [1] is
used to ~synchronously manage the coherence of migrated data tiles. When processor
pi sends a chunk b to pj, it sets a flag marking the data tiles associated with b as
invalid. The next time Pl needs to access the same tiles, Pl checks the flag and, if the
flag is still set,, waits for the updated data tiles fi'om node pj. As far as termination
detection is concerned, the role of a processor in the parallel loop execution finishes
when it Itas ah'eady received a termination message fi'om all the other processors, and
I)oth its (lllellr Q a.lld ItQ are elnpty.

In summary, unlike other proposals [12, 4], the dynamic scheduling policy of SUP-
PLE is fully distributed and based upon local knowledge about the local workload,
and thus there is no need to synchronize tile processors in order to exchange updated
information about tile global workload. Moreover, SUPPLE may also be employed for
applications composed of a siugle parallel loop, such as filters for image processing.
Unlike other proposals [13,8], it does not exploit past knowledge about the work-

360

load distribution at previous loop iterations, since dynamic scheduling decisions are
asynchronously taken concurrently with usefifl computation.

4 E x p e r i m e n t a l R e s u l t s

All experiments were conducted on au IBM SP2 system and an SGI /Cray T3E. Note
that both machines might be heterogeneous, since both can be equipped with processors
of different cal)acities. The T3E can in fact be populated with DEC Alpha processors
of different generations 1, while 1BM enables choiccs from three distinct types of nodes
- high, wide or thin - where the differences are in the number of per-node processors,
tile type of processors, tile clock rates, the type and size of caches, and tile size of tile
main memory, llowever, we used the Sl '2 (a 16 node system equipped with 66 Mllz
I)()WEI{, 2 wide processors) as a homo:le,U'ous time-shared environment. ' l b s imulate
load imbalance we siml)ly ialmche(I some ('o|| |pl~te-boun(I processes on a subset of
nodes. On the other hand, we used the 'F3E (a system composed of 64 300 MIlz - DEC
Alpha 21164 processors) as a sl)ace-sharcd heterogeneous system. Since all the nodes
of our systeul are idcl|l.ical, wr had to simulate the presence of processors of different
speeds by hJtroducing an extra cost in the COml)utatio|l performed by those processors
considered "slow". Thus, if tile granulari ty of Comp() is p / t s ec (including the t ime to
read and write the data) on the "fast" processors, and F is the factor of slowdown of
~he "slow" ones, the granulari ty of Comp() on the "slow" processors is (F . I ~) Imec.
% prove the effectiveness of SUPPLE, we compared each SUPPLE implementat ion of

e benchmark with an equivalent stat ic and optimized implementat ion, like the one
pie | ted by a very efficient I [PF compiler.

We l)rescnt several curves, all plott ing an excculion lime ratio (ETR), i.e. the rat io
of the time taken by the static scheduling vcrsiou of the benchmark over the time taken
by the SUPPI~E hybrid scheduling version. Ilence, a ratio greater than one corresponds
to an improvement in the total execution time obtained by adopting SUPPLE with
respect to the static version. Each curve is relative to a dist inct granulari ty p of Comp(),
and plots the ETl /s as a function of the number of processors employed. The size of
the da t a set has been modified according to tile number of processors to keep tile size
of the sub-hlock stat ical ly assigned to each processor constant.

4.1 T i x n e - s h a r e d E n v i r o n m e n t s

First of all, we show tile results obtained on tile SP2. Due to tile difficulty ill running
probing experiments because of the unpredictabil i ty of the workloads, as well as for the
exclusive use of some resources (ill 1)articular, resources as the SP2 high-performance
switch aud /o r the processors themselves) by other users, the results in this ease are not
so exhaustive as those reported for the tests run on the T3E. As previously mentioned,
on the SP2 we ran our experiments after the introduction of a synthetic load on a
subset of the nodes used. In particular, we launched 4 compute -bound processes on

I The Pittsburgh Supercomputing Center has a T3E system with 512 application processors
of which half runs at 300 Mllz au(l half at 450 Milz.

361

IBM 81,2 (tP): SUPPLE w.t,I, i I l ~ i ~ , ng . ~1~4 ~ 6~ proel
3

p . 7.5 pae~:
I I . 17.fi pzee
I I . 21.0 pJee

3

2

t.8

t

0.5

o

IBM SP2 ~18): SUPPLE W . r . t . l ~e Dr, hodullhg. Ioed,.40P 60% pee~z
. i

t j . S,SVe~ - . . - -

N , ,

S Io ,s ~o S 1o IS
Number of pmeosi~rl Number ol p rocn lo r l

(~) (b)

Fig. 1. SP2 results: ETR results for experiments exploiting (a) the Ethernet, and (b) the
high-performance switch

50% of the processing nodes employed, while the loads were close to zero on the rest of
I,he nodes. This corresponds to "slow" proc~'ssors characterized by a. va.hm of F (factor
of slowdow,) equal to 5. The two p{t~ts in I,'igure I show the ETRs ol)taincd for various
I t and numbers of processors. The size of the sub-block owned by each processor was
kept constant and equal to 512 • 512, while N_ITER was equal to 5. As regards the
SUPPLE parameters, tim Thleshold value was set to 0.09 msec, and the chunk size g
to 32 iterations.

Figure 1.(a) shows the SP2 results obtained by using the Ethernet network and
the IP protocol. Note that, even in this c~se as in the following ones, the performance
improvement obtained with SUIqH,I~ increases in proportion to the size of the grain
it. For It = 27 /tsec, ~n(I 4 processors, we obtained the best result: SUPPLE imple-
mentation is about t00% faster than the static counterpart. For smaller values of tt,
due to the ovcrheads to migrate data, the load imbalance paid by the static version
of the benchmark is not large enough to justify the adoption of a dynamic scheduling
technique.

Figure 1.(b) shows, on the other hand, the results obtained by running the parallel
benchmarks in time-sharing on the SP2 by exploiting the US high-performance switch.
1)ue to the better conmmuication framework, in this c~e the E'I 'R is favorable to
SUIWI,I'~ even for smaller vah,,s of tt.

4.2 H e t e r o g e n e o u s E n v i r o n m e n t s

�9 ' ' " 3 " ; ' All the expcrimctd,s regarding h(,terogencous envimmueuts were couducted on ~,ue t, L,.
lleterogeneity was simulated, so that we were able to perform a lot of tests, also ex-
perimenting different factors F of slowdown.

lterative benchmark Figure 2 reports the results for the iterative benchmark, where the
external sequential loop is repeated 20 times (N_ITER = 20). For all the tests we kept
fixed tile size of tile sub-block assigned to each processor (512 x 512). Figures 2.(a)
au(I 2.(b) are relative to a.n environment where only 25% of all processors are "slow".

362

i . g

!

4

3.6

3

I ,
~ l.ls

t

o.6

o

Cmy T3E: SUPPLE w,r.t, l iege Iohodullno - F.2 on 25% p m e l

I~ - 0 S pmg~
p . o space .--~-..
p �9 1.1 pltO
p . 2,2 p.ee

:, : ;:;: "77;;;777:77 7- 77 - "

1o 2o 30 40 60 so
Number of p 'ocie.oro

(a)
Ctl ly ')'~E ~ 8*L~ppLE w.r.i. I i l l l lg i iche l i l l l l lg . F .4 on 26% f l rocl

p - o.e ixl,ec --.-- -
p . 1,1 pseo �9 , .
p . 2,2 ~se0 o

: : : : : . " :.; ;:-;.-:: .:- :7;7; 7;;.77 77 ili~:

0 I
70

4 I

36~
3 F

t,ll F

t l -

O.S I-

~ o

Cnly T3E: SUPPLE w.r. t elizUo Ichl~JI In l l - F ,2 on 60% plo~z

t l , 0.6 p * ~ - - . - -
p . 1.1 p l ~ z . . -
p . 2 , 2 p H ~ -- m--

1o l o ~io 4o Eo eo
N l l l r ~ t o f p m c l l n o n i

(~)
Clay T3E: ~IUPPLE w.t.I, i l i t k i le t l ~ l . l l l n l l . F .4 e l l 5o% p le r

p . o.8 pwlm
p . 1,1 p l i G
p , 2.2psoo

:-;;:;--;7;;;-:;;7;;;..LIi;.L.;:.;.;L;;;.L;iI:I.i::I;171;;Y2.1L.IIT;.]

1o 2o 9o 40 so so 7o io 2o 3O ,10
Number of p ro~ooor l Number o / i ~ o c N z o m

(b) (d)

Fig . 2. T3E results: ETR results for various values of F and p

I I
(10 70

The factors F of slowdown of these processors are 2 and 4, respectively. Figures 2.(c)
and 2.(d) refer to an environment where half of the processors employed are "slow'.

Each curve in all these figurcs plots tile ETR for a benchmark characterized by a
dist inct it. WiL]l respect to the SP2 tests, in this case we were able to reduce y (I t now
ranges I)etween 0.3 and 2.2 psec), always obtaining an encouraging performance with
our SUPPLE suPl)ort. Note that such grains are actually very small: for /t equal to
0.3/tscc, about 85% of the total t ime is spent on memory accesses (to compute addresses
and access da ta element covering the five-point stencil), and only 15% on ar i thmetic
el,oral, lolls. We believe tha.t the encouraging results obtained are due to the smaller
overheads and latencies of the T3E network, as well as to the absence of t inie-shar ing
of the processor, thus specding up the responsiveness of "slow" processors to requests
COllling f rom "fast," OliOS, 'l 'he reductions in granular i ty nlade it possible to enlarge
the chunk size !l (!l = 128) wi thout Iosiilg I,he elfocl,ivenoss of the dynalnic schedlll ing
algorithni. The Threshold ranged between 0.02 slid/I.08 IllSec, where larger values were
used for larger y.

Looking at Figure 2, we can see that better results (SUPPLE execution times up to 3
times lower than those obtained with stat ic scheduling) were obtained when the "slow"
processors were only 25% of the total nmnber. The reason for this behavior is clear:
in this case, we have more '<fast" processors to which the ext ra workload previously
assigned to the "slow" processors can be dynaniically distr ibuted. The execution times

363

obtained with the stat ic implementation are, on the other hand, almost independent
of the percentage of "slow" processors. In fact, even if only one of the processors was
"slow", its execution time would dominate the overall completion time.

We also tested SUPPI,F, (m a homogeneous system (i.e. a balanced one) in order
to ewduatc its overhead w.r.t, a static iml)lemeuta.tion, which, in this case, is opt imal .
' l 'he overhead is almost consta,ut for da t a sets of the same sizes subdivided into a given
number of chunks, but its influence becomes larger for smaller granulari t ies because of
the shorter execution time and the limited possibility of hiding comrnunication latencics
with computat ions. Thus, for 11, -- 2.2 ILsec the two execution t imes are almost compa-
rable, while for ii -- 0.3#scc, the static version of the benchmark becomes 60% faster
than SUPPLE. We verified that the overhead introduced by SUPPLE is due to some
undesired migratiou of chunks, and to the dynamic scheduling technique which enta.ils
polling the network interface to check for incoming messages (even if these messages
do not actually arrive).

Fig, 3. Work time and overheads for a static (a) and a SUPPLE (b) version of the benchmark

Finally, we instrumented the static and tile SUPPLE versions of a specific bench-
mark to evaluate the ratio betwee~t the executiou time spent on useful computa t ions
and ou dynamic scheduling overheads. The features of the benchmark used in this case
are the following: a 20,18 • 2048 da ta set distr ibuted over a grid of 4 • 4 T3E proces-
sors, and an external sequential loop iterated for 20 times. The simulated unbalanced
enviroumeut was characterized I)y 25(7~ of "slow" processors, with a slowdown factor of
d. Figure ,3.(a) show the results ol)taiued by running the static implementat ion of this
benchmark, it is worth ,oti~lg the work time o , the "slow" processors, which is 4 times
the work time on the "fast" ones. The black 1)ortioJls of the bars show idle times on
"fast" l)roccssors while waiting for border data, These idle times are thus due to com-
munications implementing stencil da ta references, where corresponding send/receive
on fast/slow processors are not synchronized due to their different capacities.

Figure 3.(b), on the other hand, shows the SUPPLE results on the same benchmark.
Note the redistr ibution of workloads from "slow" to "fast" processors. Thanks to dy-
namic load balanciug, idle times disappeared, but we have larger scheduling overheads
due to the communications used to dynamical ly migrate chunks. These overheads are

364

clearly larger on "slow" processors, which spend a substantial par t of their execution
t ime on giving away work and on receiving the results of migrated iterations.

Cmu T3E: BUPPt-E w.v.L ~ ~ l l l - F . 2 o~ ~1~% ~ (, t3~.)
;Z.6 4.6

!

O.6

p - o :* p * * o - - ~ - -
i l . O e p i ~

i1 - 2 2 I l l t t r �9

4

3 6

3

l . s

o.s

o
20 30 4O SO 60 ; '0

Ntn~nber oe pmee lacq |

cry ~ 3E: SUPPLE w.~.l. ~ , t h t ~ 4 ~ n o - F. .4 on ~1;'/. p r o ~ (1 ~ l r .
�9

~ . O J l s e ~

I I I 1 I I
l 0 20 30 40 60 e0 70

N m ~ : e r of I ~ O ~ N O r e

(b)

Fig. 4. T3E results: ETlt results obtained rmming a sittgle iteration bcnchnmrk for various
values of F and it

Single iteration benchmark As explained above, one of the advantages of SUPPLE is
that it can also be used for balancing parallel loops that have only to be executed once.
In this case some overheads cannot be overlapped, and at the end of loop execution
"slow" processors have to wait for the results of iterations executed remotely. Figure 4
shows the encouraging ETRs obtained by our SUPPLE implementat ion w.r.t, the s tat ic
one. Note that all the results plotted in the figure refer to unbalanced environments
where only 25% of the processors are "slow". Moreover, due to the larger d a t a sets
used for these tests, the ETILs are in some cases even more favorable for SUPPLE than
the ones for i terative benchmarks.

5 Conc lus ions

We have discussed tile implementation on heterogeneous and /o r t imed-shared parallel
machines of regular a , d unifornl parallel loop kernels, with stat ical ly predictable stencil
da t a references. We have assumed that no information about the capacities of the
processors involved is availal)le until run-time, and that , in t ime-shared environments,
these capacitics may change during run I.ilue. ' lb implement the kernel benchmark we
employed SUI'I)I,F,, a ru,-l . ime support t l lat we had previously introduced to cOral)lie
non-uniform loops.

The tests were conducted on an S G l / C r a y T3E and an IBM SP2. We compared
the SUPPLE results with a static implementat ion of the benchmark, where da t a and
computat ions are evenly distributed to the various processing nodes. The SP2, a parallel
system tha t can be used as a t ime-shared NOWs, was loaded with artificial compute-
bound processes before running the tests. On the other hand, we needed to s imulate
a heterogeneous SGi /Cray '1'31;;, i.e. a machine whose nodes may be equipped with

365

different off-the-shelf processors and/or memory organization. The performance results
were very encouraging. On the SP2, where half of the processors were loaded with 4
compute-bound processes, the SUPPLE version of the benchmark resulted at most
100% faster than the static one. On the T3E, depending on the amount of "slow"
processors, on the nuulber of processors eniployed and the granulari ty of loop iterations,
l,he SlJl~I'LF, version reached percentages of pcrfornlance improvement ranging between
20% and 270%.

Further work has to be done to compare our solution with other dynamic scheduling
strategies proposed elsewhere. More exllaustivc experiments with different benchmarks
and dynaiuic variations of the system loads are also required to fully evaluate the
proposal, llowever, we believe thai. hyhrid strategies like the one adopted by SUPPLE
can be profitably exploited in many cases where locality exploitat ion and load balance
must be solved at the same time. Moreover, our strategy can be e ~ i l y integrated in
the conlpilatiou nlodel of a high level data parallel language.

References

I. II, Alverson el, al, The Tera coniputer sysl,eni, lu Proe. oS the 1990 ACM Int. ConS, on
Supercolpuling, pages 1-6, 1990.

2. A. Anurag, G. Edjlali, and J. Saltz. The Utility of Exploiting idle Workstations for Parallel
Computation. [n Prec. of the 1997 ACM SIGMETRICS, July 1997.

3. S. Hiranandani, K. Kennedy, and C. Tseng. Evaluating Compiler Optimizations for For-
tran D. J. o/Parallel and Distr. Comp., 21(1):27-45, April 1994.

4. S. |"lynn lluninlel, J. Schmidt, R. N. Ulna, and J. Wein. Load-Sharing in IIeterogeneous
Systems via Welgllted Factoring. Ill Piwc. o/the 8th SPAA, July 1997.

5. S.F. ! huunlcl, E. Schonberg, and L.E. Flynn. Factoring: A Method for Scheduling Parallel
Loops. Comm. o s the ACM, 35(8):90-101, Aug. 1992.

6. V. Kumar, A.Y. Grama, and N. Rao Venipaty. Scalable Load Balancing Techniques for
Parallel Computers. d. o s Parallel and Dislr. Comp., 22:00-79, 1994.

7. J. Liu and V. A. Salctore. Self-Scheduling on Distributed-Memory Machines. In Prec. of
Supercomputing '93, pages 814-823, 1993.

8. M. Colajanni M. Cermele and G. Necci. Dynamic Load Balancing of Distributed SPMD
Computations with Explicit Message-Passing. In Pivc. oS Ihe IEEE Workshop on Het-
elvyeueous Conipn/iug, pages 2-16, 1997.

% S. Orlalido and R. Pcrego. SIJPPI,I.']: an Efficient liuu-Tinie. Support for Non-Unlfornl
Parallel l,oops. Technical Report TR-17/'.)6, l)il)artiinento di Mat. Appl. ed lnforinatica,
Universlth di Venezia, Dec. If){)0. To appear Oil J. o[" System Architecture.

10. S. Orlando and R. Percgo. A Coinparison of lnlplelnentation Stratt'gies for Non-Uniforni
Data Parallel Compur 'l~<:hnical Report, TR-,q/97, Dipart.imento di Mat. Appl. ed
]n[orniatlca, UlilVci'sil,~ di Vcncz, ia, April 1997. Under revision for publieatlon on tile J.
of Parallel and l.)istr. Conip.

11. S, Orlando and R. Perego. A Support for Non-Uniforni Parallel Loops and its Application
to a Flame Simulation Code. lu Iu oS lhe]t th hit. Symposium, IRREGULAR '97, pages
186-197, Paderborn, Germany, June 1997. LNCS 1253, Spinger-Verlag.

12. O. Plata and F. F. Rivera. Combining static and dynamic scheduling on distributed-
memory multiprocessors. In Prec. of Ihe 19.94 A CM Int. Con/. on Sltpercomputing, pages
186--195, 1994.

366

13. J. Saltz et al. Runtime and Language Support for Compiling Adaptive Irregular Programs
oll Distributed Memory Machines. Software Practice and Experience, 25(6):597-621, June
1995.

t4. M.tI. Willebeek-beMair and A.P. Reeves. Strategies for Dynamic Load Balancing on
Highly Parallel Comput.ers. IEEE Trans. on Parallel and Distr. Systems, 4(9):979-993,
Scpl,. 1993.

