
Dynamic and Randomized Load Distribution
in Arbitrary Networks

J .Gaber and B.Toursel

L.I.F.L., Universit6 des Sciences et Technologies de Lillel
59655 ViUeneuve d'Ascq cedex-France-

{gaber, t oursel}@lif i. lifl, fr

Abs t r ac t . We present the analysis of a randomized load distribution
algorithm that dynamically embed arbitrary trees in a distributed net-
work with an arbitrary topology. We model a load distribution algorithm
by an associated Markov chain and we show that the randomized load
distribution algorithm spreads any M-node tree in a distributed network
with N vertices with load O(M+5(e)), where 5(e) depends on the conver-
gence rate of the associated Markov chain. Experimental results obtained
by the implementation of these load distribution algorithms, to validate
our framework, on the two-dimensional mesh of the massively parallel
computer MasPar MP-1 with 16,384 processors, and on a network of
workstations are also given.

1 I n t r o d u c t i o n

We model the load distribution problem that dynamical ly maintains evolving an
arbi t rary tree in a distributed network as an on-line embedding problem. These
algorithms are dynamic in the sense that the tree may starts as one node and
grows by dynamical ly spawning children. The nodes are incrementally embedded
as they are spawned.

Bha t t and Cai present in [1,2] a randomized algorithm tha t dynamical ly
embeds an arbi trary M-node binary tree on a N processor binary hypercube
with dilation O (l o g l o g g) and load O(M/N + 1). Leighton and al. present in
[3,4] two randomized algorithms for the hypercube and the butterfly. The first
algori thm achieves, with high probability, a load O(M/N + log N) and respec-
tively dilation 1 for the hypercube and dilation 2 for the butterfly. The second
algori thm achieves, for the hypecube, a dilation O(1) and load O(M/N+ 1) with
high probability. Kequin Li presents in [5] an opt imal randomized algori thm tha t
achieves dilation 1 and load O(M/N) in linear arryas and rings. The algori thm
concerns a model of random trees called the reproduction tree model [5]. The
load distribution algorithm tha t we describe here work for every arbi t rary tree
(binary or not) on a general network. The analysis use mathemat ica l tools de-
rived f rom both the Markov chain theory and the numerical analysis of ma t r ix
iter ative schemes.

406

2 T h e P r o b l e m

Consider the following needed notations. Let Pj the j t h vertex of the host graph
and k a given integer. We define, for each vertex Pj, the set

v(P) = . . . ,

This set defines a logical neighbourhood for Pj. n(j, 5) refers to the 5-neighbour
of Pj. The terms logical neighbour denotes that an element of V(Pj) is not nec-
essarily closed to Pj in the distributede network.

Consider the behavior of the following mapping algorithm. At any instant in
t ime, any task allocated to some vertex u tha t does not have k children can spawn
a new child task. The newly spawned children must be placed on vertices with
satisfying the following conditions as proposed by the paradigm of Bha t t and
Carl (1) without foreknow how the tree will grow in the future, and (2) without
accessing any global information and (3) once a task is placed on a part icular
vertex, it cannot be reallocated subsequently. Hence, the process migrat ion is
disallowed and the placement decision must be implemented within the network
in a distributed manner, and locally without any global information.

The mapping algorithm tha t we will describe is randomized and operates as
follows. The children of any parent node v initially in a vertex Pj are randomly
and uniformly placed on distinct vertices of the set V(Pj). The probabil i ty that
a vertex in V(Pj) is chosen is 1/k. At the start , the root is placed on an initial
vertex which can be fixed or randomly choosen. The randomness is crucial to
the success of the algorithm as it will be seen in its analysis.

3 A n a l y s i s

As was mentionned, as each node is spawned as a child of a node v initially
in Pj, it is assigned a random vertex in the set Y(Pj). The probabil i ty tha t
any particular vertex is chosen is 1/k. As our process has the property tha t the
choice of a vertex destination at any step ~ depends only on the father 's node,
i.e., depends only on the state ~ - 1, we have thus a Markov's chain whose s tate
space is the set of the N vertices. We construct its transition probabil i ty mat r ix
A --~ (aij)o<i,j<_N where

�88 if Pj E))(Pi)
aij -~ 0 otherwise

A node distribution can be considered to be a probabil i ty distribution and
the mapping of the newly spawned nodes is the computa t ion of a one-step transi-
tion probabilities. Let p~ be an N vector where any entry pt(i) is the proport ion
of objects in state i at t ime t. We denote by P0 the initial probabil i ty distribu-
tion. At the state g, we have Pt = poA ~, Vg > 1 We know that if the mat r ix A
is regular, then the Markov chain has s tat ionary transit ion probabilit ies since
limt-.oo A t exists. This means that for large values of ~, the probabil i ty of be-

1 (the ith entry ing in state i after g transitions is approximatively equal to

407

of ~ no matter what the initial state was. In other words, as a consequence of
the asymptotic behavior of a such Markov process, the distribution converges to
uniform distribution which allocates the same amount of nodes to each vertex
for very large M. Let p~ be the probability distribution at step g. We have

P e = P ~ - I A et ~ = l i m p e = (1 t ~)
~--rco N ' N ' ' " '

Let c(v) be the number of outcomes where vertex v is selected. We consider
that the Markov chain reaches the stationary phase beginning from t(z) (e.g.,
we choose the smallest t such that each entries of Pt is equal to 1/N + r where

goes to 0).
Denote by k (~) the number of spawned nodes at any step t. We have M =

E k(~)' with [E [t, oo[.
g----0

t(~)
We have c(v) = Epe(v)k(e) which become [61 E(pe(v) - P,(v))k (e) + M

g = 0 g-----0
A ~

Y

t (e)

we obtain the vector a = E (p t - p-')k (e) . We need now to bound a. As stated by

Cybenko in [7], if7 is subdominant modulus of A, then we have II p ~ - N I 2 -< 72qlp0 - NI ~

Pt
t(e) t(e)

and thus IlPl - NI _< 7~llpo - p--I] and Ilall = II E k(~)(pe - P-')II <_ E k(01[Pt - P~I <-
g.=0 s

t (e) t (s)

E k(t)Tt[[P~ - P~[thus [[a[[<[[Po - P~[E k~7~
s ~ = 0

Note that we have use the fact that the number of spawned nodes k (l) at any

step t is at most k l. We obtain Ilall < IlPo- P-'ll (kT)~~
1

- " k T - 1
Recall that II.IG of a vector denotes its maxinmm entry. Denote by 6(e) = Ilalloo

. . .) , we have I I p o - p I G = the maximum entry of a. Since Po - P" = (1 N, W,

and
1 1 - (kT) t(~)+l

6(r < (1 - ~) f_--~--~ (1)

In view of (1), for small 7, we obtain a small value 6 (r Recall that "/El - 1, 1].
For 7 = �88 + a . We compute the Taylor series expansion of 5(r at -}. This reveals
that 6(r < t(e) + 1, where t(e) is the rate of convergence of A (note that t(e) is
bounded).
With the above analysis we obtain the following theorem.

T h e o r e m 1. Given a randomized mapping algorithm of a process graph that
is an arbitrary dynamic k-ary tree on any arbitrary topology. If the mapping's

408

stochastic matrix associated with the logical neighbourhood is regular then the
number of nodes mapped on a single vertex o/ the network is O(M + 5(~)), where

(k ' , /) t (~)+1 - 1
5(e) = (1 - ~) -'~-7 ---] ' "/ is the subdominant eigenvalue of the mapping's

stochastic matrix, t(e) the number of steps necessary to converge within e, M is
the number of nodes and N the number of vertices of the network.

4 Exper imenta t ions

We ran a parallel implementation of an algorithm wherein an arbitrary tree grows
during the course of the computation (as in branch-and-bound serach, divide-
and-conquer or game tree evaluation), on a 128 x 128 mesh. The following table
gives the experimental results in terms of the maximum load obtained when the
randomized algorithm is (resp. is not) used to balance load (each line shows the
result in terms of the maximum load obtained when we embed an arbitrary tree.
The first column gives the total nodes number of this tree).

Number load without
of nodes randomized

algorithm
3123 93.00
55791 219.00
65135 4.00
99325 16.00
204383 64.00
731923 64.00
1640123 256.00

load with Ldeal
randomized load
algorithm
1.17 1
4.59 3.41
4.OO 3.98
6.82 6.06
13.43 12.47
45.86 44.67
102.59 100.11

We ran, on a network of 8 stations with a multi threaded environement, a
parallel implementation of an algorithm wherein an arbitrary binary tree grow
during the course of the computation. The following table gives the effective load
of each station obtained with and without the randomized algorithm. The value
ToTal denotes the total nodes number of the embeded arbitrary tree.

5 Conclus ion

Theorem 1 establishes that for a given mapping function, a simple random-
ized load distribution algorithm as described in section 2 mMntains dynami-
cally evolving an arbitrary tree on a general distributed network with a load
O(N M- + 5(c)), where 5(~) depends on the mapping function. This implies that
we can easily compare mapping functions just by computing eigenvalues of the
associated adjancy matrix.

N=8
Num~ro load without load with ideal
Station randomized randomized load

algorithm algorithm ToTal/N
4171
4012
7302
7289
3605
3412
51722
56659

16106
16164
17050
16012
16627
16597
20394
19222

ToTal 138172.00

17271.50
17271.50
17271.50
17271.50
17271.50
17271.50
17271.50
17271.50

409

Acknowledgment

We are gra tefu l to F . T . L e i g h t o n for the helpful c o m m e n t s and K .L i for he lpfu l
discussions. We are also gra teful to F .Chung[8] , S . B h a t t and G . C y b e n k o for
p rov id ing us a helpful pape r s and suggest ions .

References

1. S.N. Bhat t and J.-Y. CAI. Talk a walk, grow a tree. in Proc. 29th Annual IEEE
Symposuim on Foundations of Computer, Science, IEEE CS, Washington, DC, pp.
469-478, 1988.

2. S.Bhatt and J-Y.Cai. Taking random walks to grow trees in hypercubes. Journal
of the ACM, 40(3):741-764, July 1993.

3. F.T. Leighton, M.J. NEWMAN, A.G. RANADE, and E.J. SCltWABE. Dynamic tree
embeddings in butterflies and hypercubes. Siam Journal on computing, 21(4):639-
654, August 1992.

4. F .T. Leighton. Introduction to parallel algorithms and architectures. Morgan Kauif-
mann Publishers., 1992. Traduit en Frangais par P.FRAIGNAUD et E.FLEuRY, Inter-
national Thomson publishing France, 1995.

5. K. Li. Analysis of randomized load distribution for reproduction trees in linear
arrays and rings. Proc. 11th Annual International Symposium on High Per]ormanee
Computers, Winnipeg, Manitoba, Canada (10-12), July, 1997.

6. J. Gaber. Plongement et manipulations d 'arbres dans les architectures distr ibutes.
Th&se LIFL, Janvier 1998.

7. G. Cybenko. Dynamic load balancing for distr ibuted memory architecture. Journal
of Parallel and Distributed Computing, 7:279-301, 1989.

8. Fan.R.K. Chung. Spectral Graph Theory. AMS., 1997.

