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Abs t r ac t .  This paper shows how data placement optimisation tech- 
niques which are normally only found in optimising compilers can be 
made available efficiently in run-time systems. We study the example 
of a delayed evaluation, self-optimising (DESO) numerical library for 
a distributed-memory multicomputer. Delayed evaluation allows us to 
capture the control-flow of a user program from within the library at 
run-time, and to construct an optimised execution plan by propagating 
data placement constraints backwards through the DAG representing 
the computation to be performed. In loops, essentially identical DAGs 
are likely to recur. The main concern of this paper is recognising op- 
portunities where an execution plan can be re-used. We have adapted 
both conventional parallelising compiler techniques and hardware dy- 
namic branch prediction techniques in order to ensure that our run-time 
optimisations need not perform any more work than a parallelising com- 
piler would have to do unless there is a prospect of better performance. 

1 I n t r o d u c t i o n  

Parallel libraries have two major  advantages as a parallel p rogramming  model.  
Firstly, they are convenient because user programs simply call l ibrary opera- 
tors which hide all aspects of parallelism internally. Secondly, there is ample  
evidence [6] that  compiled programming models do not yet get close to purpose- 
built  libraries in terms of performance. I t  is therefore often worthwhile to invest 
in a highly optimised, machine-specific library of common numerical subroutines. 
Hitherto,  the disadvantage with such libraries has been tha t  opportuni t ies  for 
opt imisat ion across library calls have been missed. 

In this paper,  we study a delayed evaluation, self-optimising (DESO) vector- 
mat r ix  library for a dis t r ibuted-memory mult icomputer .  The idea of DESO is 
to delay actual execution of function calls for as long as possible. Evaluat ion is 
forced by the need to access array elements 1. Delayed evaluation then provides 
the oppor tuni ty  at run-t ime to construct an execution plan which minirnises 
redistribution by propagat ing data  placement constraints backwards through the 
DAG representing the computat ion to be performed. We will s tudy a detailed 
example in Section 2. 

1 The most common reasons for accessing array elements are output and conditional 
tests. We will refer to statements where this happens as ]orce points. 
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Key issues. The main challenge in optimising at run-time is that  the optimiser 
itself has to be very efficient. We achieve this by 

- Working from aggregate loop nests, which have been optimised in isolation 
and which are not re-optimised at run-time. It is precisely the point of the 
library approach that  we have invested in an implementation of selected 
operators which have been pre-optimised offtine. 

- Using a purely mathematical  formulation for data  distributions, which al- 
lows us to calculate, rather than search for optimal placements. We will not 
expand on this aspect of our methodology here. 

- Re-using execution plans for previously optimised DAGs. A value-numbering 
scheme is used to capture cases where this may be possible. The value num- 
bers are used to index a cache of optimisation results, and we use a technique 
adapted fl'om hardware dynamic branch prediction for deciding whether to 
further optimise DAGs we have previously encountered. 

Context and Structure of this Paper. This paper builds on related work in the 
field of automatic data  placement [8], run-time parallelisation [4, 9, 10] and con- 
ventional compiler and architecture technology [1,5]. In our earlier paper [3] we 
described the basic idea of a lazy, self-optimising parallel vector-matrix library. 
In this current paper, we extend that work by presenting the techniques we use 
to avoid re-optimisation of previously encountered problems. Below, we begin in 
Section 2 by discussing two alternative strategies for run-time optimisation. Fol- 
lowing that,  Section 3 presents our techniques for avoiding re-optimisation where 
appropriate. Section 4 shows performance results and Section 5 concludes. 

2 Issues in R u n - T i m e  Opt imisat ion  

This section discusses and compares two different basic strategies for performing 
run-time optimisation. We will refer to them as "Forward Propagation Only" and 
"Forward And Backward Propagation". We use the conjugate gradient iterative 
algorithm for solving linear systems Ax - b --- 0 to illustrate both strategies. The 
pseudocode for this algorithm can be found in Figure 2. We use the following 
terminology: n is the number of operator calls in a sequence, a the maximum 
arity of operators, m is the maximum number of different methods per operator.  
If we work with a fixed set of data  placements, s is the number of different 
placements, and in DAGs, d refers to the degree of the shared node (see [8]) 
with maximum degree. 

Forward Propagation Only. This is the only strategy open to us if we perform 
run-time optimisation of a sequence of library operators under strict evaluation. 
The strategy is illustrated in Figure 1: we optimise the placement of each node 
based on information purely about its ancestors. The total  optimisation t ime 
for a sequence of operator calls under this strategy has linear complexity in the 
number of operators. However, as we have illustrated in Figure 1, the price we 
pay for using such an algorithm is that  it may give a significantly suboptimal 
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We now require p to be aligned 
with x, but we have just trans- 
posed it, so we have to transpose 
back. 
We have made optimisation very 
easy by deciding the placement of 
each new node generated based 
simply on the placement of its 
immediate ancestor nodes. How- 
ever, this can result in sub-optimal 
placements. 

Fig. 1. Run-time optimisation of the first iteration of the CG algorithm (see Figure 2) 
with Forward Propagation Only. 

answer. This problem is present even for trees, but it is much worse for DAGs 
since shared nodes are not taken into account properly. 

Forward And Backward Propagation. Delayed evaluation gives us the opportu-  
nity to propagate  placement constraint information backwards through a DAG 
since we accumulate a full DAG before we begin to optimise. This type of op- 
t imisat ion is much more complex than Forward Propagation Only. Mace [8] has 
shown it to be NP-complete  for general DAGs, but presents algori thms with 
complexity O((m + s2)n) for trees and with complexity O(n x s d+l) for a re- 
stricted class of DAG. The point to note here, though, is that  Forward and 
Backward Propagation does give us the opportuni ty  to find the opt imal  solution 
to a problem, provided we are prepared to spend the t ime required. 

3 Re-usingExecution Plans 

The previous section has shown how delayed evaluation gives us the oppor tuni ty  
to derive optimM execution plans, but potentially at not insignificant cost. In 
real programs,  essentially identical DAGs often recur. In such situations, our 
delayed evaluation, run-t ime approach is set to suffer a significant performance 
disadvantage over compile-time techniques unless we can reuse the results of 
previous optimisations we have performed. 
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endi f  
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X(i) ~_ X(i -1 )  + a i p  (i) 
r (i) ~ r ( i -1 )  _ oziq(i) 

c h e c k  c o n v e r g e n c e  
end 

Fig. 2. Left: Pseudocode for the conjugate gradient iterative algorithm. Right :  Opti- 
misation with Forward And Backward Propagation: we take account of the use of p in 
the update of x in deciding the correct placement for the earlier calculation of 7. 

This section shows how we can ensure that our optimiser does not have to 
carry out any more work than an optimising compiler would have to do, unless 
there is the prospect of better performance than the compiler could deliver. We 
discuss first the problem of how to recognise a DAG, i.e. optimisation problem, 
which we have encountered before and then the issue of whether to optimise 
further, or, re-optimise, such a DAG. 

Recognising Opportunities for Reuse. The full optimisation problem is a large 
structure. To avoid having to traverse it for comparing with previously encoun- 
tered DAGs, we derive a hashed "value number" [1, 5] for each node. 

- Our value numbers have to encode data placements and placement con- 
straints, not actual data values. For nodes which are already evaluated, we 
simply apply a hash function to the placement descriptor of that  node. For 
nodes which are not yet evaluated, we have to apply a hash function to the 
placement constraints on that node. 

- The key observation is that by seeking to take account of all placement con- 
straints on a node, we are in danger of deriving an algorithm for calculating 
value numbers which has the same O-complexity as Forward and Backward 
Propagation optimisation Mgorithms: each node in a DAG can potentiMly 
exert a placement constraint over every other node. 

- Our algorithm for calculating value numbers is therefore based on Forward 
Propagation Only: we calculate value numbers for unevaluated nodes by 
applying a hash function to the placement constraints deriving from their 
immediate ancestors. 
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- Since we do not store the "full DAG" information,  we cannot easily detect 
hash conflicts. We return to this point shortly. 

When to Re-Use and When to Optimise. Because our value numbers are calcu- 
lated on Forward Propagation Only information,  we have to address the problem 
of how to handle those cases where nodes which have identical value numbers  are 
used in a different context later on; in other words, how to to avoid the draw- 
backs of Forward Propagation Only optimisation.  This is a branch-prediction 
problem, and we use a technique adapted from hardware dynamic branch pre- 
diction (see [7]) for predicting heuristically whether identical value numbers  will 
result in identical future use of the corresponding node and hence identicM op- 
t imisat ion problems. 

Caching Execution Plans. Value numbers and 'dynamic  branch prediction'  to- 
gether provide us with a fairly reliable mechanism for recognising the fact tha t  
we have encountered a node in the same context before. Assuming tha t  we opti- 
mised the placement of that  node when we first encountered it, our task is then 
s imply to re-use the placement which the optimiser derived. We do this by using 
a "cache" of optimised placements, which is indexed by value numbers.  Each 
cache entry has a valid-tag which is set by our branch prediction mechanism. 

Competitive Optimisation. As we showed in Section 2, full opt imisat ion based on 
Forward And Backward Propagation can be very expensive. Each t ime we invoke 
the optimiser on a DAG, we therefore only spend a limited t ime optimising tha t  
DAG. For a DAG which we encounter only once, this means tha t  we only spend 
very little t ime trying to eliminate the worst redistributions. For DAGs which 
recur, our strategy is to gradually improve the execution plan used until our 
optimisat ion algorithm can find no further improvements.  

The final point we need to address is how to handle hash conflicts. The result 
of a hash conflict on a value number will be that  we use a sub-opt imal  placement  
for a node which we had previously optimised. In order to detect this, our sys tem 
has been instrumented to record the communicat ion cost of executing a DAG 
under an optimised execution plan. An increase in this cost on a "re-use" of tha t  
plan indicates a hash conflict. 

Summary. We use the full optimisation information, i.e. Forward and Back- 
ward Propagation, to optimise. We obtain access to this information by delayed 
evaluation. We use a scheme based on Forward Propagation Only, with linear 
complexity in program length, to ensure tha t  we re-use the results of previous 
optimisations.  

4 P e r f o r m a n c e  

In this Section, we show performance figures for our library on the Fujitsu 
AP3000 mult icomputer  here at Imperial  College. As a benchmark we used the 
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Table 1. Time in milliseconds for 20 iterations of Conjugate Gradient, with a con- 
vergence test every 10 iterations, on the AP3000, with 300MHz UltraSparc-2 nodes 
(average figures, outlying points were omitted). N denotes timings without any opti- 
misation, O timings with optimisation but no caching, and C timings with optimisation 
and caching of optimisation results. Memory shows time spent in malloc () and f ree  (), 
Overhead the cost of maintaining data distribution descriptors and suspended library 
calls at run-time. Speedup is the speedup due to optimisation and execution plan re-use. 

P N Comp. Memory Overh. Comms. Opt. Total Speedup 
N 1 256 51.14 0.81 3.97 0.00 0.00 55.93 
O 1 256 51.22 0.81 3.88 0.00 3.59 59.50 0.94 
C 1 256 51.13 0.79 3.25 0.00 0.30 55.47 1.01 
N 4 512 51.30 1.03 3.47 30.51 0.00 86.30 
O 4 512 51.79 0.86 3.06 22.35 3.73 81.79 1.06 
C 4 512 51.69 0.94 2.45 21.94 0.31 77.32 1.12 
N 9 768 51.72 1.12 3.46 34.78 0.00 91.10 
O 9 768 51.96 0.91 3.08 26.06 3.74 85.75 1.06 
C 9 768 51.90 0.98 2.46 25.91 0.31 81.55 1.12 
N 16 1024 52.05 1.03 3.48 45.37 0.00 101.93 
0 16 1024 52.29 0.88 3.16 35.99 3.82 96.14 1.06 
c 16 1024 52.13 0.95 2.49 35.65 0.31 91.53 1.11 

conjugate gradient iterative algorithm. The pseudo-code for the algorithm and 
the source code when implemented using our library were shown in Figure 2 and 
the timing data  are in Table 1. 

- Our optimiser avoids two out of three vector transpose operations per it- 
eration. This can not be seen from the data in Table 1, it was determined 
analytically and by tracing communication. 

- Optimisation achieves a reduction in communication time of between 20% 
and 30%. We do not achieve more because a significant proportion of the 
communication in this algorithm is due to reduce-operations which are un- 
affected by our current optimisations. 

- Run-time overhead and optimisation time are independent of the amount  of 
parallelism used. We suspect that the slight difference is due to cache effects. 

- The reason why run-time overhead is reduced by optimisation is that  per- 
forming fewer redistributions also results in spending less time inspecting 
data placement descriptors. Caching achieves a further reduction in over- 
head; this is because it is cheaper to read placement descriptors from cache 
than to generate them by function calls. 

- Without caching of optimisation results, we achieve an overall speedup of 
around 60s On platforms which have less powerful processors than the 
300MHz UltraSparc-2 nodes we use here, the cost of optimising afresh each 
time can easily outweigh the benefit of reduced communication. 

- With caching of optimisation results, the time we spend optimising is negli- 
gible, and we achieve overall speedups of around 12~163 
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5 C o n c l u s i o n s  

We have presented a technique for interprocedural data placement optimisation 
which exploits run-time control-flow information and is applicable in contexts 
where the calling program cannot be analysed statically. We present preliminary 
experimental evidence that the benefits can easily outweigh the run-time costs. 

Related Work. There is a huge body of work on data mappings for regular 
problems, [2] is but one example. Our work relies on this in producing optimised 
implementations for library operators. However, the problem we seek to address 
in this paper is different - -  how to perform interprocedurM optimisation over a 
sequence of such pre-optimised operators. 

Saltz et al. [10] address the basic problem of how to parallelise loops where 
the dependence structure is not known statically. Loops are translated into an 
inspector loop which determines the dependencies at run-time and constructs a 
schedule, and an executor loop which carries out the calculations planned by the 
inspector. Saltz et al. discuss the possibility of reusing a previously constructed 
schedule, but rely on user annotations for doing so. Ponnusamy et al. [9] propose 
a simple conservative model which avoids the user having to indicate to the 
compiler when a schedule may be reused. Benkner et al. [4] describe the reuse of 
parallel schedules via explicit directives in HPF+: aEUSE directives for indicating 
that the schedule computed for a certain loop can be reused and SCHEDULE 
variables which allow a schedule to be saved and reused in other code sections. 

Value numbering schemes were pioneered by Ershov [5], who proposed the 
use of "convention numbers" for denoting the results of computations and avoid 
having to recompute them. More recent work on this subject has been done, e.g., 
by Alpern et al. [1]. 

Run-Time  vs. Cornpile-T~me Optimisation. The particular example studied in 
this paper would have been amenable to compile-time analysis. We refer back 
to Section 1 and the arguments of convenience and efficiency we outlined there 
for why we parallelise this application via a parallel library, using a library 
then forces us to optimise at run-time. Further, we have shown that a runtime 
optimiser need not actually perform any more work than a compiler. 

To compare the quality of run-time and compile-time schedules, consider the 
loop opposite, assuming that there are no force-points inside the loop and that 
the loop is encountered a number of times, evaluation being forced after the loop 
each time. 

for(i = O; i < N; ++i) { 

if <unknown condition> 

<do A> 

else 

<do B> 
} 
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This loop can potentially have 2 N control-paths. A compile-t ime optimiser  
would have to find one compromise execution plan for all invocations of the 
loop. With  our approach, we optimise the actual DAG which is generated on 
each occasion. If the number of different DAGs is high, compile-t ime methods  
would probably have the edge over ours, since we cannot reuse execution plans. 
If, however, the number  of different DAGs is small, our execution plans for the 
actual DAGs will be superior to compile-t ime compromise solutions, and by 
reusing them, we limit the t ime spent optimising. 

Future work. The most  exciting next step is to store cached execution plans per- 
sistently, so tha t  they can be reused subsequently for this or similar applications. 
Although we can derive some benefit f rom exploiting run-t ime control-flow infor- 
mation,  we have the opportuni ty  to make run-t ime opt imisat ion decisions based 
on run-t ime properties of data; we plan to extend this work to address sparse 
matrices shortly. The run-time system has to make on-the-fly da ta  placement  
decisions. An intriguing question raised by this work is to compare  this with an 
opt imal  off-line schedule. 
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