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Abs t r ac t .  We present the analysis of a randomized load distribution 
algorithm that dynamically embed arbitrary trees in a distributed net- 
work with an arbitrary topology. We model a load distribution algorithm 
by an associated Markov chain and we show that the randomized load 
distribution algorithm spreads any M-node tree in a distributed network 
with N vertices with load O(M+5(e)),  where 5(e) depends on the conver- 
gence rate of the associated Markov chain. Experimental results obtained 
by the implementation of these load distribution algorithms, to validate 
our framework, on the two-dimensional mesh of the massively parallel 
computer MasPar MP-1 with 16,384 processors, and on a network of 
workstations are also given. 

1 I n t r o d u c t i o n  

We model the load distribution problem that  dynamical ly maintains  evolving an 
arbi t rary tree in a distributed network as an on-line embedding problem. These 
algorithms are dynamic in the sense that  the tree may starts  as one node and 
grows by dynamical ly spawning children. The nodes are incrementally embedded 
as they are spawned. 

Bha t t  and Cai present in [1,2] a randomized algorithm tha t  dynamical ly  
embeds an arbi trary M-node binary tree on a N processor binary hypercube 
with dilation O ( l o g l o g g )  and load O(M/N + 1). Leighton and al. present in 
[3,4] two randomized algorithms for the hypercube and the butterfly. The first 
algori thm achieves, with high probability, a load O(M/N + log N) and respec- 
tively dilation 1 for the hypercube and dilation 2 for the butterfly. The second 
algori thm achieves, for the hypecube, a dilation O(1) and load O(M/N+ 1) with 
high probability. Kequin Li presents in [5] an opt imal  randomized algori thm tha t  
achieves dilation 1 and load O(M/N) in linear arryas and rings. The  algori thm 
concerns a model of random trees called the reproduction tree model [5]. The  
load distribution algorithm tha t  we describe here work for every arbi t rary  tree 
(binary or not) on a general network. The analysis use mathemat ica l  tools de- 
rived f rom both  the Markov chain theory and the numerical analysis of ma t r ix  
iter ative schemes. 
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2 T h e  P r o b l e m  

Consider the following needed notations. Let Pj the j t h  vertex of the host graph 
and k a given integer. We define, for each vertex Pj, the set 

v(P ) = . . . ,  

This set defines a logical neighbourhood for Pj. n(j, 5) refers to the 5-neighbour 
of Pj. The terms logical neighbour denotes that  an element of V(Pj) is not nec- 
essarily closed to Pj in the distributede network. 

Consider the behavior of the following mapping  algorithm. At any instant in 
t ime, any task allocated to some vertex u tha t  does not have k children can spawn 
a new child task. The newly spawned children must  be placed on vertices with 
satisfying the following conditions as proposed by the paradigm of Bha t t  and 
Carl (1) without foreknow how the tree will grow in the future, and (2) without 
accessing any global information and (3) once a task is placed on a part icular  
vertex, it cannot be reallocated subsequently. Hence, the process migrat ion is 
disallowed and the placement decision must  be implemented within the network 
in a distributed manner,  and locally without any global information.  

The  mapping  algorithm tha t  we will describe is randomized and operates as 
follows. The children of any parent node v initially in a vertex Pj are randomly 
and uniformly placed on distinct vertices of the set V(Pj). The probabil i ty that  
a vertex in V(Pj) is chosen is 1/k. At the start ,  the root is placed on an initial 
vertex which can be fixed or randomly choosen. The randomness is crucial to 
the success of the algorithm as it will be seen in its analysis. 

3 A n a l y s i s  

As was mentionned, as each node is spawned as a child of a node v initially 
in Pj, it is assigned a random vertex in the set Y(Pj). The probabil i ty tha t  
any particular vertex is chosen is 1/k. As our process has the property tha t  the 
choice of a vertex destination at any step ~ depends only on the father 's  node, 
i.e., depends only on the state ~ -  1, we have thus a Markov's  chain whose s tate  
space is the set of the N vertices. We construct its transition probabil i ty  mat r ix  
A --~ (aij)o<i,j<_N where 

�88 if Pj E ))(Pi) 
aij -~ 0 otherwise 

A node distribution can be considered to be a probabil i ty distribution and 
the mapping  of the newly spawned nodes is the computa t ion  of a one-step transi- 
tion probabilities. Let p~ be an N vector where any entry pt(i) is the proport ion 
of objects in state i at t ime t. We denote by P0 the initial probabil i ty  distribu- 
tion. At the state g, we have Pt = poA ~, Vg > 1 We know that  if the mat r ix  A 
is regular, then the Markov chain has s tat ionary transit ion probabilit ies since 
limt-.oo A t exists. This means that  for large values of ~, the probabil i ty of be- 

1 (the ith entry ing in state i after g transitions is approximatively equal to 
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of ~ no matter  what the initial state was. In other words, as a consequence of 
the asymptotic behavior of a such Markov process, the distribution converges to 
uniform distribution which allocates the same amount of nodes to each vertex 
for very large M. Let p~ be the probability distribution at step g. We have 

P e = P ~ - I A  et ~ =  l i m p e =  (1  t ~ )  
~--rco N '  N '  ' " '  

Let c(v) be the number of outcomes where vertex v is selected. We consider 
that  the Markov chain reaches the stationary phase beginning from t(z) (e.g., 
we choose the smallest t such that each entries of Pt is equal to 1/N + r where 

goes to 0). 
Denote by k (~) the number of spawned nodes at any step t. We have M = 

E k(~)' with [ E [t, oo[. 
g----0 

t(~) 
We have c(v) = Epe(v)k(e) which become [61 E(pe(v)  - P,(v))k (e) + M  

g = 0  g-----0 
A ~  

Y 

t ( e )  

we obtain the vector a = E ( p t  - p-')k (e) . We need now to bound a.  As stated by 

Cybenko in [7], if7 is subdominant modulus of A, then we have II p ~ - N I  2 -< 72qlp0 - NI ~ 

Pt 
t(e) t(e) 

and thus IlPl - NI _< 7~llpo - p--I] and Ilall = II E k(~)(pe - P-')II <_ E k(01[Pt - P~I <- 
g.=0 s  

t ( e )  t ( s )  

E k(t)Tt[[P~ - P~[ thus [[a[[ <[[Po - P~[ E k~7~ 
s ~ = 0  

Note that  we have use the fact that  the number of spawned nodes k (l) at any 

step t is at most k l. We obtain Ilall < IlPo- P-'ll (kT)~~ 
1 

- " k T - 1  
Recall that II.IG of a vector denotes its maxinmm entry. Denote by 6(e) = Ilalloo 

. . . ) ,  we have I I p o - p I G  = the maximum entry of a. Since Po - P" = ( 1 N, W, 

and 
1 1 - (kT) t(~)+l 

6(r < (1 - ~ )  f_--~--~ (1) 

In view of (1), for small 7, we obtain a small value 6 (r Recall that  "/El - 1, 1]. 
For 7 = �88 + a .  We compute the Taylor series expansion of 5(r at -}. This reveals 
that  6(r < t(e) + 1, where t(e) is the rate of convergence of A (note that  t(e) is 
bounded). 
With the above analysis we obtain the following theorem. 

T h e o r e m  1. Given a randomized mapping algorithm of a process graph that 
is an arbitrary dynamic k-ary tree on any arbitrary topology. If the mapping's 
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stochastic matrix associated with the logical neighbourhood is regular then the 
number of nodes mapped on a single vertex o/ the network is O( M + 5(~)), where 

(k ' , / ) t (  ~)+1 - 1 
5(e) = ( 1 -  ~ )  -'~-7 ---] ' "/ is the subdominant eigenvalue of the mapping's 

stochastic matrix, t(e) the number of steps necessary to converge within e, M is 
the number of nodes and N the number of vertices of the network. 

4 Exper imenta t ions  

We ran a parallel implementation of an algorithm wherein an arbitrary tree grows 
during the course of the computation (as in branch-and-bound serach, divide- 
and-conquer or game tree evaluation), on a 128 x 128 mesh. The following table 
gives the experimental results in terms of the maximum load obtained when the 
randomized algorithm is (resp. is not) used to balance load (each line shows the 
result in terms of the maximum load obtained when we embed an arbitrary tree. 
The first column gives the total nodes number of this tree). 

Number load without 
of nodes randomized 

algorithm 
3123 93.00 
55791 219.00 
65135 4.00 
99325 16.00 
204383 64.00 
731923 64.00 
1640123 256.00 

load with Ldeal 
randomized load 
algorithm 
1.17 1 
4.59 3.41 
4.OO 3.98 
6.82 6.06 
13.43 12.47 
45.86 44.67 
102.59 100.11 

We ran, on a network of 8 stations with a multi threaded environement, a 
parallel implementation of an algorithm wherein an arbitrary binary tree grow 
during the course of the computation. The following table gives the effective load 
of each station obtained with and without the randomized algorithm. The value 
ToTal denotes the total nodes number of the embeded arbitrary tree. 

5 Conclus ion  

Theorem 1 establishes that  for a given mapping function, a simple random- 
ized load distribution algorithm as described in section 2 mMntains dynami- 
cally evolving an arbitrary tree on a general distributed network with a load 
O(N M- + 5(c)), where 5(~) depends on the mapping function. This implies that  
we can easily compare mapping functions just  by computing eigenvalues of the 
associated adjancy matrix. 



N=8 
Num~ro load without load with ideal 
Station randomized randomized load 

algorithm algorithm ToTal/N 
4171 
4012 
7302 
7289 
3605 
3412 
51722 
56659 

16106 
16164 
17050 
16012 
16627 
16597 
20394 
19222 

ToTal 138172.00 

17271.50 
17271.50 
17271.50 
17271.50 
17271.50 
17271.50 
17271.50 
17271.50 
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