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A b s t r a c t .  This paper addresses the problem of load balancing data-parallel 
computations on heterogeneous and time-shared parallel computing environ- 
ments, where load imbalance may be introduced hy tbe different capacities of 
processors populating a computer, or by the sharlng of tile same computational 
resources among several users. To solve this problem we propose a run-time 
support for pazallel loops based upon a hybrid (static -t- dynamic) scheduling 
strategy. The main features of our technique are the absence of centralization 
avail syn(:lnrowlzation pohfl,s, I.he i)vefel.rhivtg of work toward slower processors, 
and the overlapphlg of communication latencies with useful computation. 

1 Introduction 

It  is widely held that  distr ibuted and parallel  computing disciplines are converging. Ad- 
vances in network technology have ill fact strongly increased the network bandwidth of 
state--of- the--art distributed systems. A gap still exists with respect to communicat ion 
latencies, but this difference too is now nmch less dramatic .  Furthermore,  most Mas- 
sively Parallel Systems (MPSs) a.re now built  around tile same off- the-shelf  superscalar 
processors that  are used in high pcrfortrtance workstations, so tha t  fine-grain paral-  
lelism is now exploited intra-proccssor rather than inter-processor. The convergence 
of parallel and distri l lutcd computix~g disciplines is also more evident if we consider the 
programming nlodels and clwironmcnts which dominate  current parallel  programming:  
MPI, PVM and IIigh Performance Fortran (I1PF) are now available for both MPSs and 
NOWs. 

'['his trend h ~  a direct iml)act ou the research carried out on tile two converging 
disciplines. For example,  parallel COml)Ul.ing research has to deal with problems in- 
troduced by heterogeneil,y in para.llel systems. This is a typical feature of dis t r ibuted 
sysl~ems, but nowadays heterogeneous NOWs arc increasingly used a.s i)arallei COlnt)ut- 
ing resources [2], while MPSs may be populated with different off-the--shelf processors 
(e.g. a SG I/Cr~ly T3E system at the time of I,his writ, lug may be i)opulated with 300 or 
450 Mllz DEC Alpha processors). Furthermore, some MPSs, which were normally used 
as batch machines in space sharing, may now be concurrently used by different users 
as time shared mult iprogrammed environments (e.g. an IBM SP2 system can be con- 
figured in a way that  allows users to specify whether the processors must  be acquired 
as shared or dedicated resources). This paper focuses on one of the main problems pro- 
grammers thus have to deal with on both parallel and distr ibuted systems: the problem 
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of "system" load imbalance due to heterogeneity and t i m e  sharing of  resources. Here we 
restrict our view to dat~-parallel computations expressed by means of parallel loops. 

In previous works we considered imbalances introduced by non-uniform data-  
parallel computations to be run on homogeneous, distributed memory, MIMD parallel 
systems [ll,.q, l(}]. We devised a novel compiling technique for parallel loops and a 
rela.tc(I run time support (Stll'l'l,l~). This paper shows how StI1)I'I,F, can also be uti- 
lized to implement loops in all the cases where load imbalance is not a characteristic of 
the user code, but is caused by variations in capacities of processing nodes. Note that, 
much other research has been conducted in the field of run-time supports and compila- 
tion methods for irregular problems [13, 12, 7]. In our opinion, besides SUPPLE, many 
of these techniques can be also adopted when load imbalance derives from the use of 
a time-shared or heterogeneous parallel system. These techiques should also be com- 
pared wil.h those specifically devised to face load imbalance in NOW envirotmlents [4, 
8]. 
SUPPLE is based upon a hybrid scheduling strategy, which dynamically adjusts the 
worldoaxls in I.he presence of variations of proee.~sor capacities. Tlae main features of 
SI/IWIA,] arc, the ellicient implementa l.io. of regular sLencil communications, the hy- 
brid (static + dynamic) scheduling of chunks of iterations, and the exploitation of 
aggressive chunk prefetching to reduce waiting times by overlapping communication 
with useful computation. We report performance results of many experiments carried 
out on an SGI/Cray T3E and ma IBM SP2 system. The synthetic benchmarks used for 
the experiments allowed us to model different situations by varying a few important 
parameters such ms the computational grain and the capacity of each processor. The 
results obtained suggest that, in the absence of a priori knowledge about the relative 
cal)acitics of the processors that will actually e• the program, the hybrid strategy 
adopted in SIJPPLE yields very good performauce. 

The paper is organized as folh)ws. Section 2 presents the synthetic benchmarks and 
the machines used for the experiments. Section 3 describes our run-tilne support and 
its load balancing strategy. 'Fhc experimental results are reported and discussed in 
Section 4, and, linally, thc conclusions are drawn in Section 5. 

2 B e n c h m a r k s  

We adopted a. very simple benchmark program that resembles a very common pattern of 
parallelism (e.g. solvers for differential equations, simulations of physical phenomena, 
and image processing applications). The pattern is data-parallel and "regular", and 
thus considered e~sy to implenlent on homogeneous and dedicated parallel systems. 
In the benchmark a bidimensional array is updated iteratively on the b~is  of the old 
values of its elements, while array data referenced are modeled by a five-point stencil. 
The simple IIPF code illustrating thc benchmark is shown below. 

REAL ~(N1,N2) ~ B(NI~N2) 
!HPF$ TEMPLATE D(N1,N2) 
L.HPFt ~ISTP.Iet~T~ O(I~LOC~,eLOCK) 
!HPF$ ALIGN A ( i , j ) ,  B(i,J) WITH V( i , j )  
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FORALL ( i :  2 :n l - l ,  j= 2:N2-1) 
B(i,j) = Coap(ICi,j), ACi-l,j), ACi,j-i), A(i+i,j), A(I,J.}i)) 

r~ND FORALL 
A = B  

END DO 

Note the III, OCK (listrilJution to exploit data locality by reducing off local-memory 
data references. The actual COluputation performed by the benchmark above is hidden 
by the fimction Comp(). We thus prepared several versions of the same benchmark 
where Comp() was replaced with a dummy computation characterized by known and 
fixed costs. Moreover, since it is important to observe the performance of our loop sup- 
port when we increase the number of processors, for each different grid P of processors 
we modified the dimensions of the data set to keep the size of the block of data allo- 
cated to each processor constant. Finally, another feature that we changed during the 
tests is Iq_ITER, the number of iterations of the external sequential loop. This was done 
to simulate the behavior of real apl)lications such as solvers of differential equations, 
which require the same r)arallcl lool)s to bc cxecute(I many times, and image filtcring 
al)plications, which usually perform the update of the inl)ut image in jl,st one st(q). 

3 T h e  S U P P L E  A p p r o a c h  

SUPPLE (SUPport for Parallel Loop Execution) is a portable run-time support for 
parallel loops [9, i1, 10]. It is written in C with calls to tile MPI library. 

Tile main innovative feature of SUPPLE [9] is its ability to allow data and compu- 
tation to be dynamically migrated, wit]lout losing the ability to exploit all the static 
optimizations that can be adopted to efficiently implement stencil data references. 

Stencil implementation is s|.ra.ightforward, (luc to the regularity of the blocking data 
layout adopted. For each array involved SUPPLE allocates to each processor enough 
memory to host the block partition, logically subdivided into an inner and a perimeler 
region, and a surrounding ghost region. The ghost region is used to buffer the parts 
of the perimeter regions of the adjacent partitions that are owned by neighboring 
processors, and are accessed through non local references. The inner region contains 
data elements that can be computed without fetching external data, while to compute 
data elements belonging to the perimeter region these external data have to be waitc(l 
for. Loop iterations are statically assigned to each processor according to the owner 
compules rule, but, to overlap comnmnications with usefid computations, iterations 
are reordered [3]: the iterations that assign data items belonging to the inner region 
(wl,ich refer k)cal data only) are scheduled between the asynchronous sending of the 
perimeter rrgion to ,leighl)oring l)roc('ssors and the receiviug of the corresponding data 
into I.hc ghosl region. This si,atic scheduling ma.y bc cha,gt,d at run-time by migratillg 
iterations, but, in order to avoid the introduction of irregularities in the implementation 
of stencil data reference, only iterations updating the inner region can be migrated. We 
group these iterations into chunks of fixed size g, by statically tiling the inner region. 
SUPPLE migrates chunks and associated data tiles instead of single iterations. 

At the beginning, to reduce overheads, each processor statically executes its chunks, 
which are stored in a queue Q, hereafter local queue. Once a processor understands that 
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its local queue is becoming empty, it autonomously decides to start the dynamic part of 
its scheduling policy, It tries to balance the processor workloads by asking overloaded 
partners for migrating both chunks and corresponding data tiles. Note that, due to 
stencil d~d,a references, to allow l, he remote execution of a elnmk, the ,associated tile 
must be accompanied by a surrotmding area, whose size depends on the specific stencil 
features. Migrated clmnks and data tiles are stored by each receiving processor in a 
queue RQ, called remote. Since load balancing is started by underloaded processors, 
our technique can be classified as ~veeiver initiated [6, 14]. In the following we detail 
our hybrid scheduling algorithm. 

During the initial static phase, each processor only executes local chunks in Q and 
measures their computational cost. Note that, since the possible load imbalance may 
only derive from different "speeds" of the processors involved, chunks that will possibly 
be migrated and stored in RQ will be considered as having the same cost as the ones 
stored in Q. Thus, on the basis of the knowledge of the chunk costs, each processor 
estimates its cur~ent load by simply insl)ecting the size of its queues Q and RQ. 
When the estimated local load becomes Iowa," I,han a machine-dependent Threshold, 
each I)rocessor autonomously sl,arts tim dynamic I)arl, el the scheduling I.echnique and 
starts asking other processors for re,note chunks. Corresl)ondingly, a processor pj, which 
receives a migration request from a processor pi, will grant the request by moving some 
of its workload to pj only if its current load is higher than Threshold. To reduce the 
overheads which might derive from requests for remote chunks which cannot be served, 
each processor, when its current load becomes lower than Threshold, broadcasts a so- 
called termination message. Therefore the round-robin strategy used by underloaded 
processors to choose a partner to be ,'~sked for further work skips terminated proces- 
sors. Once an overloaded processor decides to grant a migration request, it must choose 
the most appropriate mnnber of chunks to I)e migrated. '17o this end, SUPPLE uses a 
modified Factorin 9 scheme [5], which is a Self Scheduling heuristics formerly proposed 
to address the elficient implementation of parallel loops on shared-nmnlory multipro- 
cessors 
Finally, the policies exploited by SUPPLE to manage data  coherence and termination 
detection are also fully distributed and asynchronous. A full/empty-like technique [1] is 
used to ~synchronously manage the coherence of migrated data tiles. When processor 
pi sends a chunk b to pj, it sets a flag marking the data tiles associated with b as 
invalid. The next time Pl needs to access the same tiles, Pl checks the flag and, if the 
flag is still set,, waits for the updated data tiles fi'om node pj. As far as termination 
detection is concerned, the role of a processor in the parallel loop execution finishes 
when it Itas ah'eady received a termination message fi'om all the other processors, and 
I)oth its (lllellr Q a.lld ItQ are elnpty. 

In summary, unlike other proposals [12, 4], the dynamic scheduling policy of SUP- 
PLE is fully distributed and based upon local knowledge about the local workload, 
and thus there is no need to synchronize tile processors in order to exchange updated 
information about tile global workload. Moreover, SUPPLE may also be employed for 
applications composed of a siugle parallel loop, such as filters for image processing. 
Unlike other proposals [13,8], it does not exploit past knowledge about the work- 
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load distribution at previous loop iterations, since dynamic scheduling decisions are 
asynchronously taken concurrently with usefifl computation. 

4 E x p e r i m e n t a l  R e s u l t s  

All experiments were conducted on au IBM SP2 system and an SGI /Cray  T3E. Note 
that  both machines might be heterogeneous, since both can be equipped with processors 
of different cal)acities. The T3E can in fact be populated with DEC Alpha  processors 
of different generations 1, while 1BM enables choiccs from three distinct  types of nodes 
- high, wide or thin - where the differences are in the number of per-node processors, 
tile type of processors, tile clock rates, the type and size of caches, and tile size of tile 
main memory, llowever, we used the Sl '2 (a 16 node system equipped with 66 Mllz 
I)()WEI{, 2 wide processors) as a homo:le,U'ous time-shared environment. ' l b  s imulate  
load imbalance we siml)ly ialmche(I some ('o|| |pl~te-boun(I processes on a subset of 
nodes. On the other hand, we used the 'F3E (a system composed of 64 300 MIlz - DEC 
Alpha 21164 processors) as a sl)ace-sharcd heterogeneous system. Since all the nodes 
of our systeul are idcl|l.ical, wr had to simulate the presence of processors of different 
speeds by hJtroducing an extra cost in the COml)utatio|l performed by those processors 
considered "slow". Thus, if tile granulari ty of Comp() is p / t s ec  (including the t ime to 
read and write the data)  on the "fast" processors, and F is the factor of slowdown of 
~he "slow" ones, the granulari ty of Comp() on the "slow" processors is ( F .  I ~) Imec. 
% prove the effectiveness of SUPPLE,  we compared each SUPPLE implementat ion of 

e benchmark with an equivalent stat ic and optimized implementat ion,  like the one 
pie | ted by a very efficient I [PF compiler. 

We l)rescnt several curves, all plott ing an excculion lime ratio (ETR),  i.e. the rat io 
of the time taken by the static scheduling vcrsiou of the benchmark over the time taken 
by the SUPPI~E hybrid scheduling version. Ilence, a ratio greater than one corresponds 
to an improvement in the total  execution time obtained by adopting SUPPLE with 
respect to the static version. Each curve is relative to a dist inct  granulari ty p of Comp(), 
and plots the ETl /s  as a function of the number of processors employed. The size of 
the da t a  set has been modified according to tile number of processors to keep tile size 
of the sub-hlock stat ical ly assigned to each processor constant. 

4.1 T i x n e - s h a r e d  E n v i r o n m e n t s  

First  of all, we show tile results obtained on tile SP2. Due to tile difficulty ill running 
probing experiments because of the unpredictabil i ty of the workloads, as well as for the 
exclusive use of some resources (ill 1)articular, resources as the SP2 high-performance 
switch aud /o r  the processors themselves) by other users, the results in this ease are not 
so exhaustive as those reported for the tests run on the T3E. As previously mentioned, 
on the SP2 we ran our experiments after the introduction of a synthetic load on a 
subset of the nodes used. In particular,  we launched 4 compute -bound  processes on 

I The Pittsburgh Supercomputing Center has a T3E system with 512 application processors 
of which half runs at 300 Mllz au(l half at 450 Milz. 
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Fig. 1. SP2 results: ETR results for experiments exploiting (a) the Ethernet, and (b) the 
high-performance switch 

50% of the processing nodes employed, while the loads were close to zero on the rest of 
I,he nodes. This corresponds to "slow" proc~'ssors characterized by a. va.hm of F (factor 
of slowdow,) equal to 5. The two p{t~ts in I,'igure I show the ETRs ol)taincd for various 
I t and numbers of processors. The size of the sub-block owned by each processor was 
kept constant and equal to 512 • 512, while N_ITER was equal to 5. As regards the 
SUPPLE parameters, tim Thleshold value was set to 0.09 msec, and the chunk size g 
to 32 iterations. 

Figure 1.(a) shows the SP2 results obtained by using the Ethernet network and 
the IP protocol. Note that, even in this c~se as in the following ones, the performance 
improvement obtained with SUIqH,I~ increases in proportion to the size of the grain 
it. For It = 27 /tsec, ~n(I 4 processors, we obtained the best result: SUPPLE imple- 
mentation is about t00% faster than the static counterpart. For smaller values of tt, 
due to the ovcrheads to migrate data, the load imbalance paid by the static version 
of the benchmark is not large enough to justify the adoption of a dynamic scheduling 
technique. 

Figure 1.(b) shows, on the other hand, the results obtained by running the parallel 
benchmarks in time-sharing on the SP2 by exploiting the US high-performance switch. 
1)ue to the better conmmuication framework, in this c~e  the E'I 'R is favorable to 
SUIWI,I'~ even for smaller vah,,s of tt. 

4.2 H e t e r o g e n e o u s  E n v i r o n m e n t s  

�9 ' ' " 3 " ; '  All the expcrimctd,s regarding h(,terogencous envimmueuts were couducted on ~,ue t, L,. 
lleterogeneity was simulated, so that we were able to perform a lot of tests, also ex- 
perimenting different factors F of slowdown. 

lterative benchmark Figure 2 reports the results for the iterative benchmark, where the 
external sequential loop is repeated 20 times (N_ITER = 20). For all the tests we kept 
fixed tile size of tile sub-block assigned to each processor (512 x 512). Figures 2.(a) 
au(I 2.(b) are relative to a.n environment where only 25% of all processors are "slow". 
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Fig .  2. T3E results: ETR results for various values of F and p 
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The factors F of slowdown of these processors are 2 and 4, respectively. Figures 2.(c) 
and 2.(d) refer to an environment where half of the processors employed are "slow'. 

Each curve in all these figurcs plots tile ETR for a benchmark characterized by a 
dist inct  it. WiL]l respect to the SP2 tests, in this case we were able to reduce y (I t now 
ranges I)etween 0.3 and 2.2 psec), always obtaining an encouraging performance with 
our SUPPLE suPl)ort. Note that  such grains are actually very small:  for /t equal to 
0.3/tscc, about  85% of the total t ime is spent on memory accesses (to compute addresses 
and access da ta  element covering the five-point stencil), and only 15% on ar i thmetic  
el,oral, lolls. We believe tha.t the encouraging results obtained are due to the smaller 
overheads and latencies of the T3E network, as well as to the absence of t inie-shar ing 
of the processor, thus specding up the responsiveness of "slow" processors to requests 
COllling f rom "fast," OliOS, 'l 'he reductions in granular i ty nlade it possible to enlarge 
the chunk size !l (!l = 128) wi thout  Iosiilg I,he elfocl,ivenoss of the dynalnic schedlll ing 
algorithni. The Threshold ranged between 0.02 slid/I.08 IllSec, where larger values were 
used for larger y. 

Looking at Figure 2, we can see that  better results (SUPPLE execution times up to 3 
times lower than those obtained with stat ic scheduling) were obtained when the "slow" 
processors were only 25% of the total  nmnber. The reason for this behavior is clear: 
in this case, we have more '<fast" processors to which the ext ra  workload previously 
assigned to the "slow" processors can be dynaniically distr ibuted.  The execution times 
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obtained with the stat ic implementation are, on the other hand, almost independent 
of the percentage of "slow" processors. In fact, even if only one of the processors was 
"slow", its execution time would dominate the overall completion time. 

We also tested SUPPI,F, (m a homogeneous system (i.e. a balanced one) in order 
to ewduatc its overhead w.r.t, a static iml)lemeuta.tion, which, in this case, is opt imal .  
' l 'he overhead is almost consta,ut for da t a  sets of the same sizes subdivided into a given 
number of chunks, but  its influence becomes larger for smaller granulari t ies because of 
the shorter execution time and the limited possibility of hiding comrnunication latencics 
with computat ions.  Thus, for 11, -- 2.2 ILsec the two execution t imes are almost  compa- 
rable, while for ii -- 0.3#scc, the static version of the benchmark becomes 60% faster 
than SUPPLE. We verified that  the overhead introduced by SUPPLE is due to some 
undesired migratiou of chunks, and to the dynamic scheduling technique which enta.ils 
polling the network interface to check for incoming messages (even if these messages 
do not actually arrive). 

Fig,  3. Work time and overheads for a static (a) and a SUPPLE (b) version of the benchmark 

Finally, we instrumented the static and tile SUPPLE versions of a specific bench- 
mark to evaluate the ratio betwee~t the executiou time spent on useful computa t ions  
and ou dynamic scheduling overheads. The features of the benchmark used in this case 
are the following: a 20,18 • 2048 da ta  set distr ibuted over a grid of 4 • 4 T3E proces- 
sors, and an external sequential loop iterated for 20 times. The simulated unbalanced 
enviroumeut was characterized I)y 25(7~ of "slow" processors, with a slowdown factor of 
d. Figure ,3.(a) show the results ol)taiued by running the static implementat ion of this 
benchmark, it is worth ,oti~lg the work time o ,  the "slow" processors, which is 4 times 
the work time on the "fast" ones. The black 1)ortioJls of the bars show idle times on 
"fast" l)roccssors while waiting for border data,  These idle times are thus due to com- 
munications implementing stencil da ta  references, where corresponding send/receive 
on fast/slow processors are not synchronized due to their different capacities. 

Figure 3.(b), on the other hand, shows the SUPPLE results on the same benchmark.  
Note the redistr ibution of workloads from "slow" to "fast" processors. Thanks to dy- 
namic load balanciug, idle times disappeared, but  we have larger scheduling overheads 
due to the communications used to dynamical ly  migrate chunks. These overheads are 
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clearly larger on "slow" processors, which spend a substantial  par t  of their execution 
t ime on giving away work and on receiving the results of migrated iterations. 
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Fig.  4. T3E results: ETlt results obtained rmming a sittgle iteration bcnchnmrk for various 
values of F and it 

Single iteration benchmark As explained above, one of the advantages of SUPPLE is 
that  it  can also be used for balancing parallel loops that  have only to be executed once. 
In this case some overheads cannot be overlapped, and at the end of loop execution 
"slow" processors have to wait for the results of iterations executed remotely. Figure 4 
shows the encouraging ETRs obtained by our SUPPLE implementat ion w.r.t, the s tat ic  
one. Note that  all the results plotted in the figure refer to unbalanced environments 
where only 25% of the processors are "slow". Moreover, due to the larger d a t a  sets 
used for these tests, the ETILs are in some cases even more favorable for SUPPLE than 
the ones for i terative benchmarks. 

5 Conc lus ions  

We have discussed tile implementation on heterogeneous and /o r  t imed-shared parallel  
machines of regular a , d  unifornl parallel loop kernels, with stat ical ly predictable stencil 
da t a  references. We have assumed that  no information about the capacities of the 
processors involved is availal)le until run-time, and that ,  in t ime-shared environments, 
these capacitics may change during run I.ilue. ' lb  implement the kernel benchmark we 
employed SUI'I)I,F,, a ru,-l . ime support  t l lat  we had previously introduced to cOral)lie 
non-uniform loops. 

The tests were conducted on an S G l / C r a y  T3E and an IBM SP2. We compared 
the SUPPLE results with a static implementat ion of the benchmark, where da t a  and 
computat ions  are evenly distributed to the various processing nodes. The SP2, a parallel  
system tha t  can be used as a t ime-shared NOWs, was loaded with artificial compute-  
bound processes before running the tests. On the other hand, we needed to s imulate  
a heterogeneous SGi /Cray  '1'31;;, i.e. a machine whose nodes may be equipped with 
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different off-the-shelf  processors and/or  memory organization. The performance results 
were very encouraging. On the SP2, where half of the processors were loaded with 4 
compute-bound processes, the SUPPLE version of the benchmark resulted at  most 
100% faster than the static one. On the T3E, depending on the amount  of "slow" 
processors, on the nuulber of processors eniployed and the granulari ty of loop iterations,  
l,he SlJl~I'LF, version reached percentages of pcrfornlance improvement ranging between 
20% and 270%. 

Further work has to be done to compare our solution with other dynamic  scheduling 
strategies proposed elsewhere. More exllaustivc experiments with different benchmarks 
and dynaiuic variations of the system loads are also required to fully evaluate the 
proposal, llowever, we believe thai. hyhrid strategies like the one adopted by SUPPLE 
can be profitably exploited in many cases where locality exploitat ion and load balance 
must  be solved at the same time. Moreover, our strategy can be e ~ i l y  integrated in 
the conlpilatiou nlodel of a high level data parallel language. 
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