Dynamic and Randomized Load Distribution
in Arbitrary Networks

J.Gaber and B.Toursel

L.LF.L., Université des Sciences et Technologies de Lillel
59655 Villeneuve d’Ascq cedex -France-
{gaber,toursel}@lifl.1lifl.fr

Abstract. We present the analysis of a randomized load distribution
algorithm that dynamically embed arbitrary trees in a distributed net-
work with an arbitrary topology. We model a load distribution algorithm
by an associeted Markov chain and we show that the randomized load
distribution algorithm spreads any M-node tree in a distributed network
with N vertices with load O(% +4(¢)), where 6(¢) depends on the conver-
gence rate of the associated Markov chain. Experimental results obtained
by the implementation of these load distribution algorithms, to validate
our framework, on the two-dimensional mesh of the massively parallel
computer MasPar MP-1 with 16,384 processors, and on a network of
workstations are also given.

1 Introduction

We model the load distribution problem that dynamically maintains evolving an
arbitrary tree in a distributed network as an on-line embedding problem. These
algorithms are dynamic in the sense that the tree may starts as one node and
grows by dynamically spawning children. The nodes are incrementally embedded
as they are spawned.

Bhatt and Cai present in [1,2] a randomized algorithm that dynamically
embeds an arbitrary M-node binary tree on a N processor binary hypercube
with dilation O(loglog N) and load O(M/N + 1). Leighton and al. present in
[3,4] two randomized algorithms for the hypercube and the butterfly. The first
algorithm achieves, with high probability, a load O(M/N + log N) and respec-
tively dilation 1 for the hypercube and dilation 2 for the butterfly. The second
algorithm achieves, for the hypecube, a dilation O(1) and load O(M/N +1) with
high probability. Kequin Li presents in [5} an optimal randomized algorithm that
achieves dilation 1 and load O(M/N) in linear arryas and rings. The algorithm
concerns a model of random trees called the reproduction tree model [5]. The
load distribution algorithm that we describe here work for every arbitrary tree
(binary or not) on a general network. The analysis use mathematical tools de-
rived from both the Markov chain theory and the numerical analysis of matrix
iterative schemes.

406

2 The Problem

Consider the following needed notations. Let P; the jth vertex of the host graph
and k a given integer. We define, for each vertex P;, the set

V(P;) = {Paj1), Pagg,2)s - Py}

This set defines a logical neighbourhood for P;. n(j,d) refers to the d-neighbour
of P;. The terms logical neighbour denotes that an element of V(P;) is not nec-
essarily closed to P; in the distributede network.

Cousider the behavior of the following mapping algorithm. At any instant in
time, any task allocated to some vertex u that does not have k children can spawn
a new child task. The newly spawned children must be placed on vertices with
satisfying the following conditions as proposed by the paradigm of Bhatt and
Cai: (1) without foreknow how the tree will grow in the future, and (2) without
accessing any global information and (3) once a task is placed on a particular
vertex, it cannot be reallocated subsequently. Hence, the process migration is
disallowed and the placement decision must be implemented within the network
in a distributed manner, and locally without any global information.

The mapping algorithm that we will describe is randomized and operates as
follows. The children of any parent node v initially in a vertex P; are randomly
and uniformly placed on distinct vertices of the set V(P;). The probability that
a vertex in V(P;) is chosen is 1/k. At the start, the root is placed on an initial
vertex which can be fixed or randomly choosen. The randomness is crucial to
the success of the algorithm as it will be seen in its analysis.

3 Analysis

As was mentionned, as each node is spawned as a child of a node v initially
in Pj, it is assigned a random vertex in the set V(P;). The probability that
any particular vertex is chosen is 1/k. As our process has the property that the
choice of a vertex destination at any step £ depends only on the father’s node,
1.e., depends only on the state £ — 1, we have thus a Markov’s chain whose state
space is the set of the N vertices. We construct its transition probability matrix
A = (aij)o<i,j<N where

G = %if P; E‘V(Pz')
£ 0 otherwise

A node distribution can be considered to be a probability distribution and
the mapping of the newly spawned nodes is the computation of a one-step transi-
tion probabilities. Let p¢ be an N vector where any entry pe(¢) is the proportion
of objects in state ¢ at time £. We denote by pgy the initial probability distribu-
tion. At the state £, we have p, = pg A%, V£ > 1 We know that if the matrix A
is regular, then the Markov chain has stationary transition probabilities since
limg_, oo A® exists. This means that for large values of £, the probability of be-
ing in state ¢ after £ transitions is approximatively equal to ﬁ (the ¢th entry

407

of p) no matter what the initial state was. In other words, as a consequence of
the asymptotic behavior of a such Markov process, the distribution converges to
uniform distribution which allocates the same amount of nodes to each vertex
for very large M. Let p; be the probability distribution at step £. We have

— ~_ 1 _ (1 1 1
Pe=pe-1A et p—tl_lglopl—('ﬁ,ﬁ,m,fv‘

Let c(v) be the number of outcomes where vertex v is selected. We consider
that the Markov chain reaches the stationary phase beginning from t(¢) (e.g.,
we choose the smallest ¢ such that each entries of p; is equal to 1/N + £ where
€ goes to 0).

Denote by k) the number of spawned nodes at any step £. We have M =

Z
Zk(l), with £ € [t, ool.
£=0

4 . M
We have c(v) = Zpg(v)k(f) which become [6 Z(pg(v (v)) k) 5

£==0

J

a(v)
t(e)
we obtain the vector o = Z(pg — D)k . We need now to bound a. As stated by
=0
Cybenko in (7], il v is subdominant modulus of A, then we have || p\ollfl_i—iﬂlz < v*|lpo — PII?
pe
t(e) t(e)
and thus lp; — 1| < 7¥llpo — 1l and llafl = 13 k(e = Bl < 3 KOllpe — 7] <

£=0 £=0
t(e) t{e)

>k o 7l thus] < oo =71 1 £

Note that we have use the fact that the numbel of spawned nodes k() at any
(k'r)t“ -
-1

Recall that |].||cc of a vector denotes its maximum entry Denote by §(¢) = {0
the maximum entry of a. Since po—p = (1 — %, —%, -..), we have ||po — Blloo =

1
-5
and

step £ is at most kt. We obtain ||| < ||po — 7|

1.1 — (ky)tledtt
6e) (- H)—"5 (1)
In view of (1), for small 7, we obtain a small value 6(¢). Recall that v €]—1,1].
For v = £ +a. We compute the Taylor series expansion of §(¢) at %. This reveals
that 6(e) < t(e) + 1, where t(¢) is the rate of convergence of A (note that ¢(¢) is
bounded).
With the above analysis we obtain the following theorem.

Theorem 1. Given a randomized mapping algorithm of a process graph that
1s an arbitrary dynamic k-ary tree on any arbitrary topology. If the mapping’s

408

stochastic matriz associated with the logical neighbourhood is regular then the
number of nodes mapped on a single vertex of the network is O(—% +4(e)), where

k,Y)t(s)-{-l -1
fey=(1-% ()™ -1
stochastic matriz, t() the number of steps necessary to converge within e, M is
the number of nodes and N the number of vertices of the network.

, v is the subdominant eigenvalue of the mapping’s

4 Experimentations

We ran a parallel implementation of an algorithm wherein an arbitrary tree grows
during the course of the computation (as in branch-and-bound serach, divide-
and-conquer or game tree evaluation), on a 128 x 128 mesh. The following table
gives the experimental results in terms of the maximum load obtained when the
randomized algorithm is (resp. is not) used to balance load (each line shows the
result in terms of the maximum load obtained when we embed an arbitrary tree.
The first column gives the total nodes number of this tree).

Number |load without{load with [ideal
of nodes{randomized [randomized|load
algorithm |algorithm
3123 93.00 1.17 1
55791 1219.00 4.59 3.41
65135 [4.00 4.00 3.98
99325 [16.00 6.82 6.06
204383 [64.00 13.43 12.47
731923 164.00 45.86 44.67
16401231256.00 102.59 100.11

We ran, on a network of 8 stations with a multithreaded environement, a
parallel implementation of an algorithm wherein an arbitrary binary tree grow
during the course of the computation. The following table gives the effective load
of each station obtained with and without the randomized algorithm. The value
ToTal denotes the total nodes number of the embeded arbitrary tree.

5 Conclusion

Theorem 1 establishes that for a given mapping function, a simple random-
ized load distribution algorithm as described in section 2 maintains dynami-
cally evolving an arbitrary tree on a general distributed network with a load
O(3£ + 6(¢)), where §(¢) depends on the mapping function. This implies that
we can easily compare mapping functions just by computing eigenvalues of the
associated adjancy matrix.

409

N=8
Numérolload without| load with | ideal
Station | randomized [randomized| load
algorithm | algorithm |ToTal/N
0 4171 16106 17271.50
1 4012 16164 17271.50
2 7302 17050 17271.50
3 7289 16012 17271.50
4 3605 16627 17271.50
5 3412 16597 17271.50
6 51722 20394 17271.50
7 56659 19222 17271.50
ToTal 138172.00
Acknowledgment

We are grateful to F.T.Leighton for the helpful comments and K.Li for helpful
discussions. We are also grateful to F.Chung[8], S.Bhatt and G.Cybenko for
providing us a helpful papers and suggestions.

References

1. S.N. Bhatt and J.-Y. Cal. Talk a walk, grow a tree. in Proc. 29th Annual IEEE
Symposuim on Foundations of Computer, Science, IEEE CS, Washington, DC, pp.
469-478, 1988.

2. S.Bhatt and J-Y.Cai. Taking random walks to grow trees in hypercubes. Journal
of the ACM, 40(3):741~764, July 1993.

3. F.T. Leighton, M.J. NEWMAN, A.G. RANADE, and E.J. SCHWABE. Dynamic tree
embeddings in butterflies and hypercubes. Siam Journal on computing, 21(4):639-
654, August 1992.

4. F.T. Leighton. Introduction to parallel algorithms and architectures. Morgan Kauff-
mann Publishers., 1992. Traduit en Francais par P.FRAIGNAUD et E.FLEURY, Inter-
national Thomson publishing France, 1995.

5. K. Li. Analysis of randomized load distribution for reproduction trees in linear
arrays and rings. Proc. 11th Annual International Symposium on High Performance
Computers, Winnipeg, Manitoba, Canada (10-12), July, 1997.

6. J. Gaber. Plongement et manipulations d’arbres dans les architectures distribuées.
Thése LIFL, Janvier 1998.

7. G. Cybenko. Dynamic load balancing for distributed memory architecture. Journal
of Parallel and Distributed Computing, 7:279-301, 1989.

8. Fan.R.K. Chung. Spectral Graph Theory. AMS., 1997.

