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Abstract. This paper addresses the problem of load balancing data-parallel
computations on heterogeneous and time-shared parallel computing environ-
ments, where load imbalance may be introduced by the different capacities of
processors populating a computer, or by the sharing of the same computational
resources among several users. To solve this problem we propose a run—time
support for parallel loops based upon a hybrid (static + dynamic) scheduling
strategy. The main features of our technique are the absence of centralization
and synchronization poinls, the prefetching of work toward slower processors,
and the overlapping of communication latencies with useful computation.

1 Introduction

It is widely held that distributed and parallel computing disciplines are converging. Ad-
vances in network technology have in fact strongly increased the network bandwidth of
state-of- the -art distributed systems. A gap slill exists with respect to communication
fatencies, but this difference too is now much less drainatic. Furthermore, most Mas-
sively Parallel Systems (MPSs) are now built around the same off-the-shelf superscalar
processots that are used in high perforinance workstations, so that fine-grain paral-
lelism is now exploited intra—processor rather than inter-processor. The convergence
of parallel and distributed computing disciplines is also more evident if we consider the
programming models and environments which dominate current parallel programming:
MP1, PVM and High Performance Fortran (IIPT') are now available for both MPSs and
NOWs.

‘This trend has a direct impact on the research carried out on the two converging
disciplines. For example, paraliel cotnputing research hias to deal with problemns in-
troduced by heterogencity in parallel systems. This is a typical feature of distributed
systems, but nowadays heterogencous NOWs are increasingly used as parallel comput-
ing resources [2], while MPSs may be populated with different off-the—-shelf processors
(c.g. a SGI/Cray 'F3E system al the time of this writing may be populated with 300 or
450 Mliz DEC Alpha processors). Furihermore, some MPSs, which were normally used
as batch machines in space sharing, may now be concurrently used by different users
as lime shared mulliprogramined environments (e.g. an IBM SP2 system can be con-
figured in a way that allows users to specily whether the processors must be acquired
as shared or dedicated resources). This paper focuses on one of the main problems pro-
grammers thus have to deal with on both parallel and distributed systems: the problem
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of “system” load imbalance due to heterogeneity and time sharing of resources. Here we
restrict our view to data~parallel computations expressed by means of parallel loops.

In previous works we considered immbalances introduced by non-uniform data-
parallel coluputations to be run on homogeneous, distributed memory, MIMD parallel
systems [11,9,10]. We devised a novel compiling technique for parallel loops and a
related vim time support (SUPPLEY. 'This paper shows how SUPPLE can also be uti-
lized to implement loops in all the cases where load imbalance is not a characteristic of
the user code, but is caused by variations in capacities of processing nodes. Note that,
much other research has been conducted in the field of run-time supports and compila-
tion methods for irregular probiems [13,12,7]. In our opinion, besides SUPPLE, many
of these tecliniques can be also adopted when load imbalance derives from the use of
a time-shared or heterogeneous parallel system. These techiques should also be com-
pared wilth those specifically devised to face load imbalance in NOW environments [4,
SUPPLE is based upon a hybrid scheduling strategy, which dynamically adjusts the
worldoads in the presence of variations of processor capacities. The main features of
SUPPLLE are the ellicient. implementation of regular stencil communications, the hy-
brid (slatic + dynamic) scheduling of chunks of ilerations, and the exploitation of
aggressive chunk prefetching to reduce waiting times by overlapping cominunication
with useful computation. We report performance results of many experiments carried
out on an SGI/Cray 'T'3E and an IBM SP2 system. The synthetic benchmarks used for
the experiments allowed us to model different situations by varying a few important
parameters such as the computational grain and the capacity of each processor. The
results obtained suggest that, in the absence of a priori knowledge about the relative
capacitics of the processors that will actually execute the program, the hybrid strategy
adopted in SUPPLE yields very good performance.

T'he paper is organized as follows. Seclion 2 presents the synthetic benchimarks and
the machines used for the experiments. Section 3 describes our run-time support and
its load balancing strategy. 'The cxperimental results are reported and discussed in
Section 4, and, finally, the conclusions are drawn in Section 5.

2 Benchmarks

We adopted a very simple benchmark prograin that resembles a very common pattern of
parallelism (e.g. solvers for dillerential equations, simulations of physical phenomena,
and image processing applications). The pattern is data-parallel and “regular”, and
thus considered easy to implement on homogencous and dedicated parallel systems.
In the benchmark a bidimensional array is npdated iteratively on the basis of the old
values of its elements, while array data referenced are modeled by a five-point stencil.
The simiple 1P code illustrating the benchmark is shown below.
REAL ACNL,N2), B(NL,N2)
YHPF$ TEMPLATE D(N1,N2)

'HPF$ DISTRIBUTE D(BLOCK,BLOCK)

{HPF$ ALIGN A(i,J), B(i,j) WITH D(,j)
Do k; IL;J,ITER

YHPF$  INDEPENDENT
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FORALL (i= 2:N1-i, j= 2:N2-1)
B(i,j) = Comp(A(i,j), A(i-1,j), A(i,j-1), A(i+1,j), A(i,j+1))
END FORALL

Note the BLOCK distribution to exploit data locality by reducing off local-memory
data references. The actual computation performed by the benchmark above is hidden
by the function Comp(). We thus prepared several versions of the same benchmark
where Comp() was replaced with a duimmy computation characterized by known and
fixed costs. Moreover, since it is important to observe the performance of our loop sup-
port when we increase the number of processors, for each different grid P of processors
we modified the dimensions of the data set to keep the size of the block of data allo-
cated Lo each processor constant. Finally, another feature that we changed during the
tests is N_ITER, the number of iterations of the external sequential loop. 'This was done
to simulate the behavior of real applications such as solvers of differential equations,
which require the sae parallel loops to be executed many times, and image filtering
applications, which usnally perform the update of the input image in just one step.

3 'The SUPPLE Approach

SUPPLE (SUPport for Parallel Loop Execution) is a portable run-time support for
parallel loops [9,11,10]. It is written in C with calls to the MPI library.

The main innovative feature of SUPPLE [9] is its ability to allow data and compu-
talion to be dynamically migrated, without losing the ability to exploit all the static
optimizations that can be adopted o efliciently implement stencil data references.

Stencil implementation is straightforward, duc to the regularity of the blocking data
layout adopted. For each array involved SUPPLE allocates to each processor enough
memory to host the block partition, logically subdivided into an inner and a perimeler
region, and a surrounding ghost region. The ghos! region is used to buffer the parts
of the perimeler regions of the adjacent partitions that are owned by neighboring
processors, and are accessed through non local references. The inner region contains
data elements that can be computed without fetching external data, while to compute
data elements belonging to the perimeler region these external data have to be waited
for. Loop iterations are statically assigned to each processor according to the owner
compules rule, but, 1o overlap communications with useful computations, iterations
are reordered (3]: the iterations that assign dala itemns belonging to the inner region
(which refer local data only) are scheduled between the asynchronous sending of the
perameler region Lo neighboring processors and the receiving of the corresponding data
into the ghost region. 'This static scheduling may be changed at run-time by migrating
iterations, but, in order to avoid the introduction of irregularities in the implementation
of stencil data reference, only iterations updating the inner region can be migrated. We
group these iterations into chunks of fixed size g, by statically tiling the inner region.
SUPPLE migratcs chunks and associated data tiles instead of single iterations,

At the beginning, to reduce overheads, each processor statically executes its chunks,
which are stored in a queue @, herealter local queue. Once a processor understands that
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its local queue is becoming empty, it autonomously decides to start the dynamic part of
its scheduling policy. It tries to balance the processor workloads by asking overloaded
partners for migrating both chunks and corresponding data tiles. Note that, due to
stencll data references, to allow the remnote exccution of a chunk, the associated tile
must be accomrpanied by a surrounding arca, whose size depends on the specific stencil
features. Migrated chunks and data tiles are stored by each receiving processor in a
queue 2@, called remote. Since load balancing is started by underloaded processors,
our technique can be classified as recetver initiated [6,14]. In the following we detail
our hybrid scheduling algorithm.

During the initial static phase, each processor only executes local chunks in @ and
measures their computational cost. Note thal, since the possible load imbalance may
only derive from diflerent “speeds” of the processors involved, chunks that will possibly
be migrated and stored in Q) will be considered as having the same cost as the ones
stored in . 'T'hus, on the basis of the knowledge of the chunk costs, each processor
estimates its current load by simply inspecting the size of its queues () and RQ.
When the estimated local load becomes lower than a machine-dependent Threshold,
cach processor autonomously siaris the dynamic part of the scheduling technique and
starts asking other processors for remote chunks. Correspondingly, a processor p;, which
receives a migration request from a processor p;, will grant the request by moving some
of its workload to p; only if its current load is higher than Threshold. To reduce the
overheads which might derive from requests for remote chunks which cannot be served,
each processor, when its current load becomes lower than Threshold, broadcasts a so-
called termination message. ‘Therefore the round-robin strategy used by underloaded
processors to choose a pariner to be asked for further work skips terminated proces-
sors. Once an overloaded processor decides to grant a migration request, it inust choose
the most appropriate number of chunks to be migrated. To this end, SUPPLE uses a
modified Factoring scheme [5], which is a Self Scheduling heuristics formerly proposed
to address the efficient implementation of parallel loops on shared-memory multipro-
cessors
Finally, the policies exploited by SUPPLE to manage data coherence and termination
detection are also fully distributed and asynclironous. A full/empty-like technique [1] is
used to asynchronously manage the colierence of migrated data tiles. When processor
pi sends a chunk b to pj, it scls a flag marking the data tiles associated with b as
invalid. The next time p; needs Lo access the same tiles, p; checks the flag and, if the
{lag is still set, waits for the updated data tiles from node p;. As far as termination
detection is concerned, the role of a processor in the parallel loop execution finishes
when it has already received a terminalion message from all the other processors, and
hoth its queues @ and REQ are emply.

In summary, unlike other proposals [12,4], the dynamic scheduling policy of SUP-
PLE is fully distributed and based upon local knowledge about the local workload,
and thus there is no need to synchronize the processors in order to exchange updated
information about the global workload. Moreover, SUPPLE may also be employed for
applications composed of a single parallel loop, such as filters for image processing.
Unlike other proposals [13,8)], it does not exploit past knowledge about the work-
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load distribution at previous loop iterations, since dynamic scheduling decisions are
asynchronously taken concurrently with useful computation.

4 Experimental Results

All experiments were conducted on an 1BM SP2 system and an SG1/Cray T3E. Note
that both machines might be heterogeneous, since both can be equipped with processors
of different capacitics. The T3 can in fact be populated with DEC Alpha processors
of different. generations!, while IBM enables choices from three distinct types of nodes
— high, wide or thin — where the differences are in the number of per-node processors,
the type of processors, the clock rates, the type and size of caches, and the size of the
main memory. llowever, we used the SP2 (a 16 node systemn equipped with 66 Mllz
POWER 2 wide processors) as a homogencous lime-shared environment. ‘l'o simulate
load imbalance we simply launched some compute-bound processes on a subset of
nodes. On the other hand, we used the T3E (a system composed of 64 300 Mllz - DEC
Alpha 21164 processors) as a space-shared helerogencous system. Since all the nodes
of our system are identical, we had to simulate the presence of processors of diflerent,
speeds by introducing an extra cost in the computation performed by those processors
considered “slow”. Thus, if the granularity of Comp() is g psec (including the time to
read and wrile the data) on the “fasl” processors, and F is the factor of slowdown of
the “slow” ones, the granularity of Comp() on the “slow” processors is (F - p) psec.
"o prove the effectiveness of SUPPLE, we compared each SUPPLE implementation of
e benchmark with an equivalent static and optiinized implementation, like the one
ploited by a very eflicient LHIPF compiler.

We present several curves, all plotting an excculion time ratio (ETR), i.e. the ratio
of the time taken by the stalic scheduling version of the benchmark over the time taken
by the SUPPLE hybrid scheduling version. [fence, a ratio greater than one corresponds
to an improvement in Lthe total exccution time obtained by adopting SUPPLE with
respect to Lhe static version. Bach curve is relative to a distinct granularity s of Comp(),
and plots the E'TRs as a function of the number of processors employed. The size of
the data set has been modificd according to the number of processors to keep the size
of the sub-block statically assigned to each processor constant.

4.1 Time-shared Enviromments

Pirst of all, we show the results obtained on the SP2. Due to the dificulty in running
probing experiments because of the unpredictability of the workloads, as well as for the
exclusive use of some resources (in particular, resources as the $P2 high-performance
switch and/or the processors themselves) by other users, the results in this case are not
so exhaustive as those reported for the tests run on the T3E. As previously mentioned,
on the SP2 we ran our experiments after the introduction of a synthetic load on a
subset of the nodes used. In particular, we launched 4 compute-bound processes on

! The Pittsburgh Supercomputing Center has a ‘I'3E system with 512 application processors
of which half runs at 300 M1z aud hall at 450 M{Iz.
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Fig.1. SP2 results: ETR results for experiments exploiting (a) the Ethernet, and (b) the
high-performance switch

50% of the processing nodes employed, while the loads were close to zero on the rest of
the nodes. This corresponds to “slow” processors characterized by a value of F (factor
of slowdown) equal to 5. "The two plots in Figure § show the I'TRa obtained for various
1t and numbers of processors. T'he size of the sub-block owned by cach processor was
kept constant and equal to 512 x 512, while N_ITER was equal to 5. As regards the
SUPPLE parameters, the Threshold value was set to 0.02 msec, and the chunk size g
to 32 iterations.

Figure 1.(a) shows the SP2 results obtained by using the Ethernet network and
the IP protocol. Note that, even in this case as in the following ones, the performance
improvement obtained with SUPPLE increases in proportion to the size of the grain
je. For pp = 27 pisee, and 4 processors, we obtained the best result: SUPPLE imple-
mentation is about 100% C(aster than the static counterpart. For smaller values of j,
due to the overheads to migrate data, the load imbalance paid by the static version
of the benchmark is not large enough to justify the adoption of a dynamic scheduling
technique.

Figure 1.(b) shows, on the other hand, the results obtained by running the parallel
benchmarks in time-sharing on the S’2 by exploiting the US high-performance switch.
Due to the beiter communication framework, in this case the ETR is favorable Lo
SUPPLE even for smaller vatues ol g,

4.2 Heterogeneous Environments

All the experiments regarding heterogencous environmuents were conducted on the 13T,
Ieterogeneity was simulated, so that we were able to perform a lot of tests, also ex-
perimenting different factors /' of slowdown.

Iterative benchmark TFigure 2 reports the results for the iterative benchmark, where the
external sequential loop is repeated 20 times (N.ITER = 20). For all the tests we kept
fixed the size of the sub-block assigned to cach processor (512 x 512). Figures 2.(a)
and 2.(b) are relative to an environment where only 25% of all processors are “slow”.
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Fig. 2. T3E results: ETR results for various values of F' and u

The factors I' of slowdown of these processors are 2 and 4, respectively. Figures 2.(c)
and 2.(d) refer to an environment where half of the processors employed are “slow’.

Each curve in all these figures plots the ETR for a benchmark characterized by a
distinct je. With respect to the SP2 tests, in this case we were able to reduce g (2 now
ranges between 0.3 and 2.2 psec), always obtaining an encouraging performance with
our SUPPLE support. Note that such grains are actually very small: for u equal to
0.3p1sec, about 85% of the total time is spent on memory accesses (to compute addresses
and access data element covering the five-point stencil), and only 15% on arithmetic
operations. We believe that the encouraging resulis obtained are due to the smaller
overheads and latencies of the 1315 network, as well as to the absence of time-sharing
of the processor, thus speeding up the responsiveness of “slow” processors to requests
coming from “fast” ones. 'The reductions in granularity made it possible to enlarge
the clunk size g (g = 128) without losing the effectivencss of the dynamic scheduling
algorithm. ‘The Threshold ranged between 0.02 and 0.06 mnscc, where larger values were
used for larger p.

Looking atl Figure 2, we can see that better results (SUPPLE execution times up to 3
times lower than those obtained with static scheduling) were obtained when the “slow”
processors were only 25% of the total number. The reason for this behavior is clear:
in this case, we have more “fast” processors to which the extra workload previously
assigned to the “slow” processors can be dynamically distributed. T'he execution times
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obtained with the static implementation are, on the other hand, almost independent
of the percentage of “slow” processors. In fact, even if only one of the processors was
“slow”, its execution time would dominate the overall completion time.

We also tested SUPPLE on a homogencous system (i.e. a balanced one) in order
to evaluate its overhead w.r.t. a static innplementation, whicl, in this case, is optimal.
I'he overhead is almost constant, for data sets of the same sizes subdivided into a given
number of chunks, but its influence becomes larger for smaller granularities because of
the shorter execution timne and the Yimited possibility of hiding communication latencies
with computations. Thus, for y¢ = 2.2 pisec the two execution times are almost compa-
rable, while for ;t = 0.3psec, the static version of the benchmark becotnes 60% faster
than SUPPLE. We verified that the overhead introduced by SUPPLE is due to some
undesired migration of chunks, and to the dynamic scheduling technique which entails
polling the network interface to check for incoming messages (even if these messages
do not, actually arrive).
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Fig. 3. Work time and overheads for a static (a) and a SUPPLE (b) version of the benchmark
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Finally, we instrumented the static and the SUPPLE versions of a specific bench-
mark to evaluate the ratio between the execution time spent on useful computations
and on dynamic scheduling overheads. 'I'he features of the benchmark used in this case
are the following: a 2048 x 2048 data sct distributed over a grid of 4 x 4 T3E proces-
sors, and an external sequential loop iterated for 20 times. 'The simulated unbalanced
environnent was characterized by 26% of “slow” processors, with a slowdown factor of
4. Figure 3.(a) show the resuits obtained by running the static implementation of this
benchmark. 1t is worth noting the work time on the “slow” processors, whicl is 4 Limes
the work time on the “fast” ones. The black portions of the bars show idle tines on
“last” processors while waiting for border data. These idle timmes are thus due to com-
munications implementing stencil data references, where corresponding send/receive
on fast/slow processors are not synchronized due to their different capacities.

Figure 3.(b), on the other hand, shows the SUPPLE resulis on the same benchmark.
Note the redistribution of workloads from “slow” to “fast” processors. Thanks to dy-
namic load balancing, idle times disappeared, but we have larger scheduling overheads
due to the communications used to dynamically migrate chunks. These overheads are
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clearly larger on “slow” processors, which spend a substantial part of their execution
tie on giving away work and on receiving the results of migrated iterations.
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Fig.4. T3E results: E'TR results obtained running a single iteration benchmark for various
values of F and p

Single iteration benchmark As explained above, one of the advantages of SUPPLE is
that it can also be used for balancing parallel loops that have only to be executed once.
In this case some overhcads cannot be overlapped, and at the end of loop execution
“slow” processors have to wait for the results of iterations executed remotely. Figure 4
shows the encouraging E'TRs obtained by our SUPPLE implementation w.r.t. the static
one. Note that all the results plotted in the figure refer to unbalanced environments
where only 256% of the processors are “slow”. Moreover, due to the larger data sels
used for these tests, the I'I'Rs are in some cases even more favorable for SUPPLE than
the ones for iterative benchmarks.

5 Conclusions

We have discussed the implementation on heterogeneous and/or timed-shared parallel
machines of regular and uniform parallel loop kernels, with statically predictable stencit
data references. We have assumed thal no information about the capacities of the
processors involved is available until run-time, and that, in time-shared environments,
these capacitics may change during run time. ‘To implement the kernel benchmark we
employed SUPPLIE, a run-time support that we had previousty introduced to compile
non-uniform loops.

The tests were conducted on an SGI/Cray T3E and an IBM SP2. We compared
the SUPPLE results with a static implementation of the benchmark, where data and
computations are evenly distributed to the various processing nodes. The SP2, a parallel
system that can be used as a time-shared NOWs, was loaded with artificial compute-
bound processes before running the tests. On the other hand, we needed to simulate
a heterogencous SGI/Cray 'I'3E, i.c. a machine whose nodes may be equipped with
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different off-the-shelf processors and/or memory organization. The performance results
were very encouraging. On the SP2, where half of the processors were loaded with 4
compute-bound processes, the SUPPLE version of the benchmark resulted at most
100% faster than the static one. On the T3E, depending on the amount of “slow”
processors, on the number of processors employed and the granularity of loop iterations,
the SUPPLE version reached percentages of performance improvement ranging between
20% and 270%.

Further work has to be done to compare our solution with other dynamic scheduling
strategies proposecd elsewhere. More exhaustive experiments with different benchmarks
and dynamic variations of the system loads are also required to fully evaluate the
proposal. [Towever, we believe thal hybrid strategies like the one adopted by SUPPLE
can be profitably exploited in many cases where locality exploitation and load balance
must be solved at the same time. Moreover, our strategy can be easily integrated in
the compilation model of a high level data parallel language.
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