
Workshop 6q-16+18
Languages

Henk Sips, Antonio Corradi and Murray Cole

Co-chairmen

Three Workshops(6, 16, and 18) have programming languages and models
as central theme. Workshop 6 focuses on the use of object oriented paradigms
in parMlel programming; Workshop 16 has the design of parallel languages as
primary focus, and Workshop 18 deals with programming models and methods.
Together they present a nice overview of current research in these areas.

Object Oriented Programming.

The Object-Oriented (OO) technology has received a renovated stimulus by
the ever-increasing usage of the Web and Internet technology. The globalisation
has enlarged the number of the potentially involved users to such an extent to
suggest a reconsideration of the available environments and tools. This has also
motivated the attempt to clarify all debatable and ambiguous points, not all of
which of practical and immediate application. On the one hand, several issues
connected to program correctness and semantics are still unclear. In particular,
the introduction of concurrency and parallelism within an object framework is
still subject to discussion, in its verification and modelling. The same is for
the aggregation of different objects and behaviour in predetermined patterns.
How to accommodate several execution capacities and resources into the same
object or pattern requires still work and new proposals. In any case, there is
much to be done, both in the abstract area and in the applied field. On the
other hand, the distributed framework has not only introduced examples in
need of practical solutions and environments, but also forced to reflect on all
applicable models, starting from traditional ones, such as the client-server one
and RPCs, to less traditional ones, such as the agent models. The growth of Java,
CORBA, and their capacity of attracting implementors and resources produce
unifying perspectives, with the possibility of offering a new integrated framework
in which to solve most common problems. This starts to produce the possibility
of creating generally available components to be really employed, by reducing
the convenience of the redesign from scratch.

This conference session is an occasion to expose to an enlarged audience
working into parallelism some of the hot topics and researches going on in the
OO area. And, even if the OO community has many occasions of meeting and
many forums to exchange opinions, EUROPAR seems a particular opportunity
of both presenting experiences and receiving contributions with possibilities of
cross-fertilisation. The five papers presented in the conference explore several of
the most strategic directions of evolution of the OO area.

626

The first paper, "Dynamic Type Information in Process Types" by Puntigam,
uses the process as an example of objects with dynamic type. The goal is to make
possible all the checks typical of static types even in the dynamic case: the pro-
cess is modelled as an active object that, depending on its state, is capable of
accepting different messages from different clients. The presented model is a re-
finement of a previous work of the same author and is based on a calculus of
objects that communicate with asynchronous message passing. The third paper
of the session, by Gehrke, "An Algebraic Semantics for an Abstract Language
with Intra-Object-Concurrency," addresses the problems of intra-object concur-
rency, working with a process algebra method. The goal is to introduce the
formal semantics for intra-object concurrency in 0 0 frameworks where active
processes can be distinguished from passive object. Let us recall that this is the
Java assumption. The topics of the other papers are all connected to Java. The
paper by Launay and Pazat, "Generation of distributed parallel Java programs"
and the fifth paper, by Giavitto, De Vito and Sansonnett, "A Data Parallel Java
Client-Server Architecture for Data Field Computations" addresses the point of
enlarging the usage of the Java Framework. Launay and Pazat propose a frame-
work capable of transparently distributing Java components of an application
onto the available target architecture. Giavitto, De Vito and Sansonnett apply
their effort to make Java usable in the data- parallel paradigm, for client-server
applications. The fourth paper, by Lorcy and Plouzeau, "An object-oriented
framework for managing the quality of service of distributed applications", ad-
dresses the quality of service problem for interactive applications. The authors
elaborate on the known concept of 'contract', with new considerations and in-
sight.

P r o g r a m m i n g L a n g u a g e s .

As up to now data parallel languages have been the most succesful attempt
to bring parallel programming closer to the application programmer. The most
seriuos attempt has been the definition of High Performance Fortran (HPF) as
an extension of Fortran 90. Several commercial compilers are available today.
However, user experience indicates that for irregularly structured problems, the
current definition is often inadequate. The first two papers in the HPF session
deal with this problem. The paper by Brandes and Germain, called "A tracing
protocol for optimizing data parallel irregular computations" describes a dy-
namic approach by allowing the user to specify which data has to be traced
for modifications. The second paper by Brandes, Bregier, Counilh, and Roman
proposes a programming style for irregular problems close to regular problems.
In this way compile-time and run-time techniques can be readily combined.

A recent language extension for shared-memory programming that has caught
a lot of attention is OpenMP. OpenMP is a kind of reincarnation of the old PCF
programming model. The paper by Chapman and Mehrotra describes various
ways how HPF and OpenMP can be combined to form a combined powerful
programming system. Also the Java language can be fruitfully used as a basis

627

for parallel programming. The paper by Carpenter, Zhang, Fox, Li, Li, and Wen
outlines a conservative set of language extensions to Java to support SPMD style
of programming.

GenerM parMlel programming languages have a hard time in obtaining opti-
mal performance for specific cases. If the application domain is restricted, better
performance can be obtained by using a domain specific parallel programming
language. The paper by Spezzano and TMia describes the langauge CARPET
intended for programming cellular automata systems.

Finally, the paper by Hofstadt presents the integration of task parallel ex-
tensions into a functional programming language. This approach is illustrated
by a branch and bound problem example.

P r o g r a m m i n g M o d e l s a n d L a n g u a g e s .

Producing correct software is already a difficult task in the sequential context.
The challenge is compounded by the conceptual complexity of parallelism and
the requirement for high performance. Building on the foundations laid in Work-
shop 7 in the preceding instantiation of Euro-Par, Workshop 18 focuses on pro-
gramming and design models that abstract from low-level programming tech-
niques, present software developers with interfaces that reduce the complexity
of the parallel software construction task, and support correctness issues. It is
also concerned with methodological aspects of developing parallel programs, par-
ticularly transformational and calculational approaches, and associated ways of
integrating cost information into them.

The majority of papers this year work from a "skeletal" programming per-
spective, in which syntactic restrictions are used both to raise the conceptual
level at which parallelism is invoked and to constrain the resulting implementa-
tion challenge. Mallet's work links the themes of program transformation (here
viewed as a compilation strategy) and cost analysis, using symbolic methods to
choose between distribution strategies. His source language is the by now conven-
tional brew of nested vectors and the map, fold, scan skeleton family, while the
cost analysis borrows from the polytope volume techniques of the Fortran paral-
lelization world, an interesting and encouraging hybrid. Skillicorn and colleagues
work with the P3L language as source and demonstrate that the use of BSP as an
implementation mechanism enables a significant simplification of the underlying
optimisation problem. The link is continued in the work of Osoba and Rabhi,
in which a skeleton abstracting the essence of the multigrid approach benefits
from the portability and costability of BSP. In contrast, Keller and Chakravarty
work with the well know data-parallel language NESL, introducing techniques
which allow the existing concept of "flattening transformations" (which allow ef-
ficient implementation of the nested parallel structures expressible in the source
language) to be extended to handle user-defined recursive types, and in partic-
ular parallel tree structures. Finally, Vlassov and Thorelli apply the ubiquitous
principle of simplification through abstraction to the design of a shared memory
programming model.

628

In summary, we expect from these session a fruitful discussion of the hot
topics in concurrency and parallelism in several areas. This enlarged exchange
of ideas can impact on advances of the discipline in the whole distr ibuted and
concurrency field.

