
An Efficient Strategy for Task Duplication in
Multiport Message-Passing Systems

Dingchao Li 1, Yuji Iwahori 1, Tatsuya Hayashi 2 and Naohiro Ishii ~

1 Educational Center for Information Processing
2 Department of Electrical and Computer Engineering

3 Department of Intelligence and Computer Science
Nagoya Institute of Technology
1 iding0cent er .n i tech. ac. jp

Abst rac t . important problem in compilers for parallel machines. In this
paper, we present a duplication strategy for task scheduling in multiport
message-passing systems. Through a performance gain analysis, we es-
tablish a condition under which duplicating a parent task of a task is
beneficial. We also show that, by incorporating this strategy into two
well-known priority-based scheduling algorithms, significant reductions
in the execution time can be achieved.

1 I n t r o d u c t i o n

Scheduling is a sequential optimization technique used to exploit the parallelism
inherent in programs. In this paper, we consider the problem of scheduling the
tasks of a given program in a mult iport message-passing system with the aim of
minimizing the overall execution t ime of the program. Researchers have investi-
gated two versions of this problem, depending on whether or not task duplication
(or recomputation) is allowed. In general, for the same program, task schedul-
ing with duplication produces a schedule with a smaller makespan (i.e., total
execution time) than when task duplication is not allowed.

Some duplication based scheduling algorithms have been introduced in [2,4,
5, 7]. However, all of these algorithms assume the availability of unlimited num-
ber of processors. If the number of processors available is less than the number
of the processors they require, there could be a problem. In this paper, we aim to
develop an efficient and practical algorithm with task duplication for scheduling
tasks onto a bounded number of available processors. In this area, the work de-
scribed in [8] is close to ours. The algorithm determines the tasks on the critical
paths of a given program before scheduling and tries to select such tasks for
duplication in every scheduling step. However, a critical path may be shortened
and new critical paths may be generated during the scheduling process, because
assigning a task and a parent task of the task to a single processor makes the
communication overhead between them become zero. Therefore, our algorithm
does not a t tempt to identify whether a task is critical. Instead, it dynamically
analyzes the increase over the program execution time, created possibly by du-
plicating a parent task of a task, to guide a duplication decision. We will show

391

that incorporating this strategy with some known scheduling algorithms such as
the mapping heuristic [9] and the dynamic level method [10] can improve their
performance without introducing additional computational complexity.

The remainder of the paper is organized as follows: system and program mod-
els are described in Section 2 and in Section 3, we present a duplication strategy
for task scheduling. The performance evaluation of the strategy is discussed in
Section 4. Finally, Section 5 gives some concluding remarks.

2 S y s t e m a n d P r o g r a m M o d e l s

We consider a system consisting of m identical programmable processors Pi(i =
1 . . . m), each with a private or local memory and fully connected by a multi-
port interconnection network. In this system, the tasks of a parallel program
mapped to different processors communicate solely by message-passing. In every
communication step, a processor can send distinct messages to other processors
and simultaneously receive multiple messages from these processors. We assume
that communication can be overlapped by computat ion and the communication
time can be neglected if two tasks are mapped to a processor.

A parallel program is modeled as a weighted directed acyclic graph, or task
graph. Let G = (F, A, #, c) denote a task graph, where F is a finite set of tasks
T/(i = 1,. -., n), A is a set of directed arcs representing dependence constraints
among tasks, # is an execution time function whose value #(Ti) (time units) is
the execution t ime of task Ti, and c is a communication cost function whose value
c (~ , Tj) denotes the amount of communication from Ti to Tj. The arc (Ti, Tj)
from Ti to Tj asserts that task Tj cannot start execution until the message from
T/arr ives at the processor executing Tj. If (Ti, Tj) E A, Ti is said to be a parent
task of Tj and Tj is said to be a child task of Ti. In task graph G, tasks without
parent tasks are known as entry tasks and tasks without child tasks are known
as exit tasks. We assume, without loss of generality, that G has exactly one entry
task and exactly one exit task.

For task Ti, let est(Ti) and lst(Ti) denote the earliest start and completion
times, respectively. The computation of the earliest start and completion times
can be determined in a top-down fashion, starting with the entry task and ter-
minating at the exit task. Mathematically,

est(T~) = min max {ect(T~), ect(Tk) + e(Tk, Ti)), (1)
(T j , T i) e A (T k , T i) e A , k e j ~ " "

ect() = est(T) + (2)

Similarly, let lst(T~) and lct(Ti) denote the latest start and completion times
of Ti, respectively. The latest start and completion times of Ti can be given by

lct(Ti) = min {Ist(Tj) - c(Ti Tj)) , (3)
(T~ ,T~) e A

lst(Ti) = lct(Ti) - #(Ti). (4)

Note that the latest start t ime of 7~ indicates how long the start of Ti can be
delayed without increasing the minimum execution t ime of the graph.

392

3 S c h e d u l i n g w i t h D u p l i c a t i o n

For machine and program models described above, this section develops a du-
plication based algorithm in an a t tempt to find a one-to-one mapping from
each task to its assigned processor such that the program execution t ime is
minimized. Our algorithm consists of two parts. The first part decides which
ready task should be assigned to an idle processor. This part is heuristic in
nature and we can make the choice by applying one of the existing strategies
such as HLF(Highest Level First), ETF(Earl iest Task First), LP(Longest Path),
LPT(Longest Processing Time) and CP(Critical Path). Given the task in the
first part , the second part decides whether a parent of the task should be dupli-
cated.

Pj

(a)

J...~ ...P,j..~, . . ~

t(Tv,Tw) T~ w

, t (b)

Fig. 1. The task duplication strategy. (a) The schedule before duplication. (b) The
schedule after duplication.

Before discussing our task duplication strategy, we introduce cm to represent
the current time of the event clock, P(T,) to represent the processor that pro-
cesses task Tu and st(P(T,), T,) to represent the time when T, starts execution
on P(T,). We also assume that processor Pk is idle at cm and task Tw is selected
for scheduling, as shown in Fig. 1. The start t ime at which task T~o can run on
processor Pk in case of no task duplication is thus given by

Stnocopy (Pk, Tw) ---- max
(T~,T~)EA,P(T~)#Pk

{cm, st(P(T~), T,) + tt(T,) + c(T,, T~o)].
(5)

Consider the fact that if the start t ime of a task is later than the latest start
t ime of the task, then the overall completion time of the whole graph will be

393

increased. Thus, we can define the increase incurred due to the execution of task
Tw on processor Pk as follows.

(6)

Obviously, if 5~o~ovy (Pk, T~o) < O, we should stop duplicating the parent tasks of
Tw and assign T~o onto processor Pk, since duplicating its parent tasks is unable
to shorten the schedule length even if its start t ime is reduced.

Assume now that 5no~opy(Pk,T~) > 0. To minimize the overall execution
time, we need to consider task duplication for reducing this increase as much as
possible. Let us use mt(T~, Tw) to denote the t ime when the message for task T~
from T~ arrives at processor P(Tw); i.e., mt(T,, T~) = st(P(T~), T,) + #(Tu) +
c(Tu,T~) ifP(Tu) 7~ P(T~). From Fig. I, it is clear that we should select a task
T,, as the candidate for duplication, such that

rnt(Tv, :/w) --- max {st(P(T~), T~) + p(T~) + c(T~, T~)}.
(T~,T~)EA,P(T~)r

Further let it(Pk) denote the time when processor Pk becomes idle. Thus, the
time at which T. can start execution on Pk can be calculated below.

st(Pk, T,) = max
(T.,T.)eA,P(T~)ePk

{it(Pk), st(P(T~), 7;) + #(T,) + c(T~, Tv)}.
(7)

Consequently, in this case, the time at which task T~o can start execution on
processor Pk is that

 copy(Pk, = max
(Tu,Tw)e A,P(Tu)• Pk ,u#v

{cm, st(P(Tu), T,) + #(Tu) + c(T~, T,), st(Pk, T,) + #(T,)}.
(s)

This produces an increase as follows.

, cop (Pk ,) = St opy (P , ,) - l s t () . (9)

Comparing 5copy(Pk,T~) with 5~o~opy(Pk,Tw), we can finally establish the fol-
lowing condition: duplicating a parent task of Tw to the current processor should
only occur if

(lO)

The above duplication strategy clearly takes O(p) times in the worst case,
where p is the maximum number of parent tasks of every task in G. Therefore,
incorporating this strategy into some known scheduling algorithms such as the
mapping heuristic [9] and the dynamic level method [10] does not introduce
additional time complexity, since these algorithms generally require O(nm) times
for selecting a ready task and an idle processor for assignment, where n is the
number of tasks and m is the number of processors.

394

4 Experimental Study

This section presents an experimental study of the effects of the task duplication
strategy described in Section 3. By incorporating the strategy into the mapping
heuristic (MH) and the dynamic level method (DL) without global clock heuris-
tic, we implemented two scheduling algorithms on a Sun workstation using the
programming language C. Whereas we compared the performance of each en-
hanced algorithm with that of the original algorithm under various parameter
settings, due to space limitations, here we show only some of the salient results.

In our experiments, we generated 350 random task graphs and scheduled
them onto a machine consisting of eight identical processors, fully interconnected
through full-duplex interprocessor links. The task graphs generated randomly
ranged in size from 40 to 160 nodes with increments of 20. Each graph was
constructed by generating a directed acyclic graph and removing all transitive
arcs. For each vertex, the execution time and the number of the child tasks
were picked from an uniform distribution whose parameters are input data. The
communication time of each arc was determined alike. The communication-to-
computation (C/C) ratio value was settled to be 5.0, where the C/C ratio of a
task graph is defined as the average communication time per arc divided by the
average execution time per task.

The performance analysis was based on the average schedule length obtained
by each algorithm. Tables 1 and 2 show the experimental results, where Impr.
represents the percentage performance improvement of each enhanced algorithm
compared with that of the original algorithm. It can be seen that the performance
of each algorithm with duplication is consistently better than the algorithm
without duplication. The performance improvement compared with the original
mapping heuristic varies from 4.01% to 8.17%, and the performance improvement
compared with the original dynamic level algorithm varies from 3.42% to 6.90%.
These results confirm our expectation that the proposed duplication strategy is
efficient and practical.

Table 1. Results from the mapping heuristics with and without duplication.

~ Avg. sche. leng.
MH without dup.

~ 649.58
860.88
1093.38
1310.74
1515.46
1711.06
1962.92

Avg. sche. l e n g . ~
MH with dup. (~

609.64
826.34
1023.16
1231.68
1401.70
1583.58

1802.51

395

Table 2. Results from the dynamic level algorithms with and without duplication.

No. of No. of[[Avg. sche. leng.
[graphs I tasks [[DL without dup.

5O 4O 602.60
50 60 788.61
50 80 1037.65
50 100 1226.73
50 120 1454.92
50 140 1643.25
50 160 1891.74

Avg. sche. leng.llI npr.
DL with dup. [%)

572.41 5.01
761.66 3.42
993.82 4.22
1172.94 4.38
1367.88 5.98
1536.92 6.47
1761.24 6.90

5 Conclusions

We have presented a novel strategy for task duplication in mul t ipor t message-
passing systems. The strategy is based on the analysis of the increase over the
total p rogram execution time, created possibly by duplicating a parent task of
a task. Experimental results have shown that incorporating it into two well-
known scheduling algorithms either produces the same assignments as the orig-
inal algorithms, or it produces better assigmnents. In addition, the costs, bo th
in implementat ion effort and compile time, are very low. Future work includes
a more complete investigation of the impact of varying the communicat ion- to-
computa t ion ratio. Experimental studies on various multiprocessor plat forms are
also needed.

Acknowledgment

This work was supported in part by the Ministry of Education, Science and Cul-
ture under Grant No. 09780263, and by a Grant from the ArtificiM Intelligence
Research Promot ion Foundation under contract number 9AI252-9. We would
like to thank the anonymous referees for their valuable comments .

References

1. B. Kruatrachue and T.G. Lewis, Grain Size Determination for Parallel Processing,
IEEE Software, pp. 23-32, Jan., 1988.

2. J.Y. Colin and P. Chritienne, C.P.M. Scheduling with Small Communication Delays
and Task Duplication, Operations Research, vol. 39, no. 4, pp. 680-684, July, 1991.

3. Y.C.Chung and S.Ranka, Application and Performance Analysis of a Compile-
Time Optimization Approach for List Scheduling Algorithms on Distributed-
Memory Multiprocessors, Proc. of Supercomputing'92, pp. 512-521, 1992.

4. H.B. Chen, B. Shirazi, K. Kavi, and A.R. Hurson, Static Scheduling Using Lin-
ear Clustering with Task Duplication, Proc. of ISCA International Conference on
Parallel and Distributed Computing and Systems, pp. 285-290, 1993.

396

5. J. Siddhiwala and L.F. Chao, Path-Based Task Replication for Scheduling with
Communication Costs, Proc. of the 1995 International Conference on Parallel Pro-
cessing, vol. II, pp. 186-190, 1995.

6. M. A. Palis, J. Liou and D. S. L. Wei, Task Clustering and Scheduling for Dis-
t r ibuted Memory Parallel Architectures, IEEE Trans. on Parallel and Distr ibuted
Systems, vol. 7, no. 1, pp. 46-55, Jan. 1996.

7. S. Darbha and D.P. Agrawal, Optimal Scheduling Algorithm for Distributed-
Memory Machines, IEEE Trans. on Parallel and Distr ibuted Systems, vol. 9, no.
1, pp. 87-95, Jan. 1998.

8. K.K. Kwok and I. Ahmad, Exploiting Dupfication to Minimize the Execution
Times of Parallel Programs on Message-Passing Systems, Proc. of the sixth IEEE
Symposium on Parallel and Distributed Processing, pp. 426-433, 1994.

9. H.E1-Rewini and T.G.Lewis, "Scheduling Parallel Program Tasks onto Arbi t ra ry
Target Machines," J. Parallel and Distributed Computing 9, pp. 138-153, 1990.

10. G.C.Sin and E.A.Lee, "A Compile-Time Scheduling Heuristic for Interconnection-
Constrained Heterogeneous Processor Architectures," IEEE Trans. on Parallel and
Distr ibuted Syst., vol. 4, no. 2, pp. 175-187, 1993.

