
MPI-GLUE: Interoperable High-Performance
MPI Combining Different Vendor's MPI Worlds

Roll Rabenseifner

Rechenzentrumder Universits Stuttgart, Allmandring 30, D-70550 Stuttgart,
rabenseifner�9

http://www.hlrs.de/people/rabenseifner/

Abst rac t . Several metacomputing projects try to implement MPI for
homogeneous and heterogeneous clusters of parallel systems. MPI-GLUE
is the first approach which exports nearly full MPI 1.1 to the user's appli-
cation without losing the efficiency of the vendors' MPI implementations.
Inside of each MPP or PVP system the vendor's MPI implementation
is used. Between the parallel systems a slightly modified TCP-based
MPICH is used, i.e. MPI-GLUE is a layer that combines different ven-
dors' MPIs by using MPICH as a global communication layer. Major
design decisions within MPI-GLUE and other metacomputing MPI li-
braries (PACX-MPI, PVMPI, Globus and PLUS) and their implications
for the programming model are compared. The design principles are ex-
plained in detail.

1 I n t r o d u c t i o n

The development of large scale parallel applications for clusters of high-end
MPP or PVP systems requires efficient and standardized programming models.
The message passing interface MPI [9] is one solution. Several metacomput ing
projects try to solve the problem that mostly different vendors' MPI implementa-
tions are not interoperable. MPI-GLUE is the first approach that exports nearly
full MPI 1.1 without losing the efficiency of the vendors' MPI implementations
inside of each parallel system.

2 A r c h i t e c t u r e o f M P I - G L U E

MPI-GLUE is a library exporting the standard MPI 1.1 to parallel applications
on clusters of parallel systems. MPI-GLUE imports the native MPI library of
the system's vendor for the communication inside of a parallel system. Parallel
systems in this sense are MPP or PVP systems, but also homogeneous worksta-
tion clusters. For the communication between such parallel systems MPI-GLUE
uses a portable TCP-based MPI library (e.g. MPICH). In MPI-GLUE the native
MPI library is also used by the portable MPI to transfer its byte messages inside
of each parallel system. This design allows any homogeneous and heterogeneous
combination of any number of parallel or nonparallel systems. The details are
shown in Fig. 1.

564

MPI processes on system

I parallel application

MPI-GLUE layer

native I portable MPI
~ p r I based on
o[-" [native & TCP
vendor 1 comm.

native comm [TCP

standardized
MPI - - t ~

interface

MPI processes on system 2

parallel application

MPI-GLUE layer

portable MP1 native
based on

I TCP & native MPI
of

:omm. vendor 2

TCP native comm.

local comm. global communication local comm.

Fig. 1. Software architecture

3 R e l a t e d W o r k s

The P A C X - M P I [1] project at the computing center of the University of
S tu t tgar t has a similar approach as MPI-GLUE. At Supercomputing '97 PACX-
MPI was used to demonstra te that MPI-based metacomput ing can solve large
scale problems. Two CRAY T3E with 512 processors each were combined to
run a flow solver (URANUS) which predicts aerodynamic forces and high tem-
peratures effecting on space vehicles when they reenter Ear th ' s a tmosphere [2].
Furthermore a new world record in simulating an FCC crystal with 1.399.440.00
a toms has been reached on that cluster I l l] . PACX-MPI uses a special module
for the T C P communicat ion in contrast to the portable MPI in MPI-GLUE. The
functionality of PACX-MPI is limited by this module to a small subset of MPI
1.1. The T C P communicat ion does not directly exchange messages between the
MPI processes. On each parallel system two special nodes are used as concen-
t ra tors for incoming and outgoing T C P messages. PACX-MPI can compress all
T C P messages to enlarge bandwidth.

P V M P I [4] has been developed at UTK, ORNL and ICL, and couples several
MPI worlds by using PVM based bridges. The user interface does not meet the
MPI 1.1 standard, but is similar to a restricted subset of the functionality of
MPI_Comm_join in MPI 2.0 [10]. It is impossible to merge the bridge's inter-
communicator into a global intra-communicator over all processes. Therefore,
one can not execute existing MPI applications with P V M P I on a cluster of
parallel systems.

In the P L U S [3] project at PC 2 at the University of Paderborn a bridge
has been developed too. With this bridge MPI and PVM worlds can be com-
bined. Inefficient T C P implementat ions of some vendors have been subst i tuted
by an own protocol based on UDP. It is optimized for wide area networks. As
in PACX-MPI the communication is concentrated by a daemon process on each
parallel system. The interface has the same restrictions as described for PVMPI ,
moreover, only a restricted subset of da ta types is valid. PLUS is par t of the
MOL (Metacomputer Online) project.

565

In the G lobus [5] project and in the I -WAY [7] project MPICH [8] is used on
top of the multi-protocol communication library NEXUS [6]. NEXUS is designed
as a basic module for communication libraries like MPI. On the parallel system
itself MPICH is used instead of the vendor's MPI library.

4 Des ign Decis ions and Related Problems

Several decisions must be taken in the design of an MPI library usable for het-
erogeneous metacornputing. Major choices and the decisions in the mentioned
projects are viewed in this section.

The glue approach versus the p o r t a b l e mu l t i - p ro toco l M P I im-
p l emen ta t ion : The goals of high efficiency and full MPI functionality can be
achieved by the following alternatives (Fig. 2): (a) The glue layer exports an MPI
interface to the application and imports the native MPIs in each parallel system
and a global communication module which allows communication between par-
allel systems. This gerneral glue approach is used in MPI-GLUE, PACX-MPI,
PVMPI and PLUS. (b) In the portable multi-protocol MPI approach (used in
Globus) each parallel system has its own local communication module. A com-
mon global communication module enables the communication between the par-
allel systems. The MPI library uses both modules. In this approach the global
communication module is usually very small in comparison with the glue ap-
proach: it does only allow byte message transfers. The main disadvantage of this
approach is that the performance of the native MPI library can not be used.

Globa l wor ld versus dynamica l ly c rea ted br idges: The standards MPI
1.1 and M Pl 2.{)imply I,wo mel,aCOml)utiug alternatives: (a.) M PI_COMM_WOIH3)
collects all processes (in MPI-GLUE, PACX-MPI and Globus) or (b) each parti-
tion of the cluster has a separate MPI_COMM_WORLD and inter-communicators
connect the partitions. (doesn't conform to MPI 1,1, used in PVMPI and PLUS).

Globa l communica t ion using an own m o d u l e versus i m p o r t i n g a
p o r t a b l e MPI : The global communication module in the glue approach can
be (a) a portable TCP-based MPI implementation (in MPI-GLUE), or (b) a
special TCP-based module (in PACX-MPI, PVMPI and PLUS). With (a) its
possible to implement the full MPI 1.1 standard without reimplementing most
of the MPI's functionality inside of this special module.

parallel application
MPI

glue layer
native global
MP1 communication

impler~ention module~

local network global network

parallel app!ication I.,~_ MPI
portable multi-protocol MPI I

implementation]
local] global]

commumcatlon communication

local network global network

Fig. 2. The glue approach (left) and the multi-protocol MPI approach 0ight)

566

Using daemons or not using daemons: The global communication can
be (a) concentrated by daemons or can be (b) done directly. In the daemon-based
approach (a) the application processes send their messages on the local network
(e.g. by using the native MPI) to a daemon, that transfers them on the global
network (e.g. with TCP) to the daemon of the target system. From there the
messages are received by the application processes within the local network of
the target system. In the direct-communication approach (b) the work of the dae-
mons is done by the operating system and each node communicates directly via
the global network. With the daemon-based approach the application can fully
parallelize computation and communication. The application is blocked only by
native MPI latencies although in the background slow global communication is
executed. Currently only the direct-communication approach is implemented in
MPI-GLUE, but it would be no problem to add the daemon-based approach. A
detailed discussion can be found in [12].

The first progress problem: All testing and blocking MPI calls that have
to look at processes connected by the local network and at other processes con-
nected by the global network should take into account that the latencies for prob-
ing the local and global network are different. On clusters of MPPs the ratio can
be 1:100. Examples are a call to MPI_Recv with source=MPI_ANY_SOURCE,
or a call to MPI_Waitany with requests handling local and global communica-
tion. More a workaround than a solution are asymmetric polling strategies: if
polling is necessary then only in the n th round the central polling routine will
inquire the state of the global interface, while in each round the local interface
will be examined, n is given by the ratio mentioned above. Without this trick the
latency for local communication may be expanded to the latency of the global
communication. But with this trick the latency for global communication may be
in the worst case twice the latency of the underlaying communication routine.
This first progress problem arises in all systems that use no daemons for the
global communication (MPI-GLUE, PVMPI configured without daemons, and
Globus). In MPI-GLUE the asymmetric polling strategy has been implemented.
In Globus it is possible to specify different polling intervals for each protocol.

The second progress problem: The restriction in MPI 1.1, page 12, lines
24ff ("This document specifies the behavior of a parallel program assuming
that only MPI calls are used for communication") allows that MPI implementa-
tions make progress on non-blocking and buffered operations only inside of MPI
routines, e.g. in MPI_Wait... / _Test... / Aprobe or _Finalize. This is a weak
interpretation of the progress rule in MPI 1.1, page 44, lines 41ft. The rationale
in MPI 2.0, page 142, lines 14-29 explicitely mentions this interpretation. This
allows that a native MPI makes no progress, while the portable MPI is blocked
by waiting for a message on the TCP link, and vice versa.

Therefore, in the glue approach the problem arises that the glue layer must
not implement anything by blocking or testing only within the native MPI with-
out giving the global communication module a chance to make progress, and
vice versa. The only hard problem is the combination of using collective rou-
tines of the native MPI (because there isn't any non-blocking alternative) and

567

using sends in the global MPI and these sends are buffered at the sender and
the sender is blocked in the native collective operation. This problem can be
solved in daemon-based systems by sending all messages (with a destination in
another parallel system) immediately to the daemons and buffering them there
(implemented in PACX-MPI and PLUS). It can also be solved by modifying the
central probe and dispatching routine inside the native MPI.

The analogous problem (how to give the native MPI a chance to make
progress, while the glue layer blocks in a global collective routine) usually only
exists, if one uses an existing MPI as a global communicat ion module, bu t in
MPI -GLUE this problem has been solved, because the global MPI itself is a
multi-protocol implementat ion which uses the local MPI as one protocol stack.

5 Design Details

The notat ion " M P I " is used for the MPI interface exported by this glue layer
and for the glue layer software.
The notat ion ' " M P X " is used for the impor ted TCP-based MPI-I .1 l ibrary in
which all names are modified and begin with "MPX_" instead of "MPI_". MPX
allows the exchange of messages between all processes.
The notat ion " M P L " is used for the native (local) MPI 1.1 library. All names
are modified ("MPL_" instead of "MPI_"). All MPL_COMM_WORLDs are dis-
joint and in the current version each process is member of exactly one MPL_-
COMM_WORLD (that may have any size>_l).

Details are given in the table below and in [12]. In the table " X " and " L "
are abbreviations for MPX and MPL.

MPI constant, impl.ed remarks
handle, routine by using
ranks X
group handling X
communicators L and X
datatypes L and X

requests L o r X
o r

delayed

i.e. the MPI ranks are equal to the MPX ranks.
i.e. group handles and handling are impl. with MPX.
and roots-communicator, see Sec. Opt. of collective op.
and a mapping of the L ranks to the X ranks and vice
versa.
MPI_IRECVs with MPI_ANY_SOURCE and communi-
cators spawning more than one MPL region store all ar-
guments of the IRECV call into the handle's structure.
The real RECV is delayed until the test or wait calls.

sends, receives L or X (receives only with known source partition).
receives with ANY_SOURCE:
- blocking L and X with asymmetric polling strategy.
- nonblocking GLUE postponed until the wait and test routines, see MPI re-

quests above.
wait and test L or X or L&X.
MPI_Testall Testing inside partial areas of the communicator may

complete request handles, but the interface definition
requires that only none or all requests are completed.
Therefore (only for Testall), requests may be MPL/MPX-
finished, but not MPI-finished.

568

The M P I process s ta r t and MPI_Init is mapped to the MPL process start,
MPL-Init, MPX process start and MPXJnit. The user starts the application
processes on the first parallel system with its MPL process start facility. MPIAnit
first calls MPL_Init and then MPX_Init. The latter one is modified to reflect that
the parallel partition is already started by MPL. Based on special arguments at
the end of the argument list and based on the MPL ranks the first node recognizes
inside of MPX_Init its role as MPICH's big master. It interactively starts the
other partitions on the other parallel systems or uses a remote shell method (e.g.
rsh) to invoke the MPL process start facility there. There as well the MPIAnit
routine first invokes MPL_Init and then MPX_Init. Finally MPI_Init initializes
the predefined handles. MPI_Finalize is implemented in the reverse order.

Op t imiza t ion of collective opera t ions : It is desirable that metacomput-
ing applications do not synchronize processes over the TCP links. This implies
that they should not call collective operations on a global communicators, es-
pecially those operations which make a barrier synchronization (barrier, allre-
duce, reduce_scatter, allgather(v), alltoall(v)). The following schemes help to
minimize the latencies if the application still uses collective operations over
global communicators. In general a collective routine is mapped to the corre-
sponding routine of the native MPI if the communicator is completely inside of
one local MPL world. To optimize MPI_Barrier, MPI_Bcast, MPI_Reduce and
MPI_Allreduce if the communicator belongs to more than one MPL world, for
each MPI-communicator, there is an additional internal ,vots-communicatorthat
combines the first process of any underlying MPL-communicator by using MPX,
e.g. MPI_Bcast is implemented by a call to native Beast in each underlying MPL-
communicator and one call to the global Bcast in the roots-communicator.

6 S t a t u s , F u t u r e P l a n s , a n d A c k n o w l e d g m e n t s

MPI-GLUE implements the full MPI 1.1 standard except some functionalities.
Some restrictions result from the glue approach: (a) It is impossible to allow an
unlimited number of user-defined operations. (b) Messages must be and need
to be received with datatype MPI_PACKED if and only if they are sent with
MPI_PACKED. Some other (hopefully minor) functionalities are still waiting to
be implemented. A detailed list can be found in [12]. MPI-GLUE is portable.
Current test platforms are SGI, CRAY T3E and Intel Paragon. Possible future
extensions can be the implementation of MPI 2.0 functionalities, optimization
of further collective routines, and integrating a daemon-based communication
module inside the used portable MPI.

I would like to thank the members of the MPI-2 Forum and of the PACX-MPI
project as well as the developers of MP1CH who have helped me in the discussion
which led to the present design and implementation of MPI-GLUE. And I would
like to thank Oliver Hofmann for implementing a first prototype in his diploma
thesis, Christoph Grunwald for implementing some routines during his practical
course, especially some wait, test and topology functions, and Matthias M(iller
for testing MPI-GLUE with his P3T-DSMC application.

569

7 S u m m a r y

MPI-GLUE achieves interoperability for the message passing interface MPI. For
this it combines existing vendors' MPI implementations losing neither full MPI
1.1 functionality nor the vendors' MPIs' efficiency. MPI-GLUE targets existing
MPI applications that need clusters of MPPs or PVPs to solve large-scale prob-
lems. MPI-GLUE enables metacomputing by seamlessly expanding MPI 1.1 to
any cluster of parallel systems. It exports a single virtual parallel MPI machine to
the application. It combines all processes in one MPI_COMM_WORLD. All local
communication is done by the local vendor's MPI and all global communication
is implemented with MPICH directly, without using deamons. The design has
only two unavoidable restrictions which concern user defined reduce operations
and packed messages.

References

1. Beisel, T., Gabriel, E., Resch, M.: An Extension to MPI for Distributed Computing
on MPPs. In Marian Bubak, Jack Dongarra, Jerzy Wasniewski (Eds.) Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, LNCS, Springer,
1997, 75-83.

2. T. B6nisch, R. Rfihle: Portable Parallelization of a 3-D Flow-Solver, Parallel Comp.
Fluid Dynamics '97, Elsevier, Amsterdam, to appear.

3. Brune, M., Gehring, J., Reinefeld, A.: A Lightweight Communication Interface for
Parallel Programming Environments. In Proc. High-Performance Computing and
Networking HPCN'97, LNCS, Springer, 1997.

4. Fagg, G.E., Dongarra, J.J.: PVMPh An Integration of the PVM and MPI Sys-
tems. Department of Computer Science Technical Report CS-96-328, University of
Tennessee, Knoxville, May, 1996.

5. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applications (to appear).

6. Foster, I., Geisler, J., Kesselman, C., Tuecke, S.: Managing Multiple Communica-
tion Methods in High-Performance Networked Computing Systems. J. Parallel and
Distributed Computing, 40:35-48, 1997.

7. Foster, I., Geisler, J., Tuecke, S.: MPI on the I-WAY: A Wide-Area, Multimethod
Implementation of the Message Passing Interface. Proc. 1996 MPI Developers Con-
ference, 10-17, 1996.

8. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A High-Performance, Portable Im-
plementation of the MPI Message Passing Interface Standard. Paralle Computing,
22, 1996.

9. MPh A Message-Passing Interface Standard. Message Passing Interface Forum,
June 12, 1995.

10. MPI-2: Extensions to the Message-Passing Interface. Message Passing Interface
Forum, July 18, 1997.

11. Mfiller, M.: Weltrekorde durch Metacomputing. BI 11+12, Regionales Rechenzen-
trum Universits Stuttgart, 1997.

12. Rabenseifner, R.: MPI-GLUE: Interoperable high-performance MPI combining dif-
ferent vendor's MPI worlds. Tech. rep., Computing Center University Stuttgart.
http :/lwww .hlrs .delpeoplelrabenseifner/publ/mpi~lue_tr_apr98. ps. Z

