
Data Distribution at Run-Time:
Re-using Execution Plans

Olav Beckmann and Paul H J Kelly

Department of Computing, Imperial College
180 Queen's Gate, London SW7 2BZ, U.K.

{oh3 ,phjk}~doc. ic . ac .uk

Abs t r ac t . This paper shows how data placement optimisation tech-
niques which are normally only found in optimising compilers can be
made available efficiently in run-time systems. We study the example
of a delayed evaluation, self-optimising (DESO) numerical library for
a distributed-memory multicomputer. Delayed evaluation allows us to
capture the control-flow of a user program from within the library at
run-time, and to construct an optimised execution plan by propagating
data placement constraints backwards through the DAG representing
the computation to be performed. In loops, essentially identical DAGs
are likely to recur. The main concern of this paper is recognising op-
portunities where an execution plan can be re-used. We have adapted
both conventional parallelising compiler techniques and hardware dy-
namic branch prediction techniques in order to ensure that our run-time
optimisations need not perform any more work than a parallelising com-
piler would have to do unless there is a prospect of better performance.

1 I n t r o d u c t i o n

Parallel libraries have two major advantages as a parallel p rogramming model.
Firstly, they are convenient because user programs simply call l ibrary opera-
tors which hide all aspects of parallelism internally. Secondly, there is ample
evidence [6] that compiled programming models do not yet get close to purpose-
built libraries in terms of performance. I t is therefore often worthwhile to invest
in a highly optimised, machine-specific library of common numerical subroutines.
Hitherto, the disadvantage with such libraries has been tha t opportuni t ies for
opt imisat ion across library calls have been missed.

In this paper, we study a delayed evaluation, self-optimising (DESO) vector-
mat r ix library for a dis t r ibuted-memory mult icomputer . The idea of DESO is
to delay actual execution of function calls for as long as possible. Evaluat ion is
forced by the need to access array elements 1. Delayed evaluation then provides
the oppor tuni ty at run-t ime to construct an execution plan which minirnises
redistribution by propagat ing data placement constraints backwards through the
DAG representing the computat ion to be performed. We will s tudy a detailed
example in Section 2.

1 The most common reasons for accessing array elements are output and conditional
tests. We will refer to statements where this happens as]orce points.

414

Key issues. The main challenge in optimising at run-time is that the optimiser
itself has to be very efficient. We achieve this by

- Working from aggregate loop nests, which have been optimised in isolation
and which are not re-optimised at run-time. It is precisely the point of the
library approach that we have invested in an implementation of selected
operators which have been pre-optimised offtine.

- Using a purely mathematical formulation for data distributions, which al-
lows us to calculate, rather than search for optimal placements. We will not
expand on this aspect of our methodology here.

- Re-using execution plans for previously optimised DAGs. A value-numbering
scheme is used to capture cases where this may be possible. The value num-
bers are used to index a cache of optimisation results, and we use a technique
adapted fl'om hardware dynamic branch prediction for deciding whether to
further optimise DAGs we have previously encountered.

Context and Structure of this Paper. This paper builds on related work in the
field of automatic data placement [8], run-time parallelisation [4, 9, 10] and con-
ventional compiler and architecture technology [1,5]. In our earlier paper [3] we
described the basic idea of a lazy, self-optimising parallel vector-matrix library.
In this current paper, we extend that work by presenting the techniques we use
to avoid re-optimisation of previously encountered problems. Below, we begin in
Section 2 by discussing two alternative strategies for run-time optimisation. Fol-
lowing that, Section 3 presents our techniques for avoiding re-optimisation where
appropriate. Section 4 shows performance results and Section 5 concludes.

2 Issues in R u n - T i m e Opt imisat ion

This section discusses and compares two different basic strategies for performing
run-time optimisation. We will refer to them as "Forward Propagation Only" and
"Forward And Backward Propagation". We use the conjugate gradient iterative
algorithm for solving linear systems Ax - b --- 0 to illustrate both strategies. The
pseudocode for this algorithm can be found in Figure 2. We use the following
terminology: n is the number of operator calls in a sequence, a the maximum
arity of operators, m is the maximum number of different methods per operator.
If we work with a fixed set of data placements, s is the number of different
placements, and in DAGs, d refers to the degree of the shared node (see [8])
with maximum degree.

Forward Propagation Only. This is the only strategy open to us if we perform
run-time optimisation of a sequence of library operators under strict evaluation.
The strategy is illustrated in Figure 1: we optimise the placement of each node
based on information purely about its ancestors. The total optimisation t ime
for a sequence of operator calls under this strategy has linear complexity in the
number of operators. However, as we have illustrated in Figure 1, the price we
pay for using such an algorithm is that it may give a significantly suboptimal

415

;ialised ~ (~) ~ (~)
~a

: r

A.p

G3

A.p
: q.p

~e now need to transpose either q
' p in order to calculate 7. Sup-
)se we choose p.

p ~ r

q= A.p
7 =q.P
p ~ - r . r

-[

x = a p + x

We now require p to be aligned
with x, but we have just trans-
posed it, so we have to transpose
back.
We have made optimisation very
easy by deciding the placement of
each new node generated based
simply on the placement of its
immediate ancestor nodes. How-
ever, this can result in sub-optimal
placements.

Fig. 1. Run-time optimisation of the first iteration of the CG algorithm (see Figure 2)
with Forward Propagation Only.

answer. This problem is present even for trees, but it is much worse for DAGs
since shared nodes are not taken into account properly.

Forward And Backward Propagation. Delayed evaluation gives us the opportu-
nity to propagate placement constraint information backwards through a DAG
since we accumulate a full DAG before we begin to optimise. This type of op-
t imisat ion is much more complex than Forward Propagation Only. Mace [8] has
shown it to be NP-complete for general DAGs, but presents algori thms with
complexity O((m + s2)n) for trees and with complexity O(n x s d+l) for a re-
stricted class of DAG. The point to note here, though, is that Forward and
Backward Propagation does give us the opportuni ty to find the opt imal solution
to a problem, provided we are prepared to spend the t ime required.

3 Re-usingExecution Plans

The previous section has shown how delayed evaluation gives us the oppor tuni ty
to derive optimM execution plans, but potentially at not insignificant cost. In
real programs, essentially identical DAGs often recur. In such situations, our
delayed evaluation, run-t ime approach is set to suffer a significant performance
disadvantage over compile-time techniques unless we can reuse the results of
previous optimisations we have performed.

416

r (~ = b - Ax (~
for i = 1,. . . , irnax

pi--1 = r (i - l)Tr (i - -1)

if i = 1
p (t) ---- r(0)

else f~i-1 = p i - 1 / p i - 2
p(i) = r (i - 1) _{_ ~ (i _ l) p (i - 1)

endi f
q(i) = Ap(i)

O t i = Pi - -1 /p (i)Tq (i)
X(i) ~_ X(i -1) + a i p (i)
r (i) ~ r (i -1) _ oziq(i)

c h e c k c o n v e r g e n c e
end

Fig. 2. Left: Pseudocode for the conjugate gradient iterative algorithm. Right : Opti-
misation with Forward And Backward Propagation: we take account of the use of p in
the update of x in deciding the correct placement for the earlier calculation of 7.

This section shows how we can ensure that our optimiser does not have to
carry out any more work than an optimising compiler would have to do, unless
there is the prospect of better performance than the compiler could deliver. We
discuss first the problem of how to recognise a DAG, i.e. optimisation problem,
which we have encountered before and then the issue of whether to optimise
further, or, re-optimise, such a DAG.

Recognising Opportunities for Reuse. The full optimisation problem is a large
structure. To avoid having to traverse it for comparing with previously encoun-
tered DAGs, we derive a hashed "value number" [1, 5] for each node.

- Our value numbers have to encode data placements and placement con-
straints, not actual data values. For nodes which are already evaluated, we
simply apply a hash function to the placement descriptor of that node. For
nodes which are not yet evaluated, we have to apply a hash function to the
placement constraints on that node.

- The key observation is that by seeking to take account of all placement con-
straints on a node, we are in danger of deriving an algorithm for calculating
value numbers which has the same O-complexity as Forward and Backward
Propagation optimisation Mgorithms: each node in a DAG can potentiMly
exert a placement constraint over every other node.

- Our algorithm for calculating value numbers is therefore based on Forward
Propagation Only: we calculate value numbers for unevaluated nodes by
applying a hash function to the placement constraints deriving from their
immediate ancestors.

417

- Since we do not store the "full DAG" information, we cannot easily detect
hash conflicts. We return to this point shortly.

When to Re-Use and When to Optimise. Because our value numbers are calcu-
lated on Forward Propagation Only information, we have to address the problem
of how to handle those cases where nodes which have identical value numbers are
used in a different context later on; in other words, how to to avoid the draw-
backs of Forward Propagation Only optimisation. This is a branch-prediction
problem, and we use a technique adapted from hardware dynamic branch pre-
diction (see [7]) for predicting heuristically whether identical value numbers will
result in identical future use of the corresponding node and hence identicM op-
t imisat ion problems.

Caching Execution Plans. Value numbers and 'dynamic branch prediction' to-
gether provide us with a fairly reliable mechanism for recognising the fact tha t
we have encountered a node in the same context before. Assuming tha t we opti-
mised the placement of that node when we first encountered it, our task is then
s imply to re-use the placement which the optimiser derived. We do this by using
a "cache" of optimised placements, which is indexed by value numbers. Each
cache entry has a valid-tag which is set by our branch prediction mechanism.

Competitive Optimisation. As we showed in Section 2, full opt imisat ion based on
Forward And Backward Propagation can be very expensive. Each t ime we invoke
the optimiser on a DAG, we therefore only spend a limited t ime optimising tha t
DAG. For a DAG which we encounter only once, this means tha t we only spend
very little t ime trying to eliminate the worst redistributions. For DAGs which
recur, our strategy is to gradually improve the execution plan used until our
optimisat ion algorithm can find no further improvements.

The final point we need to address is how to handle hash conflicts. The result
of a hash conflict on a value number will be that we use a sub-opt imal placement
for a node which we had previously optimised. In order to detect this, our sys tem
has been instrumented to record the communicat ion cost of executing a DAG
under an optimised execution plan. An increase in this cost on a "re-use" of tha t
plan indicates a hash conflict.

Summary. We use the full optimisation information, i.e. Forward and Back-
ward Propagation, to optimise. We obtain access to this information by delayed
evaluation. We use a scheme based on Forward Propagation Only, with linear
complexity in program length, to ensure tha t we re-use the results of previous
optimisations.

4 P e r f o r m a n c e

In this Section, we show performance figures for our library on the Fujitsu
AP3000 mult icomputer here at Imperial College. As a benchmark we used the

418

Table 1. Time in milliseconds for 20 iterations of Conjugate Gradient, with a con-
vergence test every 10 iterations, on the AP3000, with 300MHz UltraSparc-2 nodes
(average figures, outlying points were omitted). N denotes timings without any opti-
misation, O timings with optimisation but no caching, and C timings with optimisation
and caching of optimisation results. Memory shows time spent in malloc () and f ree (),
Overhead the cost of maintaining data distribution descriptors and suspended library
calls at run-time. Speedup is the speedup due to optimisation and execution plan re-use.

P N Comp. Memory Overh. Comms. Opt. Total Speedup
N 1 256 51.14 0.81 3.97 0.00 0.00 55.93
O 1 256 51.22 0.81 3.88 0.00 3.59 59.50 0.94
C 1 256 51.13 0.79 3.25 0.00 0.30 55.47 1.01
N 4 512 51.30 1.03 3.47 30.51 0.00 86.30
O 4 512 51.79 0.86 3.06 22.35 3.73 81.79 1.06
C 4 512 51.69 0.94 2.45 21.94 0.31 77.32 1.12
N 9 768 51.72 1.12 3.46 34.78 0.00 91.10
O 9 768 51.96 0.91 3.08 26.06 3.74 85.75 1.06
C 9 768 51.90 0.98 2.46 25.91 0.31 81.55 1.12
N 16 1024 52.05 1.03 3.48 45.37 0.00 101.93
0 16 1024 52.29 0.88 3.16 35.99 3.82 96.14 1.06
c 16 1024 52.13 0.95 2.49 35.65 0.31 91.53 1.11

conjugate gradient iterative algorithm. The pseudo-code for the algorithm and
the source code when implemented using our library were shown in Figure 2 and
the timing data are in Table 1.

- Our optimiser avoids two out of three vector transpose operations per it-
eration. This can not be seen from the data in Table 1, it was determined
analytically and by tracing communication.

- Optimisation achieves a reduction in communication time of between 20%
and 30%. We do not achieve more because a significant proportion of the
communication in this algorithm is due to reduce-operations which are un-
affected by our current optimisations.

- Run-time overhead and optimisation time are independent of the amount of
parallelism used. We suspect that the slight difference is due to cache effects.

- The reason why run-time overhead is reduced by optimisation is that per-
forming fewer redistributions also results in spending less time inspecting
data placement descriptors. Caching achieves a further reduction in over-
head; this is because it is cheaper to read placement descriptors from cache
than to generate them by function calls.

- Without caching of optimisation results, we achieve an overall speedup of
around 60s On platforms which have less powerful processors than the
300MHz UltraSparc-2 nodes we use here, the cost of optimising afresh each
time can easily outweigh the benefit of reduced communication.

- With caching of optimisation results, the time we spend optimising is negli-
gible, and we achieve overall speedups of around 12~163

419

5 C o n c l u s i o n s

We have presented a technique for interprocedural data placement optimisation
which exploits run-time control-flow information and is applicable in contexts
where the calling program cannot be analysed statically. We present preliminary
experimental evidence that the benefits can easily outweigh the run-time costs.

Related Work. There is a huge body of work on data mappings for regular
problems, [2] is but one example. Our work relies on this in producing optimised
implementations for library operators. However, the problem we seek to address
in this paper is different - - how to perform interprocedurM optimisation over a
sequence of such pre-optimised operators.

Saltz et al. [10] address the basic problem of how to parallelise loops where
the dependence structure is not known statically. Loops are translated into an
inspector loop which determines the dependencies at run-time and constructs a
schedule, and an executor loop which carries out the calculations planned by the
inspector. Saltz et al. discuss the possibility of reusing a previously constructed
schedule, but rely on user annotations for doing so. Ponnusamy et al. [9] propose
a simple conservative model which avoids the user having to indicate to the
compiler when a schedule may be reused. Benkner et al. [4] describe the reuse of
parallel schedules via explicit directives in HPF+: aEUSE directives for indicating
that the schedule computed for a certain loop can be reused and SCHEDULE
variables which allow a schedule to be saved and reused in other code sections.

Value numbering schemes were pioneered by Ershov [5], who proposed the
use of "convention numbers" for denoting the results of computations and avoid
having to recompute them. More recent work on this subject has been done, e.g.,
by Alpern et al. [1].

Run-Time vs. Cornpile-T~me Optimisation. The particular example studied in
this paper would have been amenable to compile-time analysis. We refer back
to Section 1 and the arguments of convenience and efficiency we outlined there
for why we parallelise this application via a parallel library, using a library
then forces us to optimise at run-time. Further, we have shown that a runtime
optimiser need not actually perform any more work than a compiler.

To compare the quality of run-time and compile-time schedules, consider the
loop opposite, assuming that there are no force-points inside the loop and that
the loop is encountered a number of times, evaluation being forced after the loop
each time.

for(i = O; i < N; ++i) {

if <unknown condition>

<do A>

else

<do B>
}

420

This loop can potentially have 2 N control-paths. A compile-t ime optimiser
would have to find one compromise execution plan for all invocations of the
loop. With our approach, we optimise the actual DAG which is generated on
each occasion. If the number of different DAGs is high, compile-t ime methods
would probably have the edge over ours, since we cannot reuse execution plans.
If, however, the number of different DAGs is small, our execution plans for the
actual DAGs will be superior to compile-t ime compromise solutions, and by
reusing them, we limit the t ime spent optimising.

Future work. The most exciting next step is to store cached execution plans per-
sistently, so tha t they can be reused subsequently for this or similar applications.
Although we can derive some benefit f rom exploiting run-t ime control-flow infor-
mation, we have the opportuni ty to make run-t ime opt imisat ion decisions based
on run-t ime properties of data; we plan to extend this work to address sparse
matrices shortly. The run-time system has to make on-the-fly da ta placement
decisions. An intriguing question raised by this work is to compare this with an
opt imal off-line schedule.

Acknowledgements. This work was partially supported by the EPSRC, under the
Futurespace and CRAMP projects (refs. GR/J 87015 and GR/J 99117). We thank the
Imperial College Parallel Computing Centre for the use of their AP3000 machine.

R e f e r e n c e s

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equalities of variables
in programs. In 15th Annual ACM Symposium on Principles of Programming
Languages, pages 1-11, San Diego, California, Jan. 1988.

2. J. M. Anderson, S. P. Amarasinghe, and M. S. Lain. Data and computation trans-
formations for multiprocessors. SIGPLAN Notices, 30(8):166-178, Aug. 1995.

3. O. Beckmann and P. H. J. Kelly. Runtime iuterprocedural data placement opti-
misation for lazy parallel libraries (extended abstract). In Lengauer et al., editor,
Proceedings of Euro-Par '97, Passau, Germany, number 1300 in LNCS, pages 306-
309. Springer Verlag, Aug. 1997.

4. S. Benkner, P. Mehrotra, J. V. Rosendale, Zima, and Hans. High-level management
of communication schedules in HPF-like languages. Technical Report TR-97-46,
Institute for Computer Applications in Science and Engineering, NASA Langley
Research Center, Hampton, VA 23681, USA, Sept. 1997.

5. A. P. Ershov. On programming of arithmetic operations. Communications of the
ACM, 1(8):3-6, 1958. Three figures from this article are in CACM 1(9):16.

6. W. D. Gropp. Performance driven programming models. In MPPM'97, Proceedings
of the 3 rd International Working Conference on Massively Parallel Programming
Models, London, U.K., Nov. 1997. To appear.

7. J. L. Hennessy and D. A. Patterson. Computer Architecture A Quantative Ap-
proach. Morgan Kaufman, San Mateo, California, 1 ~t edition, 1990.

8. M. E. Mace. Storage Patterns in Parallel Processing. Kluwer, 1987.
9. R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime compilation techniques for

data partitioning and communication schedule reuse. In Proceedings of Supercom-
puting '93: Portland, Oregon, November 15-19, 1993, pages 361-370, New York,
NY 10036, USA, Nov. 1993. ACM Press.

421

10. J. H. Saltz, R. Mirehandaney, and K. Crow]ey. Run-time paral]elization and
schedu]ing of loops. IEEE Transactions on Computers, 40(5):603-612, May 1991.

