
Mutual Exclusion Between Neighboring Nodes
in a Tree That Stabilizes Using Read/Wri te

Atomicity

Gheorghe Antonoiu 1 and P rad ip K. Sr imani 1

Department of Computer Science, Colorado State University, Ft. Collins, CO 80523

A b s t r a c t . Our purpose in this paper is to propose a new protocol that
can ensure mutual exclusion between neighboring nodes in a tree struc-
tured distributed system, i.e., under the given protocol no two neigh-
boring nodes can execute their critical sections concurrently. This pro-
tocol can be used to run a serial model self stabilizing algorithm in a
distributed environment that accepts as atomic operations only send a
message, receive a message an update a state. Unlike the scheme in [1],
our protocol does not use time-stamps (which are basically unbounded
integers); our algorithm uses only bounded integers (actually, the integers
can assume values only 0, 1, 2 and 3) and can be easily implemented.

1 I n t r o d u c t i o n

Because of the popula r i ty of the serial mode l and the relat ive ease of its use in
designing new self-stabilizing a lgor i thm, it is worthwhile to design lower level
self-stabil izing protocols such tha t an a lgor i thm developed for a serial mode l
can be run in a d is t r ibuted envi romnent . Th is approach was used in [1] and can
be c o m p a r e d with the layered approach use in networks pro tocol s tacks. T h e
advan tage of such a lower level self-stabil izing pro tocol is t ha t it makes the job
of self-stabilizing appl ica t ion designer easier; one can work with the re la t ively
easier serial model and does not have to worry abou t message m a n a g e m e n t
a t lower level. Our purpose in this pape r is to propose a new pro tocol t h a t
can be used to run a serial mode l self s tabi l izing a lgor i thm in a d i s t r ibu ted
env i ronmen t t h a t accepts as a tomic opera t ions only send a message , receive a
message an upda t e a state. Unlike the scheme in [1], our pro tocol does not use
t i m e - s t a m p s (which are basical ly unbounded integers); our a lgo r i thm uses only
bounded integers (actually, the integers can assume values only 0, 1, 2 and 3) and
can be easily implemen ted . Our a lgor i thm is appl icable for d i s t r ibu ted sys t ems
whose under ly ing topo logy is a tree.

I t is interest ing to note t ha t the proposed protocol can be viewed as a special
class of self-stabilizing d is t r ibuted m u t u a l exclusion protocol . In t r ad i t iona l dis-
t r i bu ted m u t u a l exclusion protocols , self-stabilizing or non self-stabil izing (for
references in self-stabil izing d is t r ibuted m u t u a l exclusion protocols , see [2] and
for non self-stabil izing d is t r ibuted m u t u a l exclusion protocols , see [3,4]), the ob-
ject ive is to ensure t ha t only one node in the sys t em can execute its cri t ical

546

section at any given t ime (i.e., critical section execution is mutual ly exclusive
from all other nodes in the system; the objective in our protocol, as in [1], is
to ensure that a node executes its critical section mutual ly exclusive f rom its
neighbors in the system graph (as opposed to all nodes in the system), i.e., mul-
tiple nodes can execute their critical sections concurrently as long as they are
not neighbors to each other; in the critical section the node executes an a tomic
step of a serial model self-stabilizing algorithm.

2 M o d e l

We model the distributed system, as used in this paper, by using an undirected
graph G : (V, E). The nodes represent the processors while the symmetr ic edges
represent the bidirectional communicat ion links. We assume that each processor
has its unique id. Each node x maintains one or more local s tate variables and
one or more local state vectors (one vector for each local variable) tha t are used
to store copies of the locM state variables of the neighboring nodes. Each node x
maintains an integer variable Sx denoting its status; the node also mainta ins a
local state vector LS~ where it stores the copies of the s ta tus of its neighbors (this
local state vector contains d~ elements, where d~ is the degree of the node x, i.e.
z has dx many neighbors); we use the notation LS~ (y) for the local s tate vector
element of node x that keeps a copy of the local s tate variable Sy of neighbor
node y. The local state of a node x is defined by its local state variables and its
local state vectors. A node can both read and write its local s tate variables and
its local s tate vectors; it can only read (and not write) the local s tate variables
of its neighboring nodes and it does neither read nor write the local s tate vectors
of other nodes. A configuration of the entire system or a system state is defined
to be the vector of local states of all nodes.

Next, our model assumes read/wri te atomicity of [2] (as opposed to the com-
posite read/wri te atomicity as in [5, 6]). An atomic step (move) of a processor
node consists of either reading the a local s tate variable of one of its neighbors
(and updat ing the corresponding entry in the appropriate replica vector), or
some internal computat ion, or writing of one of its local s tate variables; any
such move is executed in finite time. Execution of a move by a processor may be
interleaved with moves by other nodes - in this case the moves are concurrent.
We use the notat ion A/'(x) = {nz[1],....n~:[d~]} to denote the set of neighbors
of node x.

The process executed by each node x consists of an infinite loop of a finite
sequence of Read, Conditional critical section and Write moves.

D e f i n i t i o n 1. An infinite execution is fair if it contains a infinite number of
actions for any type.

Remark 1. The purpose of our protocol is to ensure mutua l exclusion between
neighboring nodes. Each node x can execute its critical section iff the predicate
~ is true at node x. Thus, in a legit imate system state, mutua l exclusion is
ensured iff

~ ~ Vy l y is a neighbor of x, - ~ y

547

i.e., as long as node x executes its CS, no neighbor y of node z can execute its
CS (~ I (Y is a neighbor of x) is false).

3 S e l f - S t a b i l i z i n g B a l a n c e U n b a l a n c e P r o t o c o l f o r a P a i r

o f P r o c e s s e s

We present an approach without using any shared variables unlike that in [2].
The structure of the two processes A and B is the same, i.e. infinite loop at
each processor consists of an atomic read operation, critical section execution
if certain predicate is true and an atomic write action. Sa and LS~ (b) are two
local variables maintained by process A (LSa (b) is the variable mainta ined at
process A to store a copy of the state of its neighbor process B); process A can
write on both Sa and LS,(b) and process B can only read Sa. Similarly, 5;5 and
LSb(a) are local variables to process B: process B can write on both 5;5 and
LSb(a) and process A can only read Sb. The difference is tha t the variables are
now ternary, i.e., they can assume values 0, 1 or 2. The proposed algori thm is
shown in Figure 1:

[1 Process A 11 -" Vroce's;'B II

CSa : if(S. = O) then Execute CS CSb : if(Sb = 1) then Execute CS
W.: if(L&(b) = G) then & = & + ~ rood 311 Wb: Sb = LSb(a);

Fig. 1. Self-Stabilizing Balance UnbMance Protocol for a Pair of Processes

Since each of the processes A and B executes an infinite loop, after a Ra
action the next "A" type action is W~, after a Wa action the next "A" type
action is Ra, after a Rb action the next "B" type action is Wb, after a Wb action
the next "B" type action is Rb and so on.

Remark 2. An execution of the system is an infinite execution of the processes
A and B and hence an execution of the system contains an infinite number of
each of the actions from the set {Ra, Wa, Rb, Wb}; thus, the execution is fair.

The system may star t from an arbi trary initial s tate and the first action in the
execution of the system can be any arbi trary one f rom the set {Ra, Wa, Rb, Wb}.
Note tha t the global system state is defined by the variables S~ and LS~ (b) in
process A and the variables 5;5 and LSb(a) in process B.

Remark 3. When a process makes a move (the system executes an action), the
system state may or may not be changed. For example, in a system state where
Sa ~s LSa(b), the move Wa does not modify the system state, i.e., the system
remains in the same state after the move.

548

D e f i n i t i o n 2. A move (action) that modifies the system state is called a m o d -
i fy ing a c t i on .

Our objective is to show that the system, when started from an arbi t rary
initial state (possibly illegitimate), converges to a legitimate state in finite t ime
(after finitely many actions by the processes). We introduce a new binary rela-
tion.

D e f i n i t i o n 3. We use the notation x ~- y, if x = y or x = (y + 1) mod 3, where
x , y E Z3.

Remark 4. The relation ~- is neither reflexive, nor transitive, nor symmetric. For
example, 1 ~- 0, 2 ~- 2, 2 ~ 0, 2 ~- 1, 0 ~ 1, etc.

D e f i n i t i o n 4. Consider the ordered sequence of variable (S~, LSb(a), Sb, LSa(b)) ;
a system state is l e g i t i m a t e /f (i) S~ ~_ nSb(a) A nSb(a) ~- Sb ASb ~_ LSa(b)
and (ii) if at most one pair of successive variables in the previous sequence are
unequal.

Example 1. For example, {Sa : 1, L S a (b) :- O, Sb : 0, LSb(a) = 1} is a
legitimate state while {S~ = 2, LSa(b) = 1, Sb = 1, LSb(a) = 0} is not.

T h e o r e m 1. In a legitimate state the two processes A and B execute their crit-
ical sections in mutual exclusive way, i.e., if process A is executing CS then
process B cannot execute CS and vice versa, i.e. Sa = 0 ~ Sb ~ 1 and
S b = I ~ S a r

Proof. The proof is obvious since in a legitimate state S~ ~" LSb (a) A LSb (a)
Sb ASb ~- LS~ (b) and at most one pair of successive variables in the sequence
can be unequal.

T h e o r e m 2. Any arbitrary move from the set { Ra, Wa, Rb, Wb } made in a le-
gitimate state of the system leads to a legitimate state after the move.

Pro@ Since there are only four possible moves, it is easy to check the validity
of the claim. For example, consider the move Ra ; the variable LS~(b) is affected;
if LSa(b) = Sb before the move, this move does not change the system state;
if LSa(b) ~ Sb before the move, then the system state before the move must
satisfy Sa = LSb(a) = Sb (since it is legitimate) and after the move it will
satisfy S~ = LSb(a) = Sb = LS~(b) (hence, the resulting state is legitimate).

L e m m a 1. Any infinite fair execution contains infinitely many modifying ac-
tions (see Definition 2).

Proof. By contradiction. Assume that after a finite number of moves Sa does
not change its value anymore. Then after a complete loop executed by process
B, LSb(a) = Sa and Sb = Sa. In the next loop the process A must move, which
contradicts our assumption. It is easy to see that if Sa changes its value infinitely
many times, any other variable changes its value infinitely many times.

549

L e m m a 2. For any given fair execution and for any initial state, a state such
that three variables from the set {Sa, LSD(a), Sb, LS~(b)} are equal each other
is reached in a finite number of moves.

Proof. Consider the first move that modifies the state of Sa. After this move
S~ • LS~ (b). To change again the value of Sa, the LSa (b) variable must change
its value and become equal to Sa. But LS~ (b) always takes the value of Sb. Since
S~ change its value infinitely many times a state such that Sa = LSa(b) and
LSa(b) = Sb is reached in a finite number of moves.

L e m m a 3. For any given fair execution and for any initial state, a state such
that Sa 7s LS~(b), Sa 7s Sb, Sa 7 s LSb(a), is reached in a finite number of moves.

Proof. Since we use addition modulo 3, the variables Sa, LSb(a), Sb, LS~(b),
can have values in the set Z3 = {0, 1, 2). When three variables from the set
{Sa,LSb(a),Sb, LSa(b)) are equal to each other, Lemma 2, there is a value
i E Z3 such that Sa 7s i, LS~(b) 7s i, S b r i, LSb(a) 7s i. When LSb(a), Sb,
LSa(b) change their values, they only copy the value of one variable in the set
{S~, LSb(a), Sb, LSa(b)}. Thus, when S~ reaches for the first t ime the value i,
the condition Sa 7 ~ LS~(b), S~ 7s Sb, Sa 7s LSb(a) is met.

T h e o r e m 3. For any given fair execution, the system starting from any arbi-
trary state reaches a legitimate state in finitely many moves.

Proof. The system reaches a state such that Sa 7 s LSa(b), S a r Sb, Sa 7s LSb(a)
in a finite number of moves, Lemma 3. Let S~ = i E Z3 Since LSb (a) 7s i, Sb 7s i
and LS~ (b) 7s i, Sa can not change its value until LS~ (b) becomes equal to i,
LS~(b) can not become equal to i until Sb becomes equal to i and Sb can not
become equal to i until LSb(a) becomes equal to i. Thus, S~ can not modify its
state until a legitimate state is reached.

4 S e l f - S t a b i l i z i n g M u t u a l E x c l u s i o n P r o t o c o l f o r a T r e e

N e t w o r k W i t h o u t S h a r e d M e m o r y

Consider an arbitrary rooted tree; the tree is rooted at node r. We use the
notation d~ for the degree of node x, nx[j] for the j - th neighbor of the node x,
J~f(x) = {n~[1],.. . .nx[d~]} for the set of neighbors of node x, C(x) for the set of
children of x and P , for the parent of node x; since the topology is a tree each
node x knows its parent P , and for the root node r, Pr is Null.. As before, each
node x maintains a locM state variable S~ (readable by its neighbors) and a local
state vector LS, used to store the copies of the states of its neighbors; we use
notat ion LS,(y) to denote the component of the state vector LSa that stores a
copy of the state variable Sy of node y, Vy E Af(x). All variables are now modulo
4 integers (we explain the reason later). We assume that each node x maintains
a height variable Hz such that Hr = 0 for the root node and for Vx 5s r, Ha is

550

II Root node r
R~:. LS~(n~[1]). = S,,~[~];

]]R~: gs~(n~[d~]) = S~[a~];
CS~: i f S~ = 0 then Execute Critical Section;

Wr: i f (Ay~e(~)(S~ = LS,.(y)))
then S ~ = S ~ + I rood 4;

Leaf node y
RI: LS~(P~) = Sp~;

.[CSy: if di(y) then Execute Critical Section;

If w~: s~ = LS~(P,);

II Internal Node x
n~: nSx(n~[1]) = S,~x[1]
:

CSx: i f ~(x) then Execute Critical Section

then Sx : RH~(P~);

Fig. 2. Protocol for an Arbitrary Tree

the number of edges in the unique path from node x to the root node. It is easy
to see that if the root node sets Hr = 0 and any other node x sets its H~ to
Hp x q- 1 (level of its parent plus 1), the height variables will correctly indicate
the height of each node in the tree after a finite number of moves, starting from
any illegitimate values of those variables. To avoid cluttering the algorithm, we
do not include the rules for handling H~ variable in our algorithm specification.
As before, the root node, internal nodes as well as the leaf nodes execute infinite
loops of reading the states of neighbor(s), executing critical sections (if certain
predicate is satisfied) and writing its new state. The protocols (algorithms) for
root, internal nodes and leaf nodes are shown in Figure 2 where the predicate
�9 (x) is:

O(x) --- (S~ = 0 A (H~ is even)) V (S~ : 2 A (Hx is odd))

Note, as before, the state of a node x is defined by the variable S~: and
the vector LSx; the global system state is defined by the local states of all
participating nodes in the tree.

D e f i n i t i o n 5. Consider a link or edge (x, y) such that node x is the parent of
node y in the given tree. The state of a link (x, y), in a given system state, is

551

defined to be the vector (S , , LSy(X), Sy, LS~(y)) . The state of a link is called
l e g i t i m a t e iff Sx ~ LSy(x) A LSy(x) ~ Sy A Sy ~- LSx(y) and at most one pair
of successive variables in the vector (S~ , L Sy (x) , Sy , n S~ (y)) are unequal.

D e f i n i t i o n 6. The system is in a legitimate state if all links are in a legitimate
state.

T h e o r e m 4. For an arbitrary tree in any legitimate state, no two neighboring
processes can execute their critical sections simultaneously.

Proof. In a legitimate state (when the H variables at nodes have stabilized) for
any two neighboring nodes x and y, we have (either L~ is even ~ Ly is odd), or
(L~ is odd ~ Ly is even). Hence, O(x) and O(y) are simultaneously (concurrently)
true iff S~ = 2 and Sy = 0 or S~ = 0 and Sy = 2. But since link (x,y) is in a
legitimate state, such condition can not be met; hence, two neighboring nodes
cannot execute their critical sections simultaneously.

L e m m a 4. Consider an arbitrary link (x, y). The node x modifies the value of
the variable Sx infinitely many times, if and only if the node y modifies the value
of the variable Sy infinitely many times.

Proof. If node x modifies Sx finitely many times, then after a finite number
of moves the value of Sx is not modified anymore. The next complete loop of
node after the last modification of makes (x) = and (x) is not
be modified by subsequent moves. Hence, after at most one modification, Sy
remains unchanged. Conversely, if node y modifies Sy finitely many times then
after a finite number of moves the value of S~ is not modified anymore. The next
complete loop of node x after the last modification of Sy, makes LS~ (y) = Sy
and LS~ (y) is not be modified by subsequent moves. Hence, after at most one
modification, S~ remains unchanged.

L e m m a 5. For any fair execution, variable S~ at root node r is modified in-
finitely many times.

Proof. By contradiction. Assume that the value of Sr is modified finitely many
times. Then, after a finite number of moves, the value Sy for each child y of
r will not be modified anymore, Lemma 4. Repeating the argument, after a
finite number of moves no S or LS variables for any node in the tree may be
modified. Consider now the leaf nodes. Since the execution is fair, the condition
Sz = LSz(Pz) must be met for each leaf node z. If this condition is met for leaf
nodes it must be met for the parents of leaf nodes too. Repeating the argument,
the condition must be met by all nodes in the tree. But, if this condition is met,
the root node r modifies its Sr variable in its next move, which is a contradiction.

L e m m a 6. For any fair execution and for any node x, the variable S~ is mod-
ified infinitely many times.

552

Proof. If node x modifies its variable S~ finitely many times, its parent, say node
z, must modify its variable Sz only finitely many times, Lemma 4. Repeating
the argument, the root node also modifies its variable Sr finitely many times,
which contradicts Lemma 5.

L e m m a 7. Consider an arbitrary node z (~ r). I f all links in the path from r
to z are in a legitimate state, then these links remain in a legitimate state after
an arbitrary move by any node in the system.

Proof Let (x, y) be an link in the path from r to z. Since (x, y) is in a legitimate
state, we have S~ ~_ nSy (x) A LSy (x) N_- Sy A Sy ~ LS~ (y) and at most one pair
of successive variables in the sequence (S~, LSy(x), Sy, nS~(y)) are unequal. We
need to consider only those system moves (executed by nodes x and y) that can
change the variables Sx, LSy (x), Sy, LS~ (y). Considering each of these moves,
we check that legitimacy of the link state is preserved in the resulting system
state. The read moves (that update the variables LSy(X), LS~(y)) obviously
preserve legitimacy. To consider the move Wx, we look at two cases differently:

Case 1 (x = r): When Wz is executed, S~ can be modified (incremented by
1) only when S~ = LS~(y). Thus, since the state is legitimate, a W~ move can
increment S~ only under the condition S~ = LSy(X) = Sy : LS~(y) and after
~.he move the link (x, y) remains in a legitimate state.

Case 2 (x • r): Since the link (t, x) (where node t is the parent of x, i.e.,
: P~) is in a legitimate state, we have LS~ (t) = S~ or LS~ (t) = (S~ + 1) mod 4.

, /hen W~ is executed, S~ can be modified only by setting its value equal to
LS~(t); hence, after the move the link (x, y) remains in a legitimate state.

Lemma 7 shows that if a path of legitimate links from the root to a node is
created the legitimacy of the links in this path is preserved for all subsequent
states. The next lemma shows that a new link is added to such a path in finite
time.

L e m m a 8. Let (x, y) be a link in the tree. I f all links in the path from root node
to node x are in a legitimate state, then the link (x, y) becomes legitimate in a
finite number of moves.

Proof. First, we observe that the node y modifies the variable Sy infinitely many
times, Lemma 6. Then, we use the same argument as in the proof of Theorem 3
to show that the link (x, y) becomes legitimate after a finite number of moves.

T h e o r e m 5. Starting from an arbitrary state, the system reaches a legitimate
state in finite time (in finitely many moves).

Proof. The first step is to prove that all links from the root node to its chil-
dren become legitimate after a finite number of moves. This follows from the
observation that each child x of the root node modifies its S variable infinitely
many times and from an argument similar to the argument used in the proof of
Theorem 3. Using Lemma 8, the theorem follows.

553

References

1. M. Mizuno and H. Kakugawa. A timestamp based transformation of self-stabifizing
programs for distributed computing environments. In Proceedings of the lOth In-
ternational Workshop on Distributed Algorithms (WDAG'96), volume 304-321,
1996.

2. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming
only read/write atomicity. Distributed Computing, 7:3-16, 1993.

3. M. Raynal. Algorithms]or Mutual Exclusion. MIT Press, Cambridge MA, 1986.
4. P. K. Srimani and S. R. Das, editors. Distributed Mutual Exclusion Algorithms.

IEEE Computer Society Press, Los Alamitos, CA, 1992.
5. M. Flatebo, A. K. Datta, and A. A. Schoone. Self-stabilizing multi-token tings.

Distributed Computing, 8:133-142, 1994.
6. S. T. Huang and N. S. Chen. Self-stabilizing depth-first token circulation on net-

works. Distributed Computing, 1993.
7. E, W. Dijkstra. Solution of a problem in concurent programming control. Com-

munication of the ACM, 8(9):569, September 1965.
8. L, Lamport. A new solution of Dijkstra's concurrent programming problem. Com-

munications oJ the ACM, 17(8):107-118, August 1974.
9. L. Lamport. The mutual exclusion problem: Part II - statement and solutions.

Journal of the ACM, 33(2):327-348, 1986.
10. H. S. M. Kruijer. Self-stabilization (in spite of distributed control) in tree-

structured systems. Inf. Processing Letters, 8(2):91-95, 1979.

