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Abst rac t .  important problem in compilers for parallel machines. In this 
paper, we present a duplication strategy for task scheduling in multiport 
message-passing systems. Through a performance gain analysis, we es- 
tablish a condition under which duplicating a parent task of a task is 
beneficial. We also show that, by incorporating this strategy into two 
well-known priority-based scheduling algorithms, significant reductions 
in the execution time can be achieved. 

1 I n t r o d u c t i o n  

Scheduling is a sequential optimization technique used to exploit the parallelism 
inherent in programs. In this paper, we consider the problem of scheduling the 
tasks of a given program in a mult iport  message-passing system with the aim of 
minimizing the overall execution t ime of the program. Researchers have investi- 
gated two versions of this problem, depending on whether or not task duplication 
(or recomputation) is allowed. In general, for the same program, task schedul- 
ing with duplication produces a schedule with a smaller makespan (i.e., total  
execution time) than when task duplication is not allowed. 

Some duplication based scheduling algorithms have been introduced in [2,4, 
5, 7]. However, all of these algorithms assume the availability of unlimited num- 
ber of processors. If the number of processors available is less than the number 
of the processors they require, there could be a problem. In this paper, we aim to 
develop an efficient and practical algorithm with task duplication for scheduling 
tasks onto a bounded number of available processors. In this area, the work de- 
scribed in [8] is close to ours. The algorithm determines the tasks on the critical 
paths of a given program before scheduling and tries to select such tasks for 
duplication in every scheduling step. However, a critical path may be shortened 
and new critical paths may be generated during the scheduling process, because 
assigning a task and a parent task of the task to a single processor makes the 
communication overhead between them become zero. Therefore, our algorithm 
does not a t tempt  to identify whether a task is critical. Instead, it dynamically 
analyzes the increase over the program execution time, created possibly by du- 
plicating a parent task of a task, to guide a duplication decision. We will show 
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that  incorporating this strategy with some known scheduling algorithms such as 
the mapping heuristic [9] and the dynamic level method [10] can improve their 
performance without introducing additional computational  complexity. 

The remainder of the paper is organized as follows: system and program mod- 
els are described in Section 2 and in Section 3, we present a duplication strategy 
for task scheduling. The performance evaluation of the strategy is discussed in 
Section 4. Finally, Section 5 gives some concluding remarks. 

2 S y s t e m  a n d  P r o g r a m  M o d e l s  

We consider a system consisting of m identical programmable processors Pi(i = 
1 . . .  m), each with a private or local memory and fully connected by a multi- 
port  interconnection network. In this system, the tasks of a parallel program 
mapped to different processors communicate solely by message-passing. In every 
communication step, a processor can send distinct messages to other processors 
and simultaneously receive multiple messages from these processors. We assume 
that  communication can be overlapped by computat ion and the communication 
time can be neglected if two tasks are mapped to a processor. 

A parallel program is modeled as a weighted directed acyclic graph, or task 
graph. Let G = (F, A, #, c) denote a task graph, where F is a finite set of tasks 
T/(i = 1,. -., n), A is a set of directed arcs representing dependence constraints 
among tasks, # is an execution time function whose value #(Ti) (time units) is 
the execution t ime of task Ti, and c is a communication cost function whose value 
c (~ ,  Tj) denotes the amount of communication from Ti to Tj. The  arc (Ti, Tj) 
from Ti to Tj asserts that  task Tj cannot start  execution until the message from 
T/arr ives  at the processor executing Tj. If (Ti, Tj) E A, Ti is said to be a parent 
task of Tj and Tj is said to be a child task of Ti. In task graph G, tasks without 
parent tasks are known as entry tasks and tasks without child tasks are known 
as exit tasks. We assume, without loss of generality, that  G has exactly one entry 
task and exactly one exit task. 

For task Ti, let est(Ti) and lst(Ti) denote the earliest start  and completion 
times, respectively. The computation of the earliest start  and completion times 
can be determined in a top-down fashion, starting with the entry task and ter- 
minating at the exit task. Mathematically, 

est(T~) = min max {ect(T~), ect(Tk) + e(Tk, Ti)), (1) 
( T j , T i ) e A  ( T k , T i ) e A , k e j  ~ " "  

ect( ) = est(T ) + (2) 

Similarly, let lst(T~) and lct(Ti) denote the latest start  and completion times 
of Ti, respectively. The latest start and completion times of Ti can be given by 

lct(Ti) = min {Ist(Tj) - c(Ti Tj)) ,  (3) 
(T~ ,T~ ) e A 

lst(Ti) = lct(Ti) - #(Ti). (4) 

Note that  the latest start  t ime of 7~ indicates how long the start  of Ti can be 
delayed without increasing the minimum execution t ime of the graph. 
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3 S c h e d u l i n g  w i t h  D u p l i c a t i o n  

For machine and program models described above, this section develops a du- 
plication based algorithm in an a t tempt  to find a one-to-one mapping from 
each task to its assigned processor such that the program execution t ime is 
minimized. Our algorithm consists of two parts. The first part  decides which 
ready task should be assigned to an idle processor. This part  is heuristic in 
nature and we can make the choice by applying one of the existing strategies 
such as HLF(Highest Level First), ETF(Earl iest  Task First), LP(Longest  Path),  
LPT(Longest  Processing Time) and CP(Critical Path).  Given the task in the 
first part ,  the second part  decides whether a parent of the task should be dupli- 
cated. 

Pj 

(a) 

J...~ ...P,j..~, . . ~  

t(Tv,Tw) T~ w 

, t (b)  

Fig. 1. The task duplication strategy. (a) The schedule before duplication. (b) The 
schedule after duplication. 

Before discussing our task duplication strategy, we introduce cm to represent 
the current time of the event clock, P(T,) to represent the processor that  pro- 
cesses task Tu and st(P(T,), T,) to represent the time when T, starts execution 
on P(T,). We also assume that processor Pk is idle at cm and task Tw is selected 
for scheduling, as shown in Fig. 1. The start t ime at which task T~o can run on 
processor Pk in case of no task duplication is thus given by 

Stnocopy (Pk, Tw) ---- max 
(T~,T~)EA,P(T~)#Pk 

{cm, st(P(T~), T,) + tt(T,) + c(T,, T~o) ]. 
(5) 

Consider the fact that if the start  t ime of a task is later than the latest start  
t ime of the task, then the overall completion time of the whole graph will be 
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increased. Thus, we can define the increase incurred due to the execution of task 
Tw on processor Pk as follows. 

(6) 

Obviously, if 5~o~ovy (Pk, T~o) < O, we should stop duplicating the parent tasks of 
Tw and assign T~o onto processor Pk, since duplicating its parent tasks is unable 
to shorten the schedule length even if its start  t ime is reduced. 

Assume now that  5no~opy(Pk,T~) > 0. To minimize the overall execution 
time, we need to consider task duplication for reducing this increase as much as 
possible. Let us use mt(T~, Tw) to denote the t ime when the message for task T~ 
from T~ arrives at processor P(Tw); i.e., mt(T,, T~) = st(P(T~), T,) + #(Tu) + 
c(Tu,T~) ifP(Tu) 7~ P(T~). From Fig. I, it is clear that  we should select a task 
T,, as the candidate for duplication, such that  

rnt(Tv, :/w) --- max {st(P(T~), T~) + p(T~) + c(T~, T~)}. 
(T~,T~)EA,P(T~)r 

Further let it(Pk) denote the time when processor Pk becomes idle. Thus, the 
time at which T. can start  execution on Pk can be calculated below. 

st(Pk, T,) = max 
(T.,T.)eA,P(T~)ePk 

{it(Pk), st(P(T~), 7;) + #(T,) + c(T~, Tv)}. 
(7) 

Consequently, in this case, the time at which task T~o can start  execution on 
processor Pk is that  

  copy(Pk, = max 
( Tu,Tw )e A,P( Tu )• Pk ,u#v 

{cm, st(P(Tu), T,) + #(Tu) + c(T~, T,), st(Pk, T,) + #(T,)}.  
(s) 

This produces an increase as follows. 

, cop  ( Pk  , ) = St opy ( P ,  , ) - l s t  ( ) . (9) 

Comparing 5copy(Pk,T~) with 5~o~opy(Pk,Tw), we can finally establish the fol- 
lowing condition: duplicating a parent task of Tw to the current processor should 
only occur if 

(lO) 

The above duplication strategy clearly takes O(p) times in the worst case, 
where p is the maximum number of parent tasks of every task in G. Therefore, 
incorporating this strategy into some known scheduling algorithms such as the 
mapping heuristic [9] and the dynamic level method [10] does not introduce 
additional time complexity, since these algorithms generally require O(nm) times 
for selecting a ready task and an idle processor for assignment, where n is the 
number of tasks and m is the number of processors. 
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4 Experimental Study 

This section presents an experimental study of the effects of the task duplication 
strategy described in Section 3. By incorporating the strategy into the mapping 
heuristic (MH) and the dynamic level method (DL) without global clock heuris- 
tic, we implemented two scheduling algorithms on a Sun workstation using the 
programming language C. Whereas we compared the performance of each en- 
hanced algorithm with that of the original algorithm under various parameter 
settings, due to space limitations, here we show only some of the salient results. 

In our experiments, we generated 350 random task graphs and scheduled 
them onto a machine consisting of eight identical processors, fully interconnected 
through full-duplex interprocessor links. The task graphs generated randomly 
ranged in size from 40 to 160 nodes with increments of 20. Each graph was 
constructed by generating a directed acyclic graph and removing all transitive 
arcs. For each vertex, the execution time and the number of the child tasks 
were picked from an uniform distribution whose parameters are input data. The 
communication time of each arc was determined alike. The communication-to- 
computation (C/C) ratio value was settled to be 5.0, where the C/C ratio of a 
task graph is defined as the average communication time per arc divided by the 
average execution time per task. 

The performance analysis was based on the average schedule length obtained 
by each algorithm. Tables 1 and 2 show the experimental results, where Impr. 
represents the percentage performance improvement of each enhanced algorithm 
compared with that of the original algorithm. It can be seen that the performance 
of each algorithm with duplication is consistently better than the algorithm 
without duplication. The performance improvement compared with the original 
mapping heuristic varies from 4.01% to 8.17%, and the performance improvement 
compared with the original dynamic level algorithm varies from 3.42% to 6.90%. 
These results confirm our expectation that the proposed duplication strategy is 
efficient and practical. 

Table 1. Results from the mapping heuristics with and without duplication. 

~ Avg. sche. leng. 
MH without dup. 

~ 649.58 
860.88 
1093.38 
1310.74 
1515.46 
1711.06 
1962.92 

Avg. sche. l e n g . ~  
MH with dup. ( ~  

609.64 
826.34 
1023.16 
1231.68 
1401.70 
1583.58 

1802.51 
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Table  2. Results from the dynamic level algorithms with and without duplication. 

No. of No. of[[ Avg. sche. leng. 
[graphs I tasks [[DL without dup. 

5O 4O 602.60 
50 60 788.61 
50 80 1037.65 
50 100 1226.73 
50 120 1454.92 
50 140 1643.25 
50 160 1891.74 

Avg. sche. leng.llI npr. 
DL with dup. [%) 

572.41 5.01 
761.66 3.42 
993.82 4.22 
1172.94 4.38 
1367.88 5.98 
1536.92 6.47 
1761.24 6.90 

5 Conclusions 

We have presented a novel strategy for task duplication in mul t ipor t  message- 
passing systems. The strategy is based on the analysis of the increase over the 
total  p rogram execution time, created possibly by duplicating a parent  task of 
a task. Experimental  results have shown that  incorporating it into two well- 
known scheduling algorithms either produces the same assignments as the orig- 
inal algorithms, or it produces better  assigmnents. In addition, the costs, bo th  
in implementat ion effort and compile time, are very low. Future work includes 
a more complete investigation of the impact  of varying the communicat ion- to-  
computa t ion  ratio. Experimental  studies on various multiprocessor plat forms are 
also needed. 
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