
Dynamic Type Information in Process Types

Franz Punt igam

Technische Universitgt Wien, Institut ffir Computersprachen, Argentinierstr. 8,
A-1040 Vienna, Austria.

franz@complang, tuwien, ac. at

Abstract. Static checking of process types ensures that each object ac-
cepts all messages received from concurrent clients, although the set of
acceptable messages can depend on the object's state. However, conven-
tional approaches of using dynamic type information (e.g., checked type
casts) are not applicable in the current process type model, and the typ-
ing of self-references is too restrictive. In this paper a refinement of the
model is proposed. It solves these problems so that it is easy to handle,
for example, heterogeneous collections.

1 Introduction

The process type model was proposed as a statically checkable type model for
concurrent and distributed systems based on active objects [10, 11]. A process
type specifies not only a set of acceptable messages, but also constraints on the
sequence of these messages. Type safety can be checked statically by ensuring
that each object reference is associated with an appropriate type mark which
specifies all message sequences accepted by the object via this reference. The
object accepts messages sent through different references in arbi t rary interleav-
ing. A type mark is a limited resource that represents a "claim" to send messages.
It can be used up, split into several, more restricted type marks or forwarded
from one user to another, but it must not be exceeded by any user.

Support of using dynamic type information shall be added. But, checked
type casts break type safety: An object 's dynamic type is not a "claim" to send
messages. This problem is solved by checking against dynamic type marks.

Each object has bet ter knowledge about its own state than about the other
objects ' states. The additional knowledge can be used in changing the self-
references' type marks in a very flexible and still type-safe way.

The rest of the paper is structured as follows: An improved version of the
typed process calculus presented in [11] is introduced in Sect. 2. Support of
using dynamic type information is added in Sect. 3, a more flexible typing of
self-references in Sect. 4. Static type checking is dealt with in Sect. 5.

2 A T y p e d C a l c u l u s o f Active Objects

The proposed calculus describes systems composed of active objects that com-
municate through asynchronous message passing. An object has its own thread

721

of execution, a behavior, an identifier, and an unlimited buffer of received mes-
sages. According to its behavior, an object accepts messages from its buffer, sends
messages to other objects, and creates new objects. All messages are received
and accepted in the same logical order as they were sent.

We use following notation. Constants (denoted by x , y , z , . . .) are used as
message selectors and in types. Identifiers (u, v, w , . . .) in the infinite set V are
used as object and procedure identifiers as well as formal parameters . For each
symbol e, g is an abbreviation of e l , . . . , en; e.g., $ is a sequence of constants. {g}
denotes the smallest set containing g, and Igl the length of the sequence. For each
symbol . , ~.g stands for e l ' g , . . . , e,~.g, and ~.~ for e~.g~, . . . , e~.g~ (1~1 = I~1).

Processes (p, q , . . .) specify object behavior. Their syntax is:

p : : ~

S ::~---

~Tt : : ~

Og ::~-~-

7- : : ~

a ::~---

~o ::=
::= t l o t I pt

A selector {~} specifies a possibly empty, finite set of guarded processes (r, s , . . .).
Each si is of the form x(ft);p, where x is a message selector, g a list of formal
parameters , and p a process to be executed if si is selected. An si is selectable
if the first received message in the object 's buffer is of the form x(&, 5), where
(~, ~ are arguments to be substi tuted for the parameters fi (lSz, ~l = Ifil); 5~ is a
list of types and 5 a list of object and procedure identifiers. A process u . m ; p
sends a message rn to the object with identifier u, and then behaves as p. A
procedure definition u : = ((~)p:~); q introduces an identifier u of a procedure of
type ~ and then behaves as q; the procedure takes fi as parameters and specifies
the behavior p. A process v$u(&, fi); p creates a new object with identifier v and
then behaves as p; the new object behaves as u(&, ~). A call u(&, fi) behaves as
specified by the procedure with identifier u. A conditional expression u=v ? p I q
behaves as p if the identifiers u and v are equal, otherwise as q.

There are two kinds of types, object types (Tr, t), c~, r , . . .) and procedure types
(~, ~b,...). A type is denoted by a,/3, 3',. �9 �9 if its kind does not mat ter . Further-
more, there are meta- types (p, v , . . .) : "ot" is the type of all object types, "pt"
the type of all procedure types, and %" the type of all types of any kind.

The activating set [2] of an object type {g}[2] is a multi-set of constants, the
behavior descriptor {fi} a finite collection of message descriptors (a, b, c, . . .). A
message descriptor x(~:fi, &)[~]~,[2] describes a message with selector x, type pa-
rameters fi of recta-types/~, and parameters of types c~. The fi can occur in c~. The
message descriptor is active if the activating set [2] contains all constants in the
multi-set [~] (in-set). When a corresponding message is sent (or accepted), the
type is updated by removing the constants in the imset from the activating set
and adding those in the multi-set [2] (out-set). Using type updat ing repeatedly

722

for all active message descriptors, the type specifies a set of acceptable message
sequences. An expression .u{a}[2] is a recursive version of an object type. A
type combination ~r + r specifies a set of acceptable message sequences that in-
cludes all arbitrary interleavings of acceptable message sequences specified by c~
and T. An identifier u can be used as type parameter.

A procedure type (~:/5, 6~)7 specifies that a procedure of this type takes type
parameters ~ of meta-types /5 and parameters of types &. Objects behaving
according to the procedure accept messages as specified by T.

For example, a procedure B := ((u){put(v_); {get(w); w.back(v); B(u)}}:~B)
specifies the behavior of a buffer accepting "put" and "get" in alternation and
sending "back" to the argument of "get" after receiving "get". The type of B
is given by ~U =d~f (_u:t){put{u)[e]~,[t], get({back(u}[once]>[]}[once])[f]~,[e]}[e].
The type of a procedure specifying the behavior of an infinite buffer that accepts
as many "get" messages as there are elements in the buffer can be given by
(flBI = d e f (u__:t){put(u)~t,[f], get({back(u)[once]~,~}[once])[f]~,[]}~.

Each underlined occurrence of an identifier binds this and all following occur-
rences of the identifier. An occurrence is free if it is not bound. Free(e) denotes
the set of all identifiers occurring fl'ee in e. Two processes are regarded as equal
if they can be made identical by renaming bound identifiers (a-conversion) and
repeatedly applying the equations {~, s} = {~, s, s} and {~, s, ~} = {~, a, s}
to selectors. Two types are regarded as equal if they can be made identical by
renaming bound identifiers (a-conversion) and applying these equations:

~ + r = r + c ~ @ + ~) + r

�9 ~_a = [,~_a/q~ {a}[2, 9]
{~(~:~, ~}[~]~[9, 9'], a}[~]

{a}[2] + {~}[~]

: {a, ~, c} [2, y, ~] : [2, 9, y]

: {a}[2] (~ ~ Elf{a})

= {.<_~:,~,,~>[@>[.q, a}[~ (~' ~ {2}uEft{a})
= {a, ~}[2,~] (2 6 Eft{5}; fl ~ Eff{~})

where Ey' f{~<_q:#,, '~,>[.h]~[~d,. . . , ~(_a{:,~{, ,~d[}d~>[.~d} : { : h } u . . . u { } d .
Subtyping on meta-types is defined by ot < t and pt < t. Subtyping for types

depends on an environment H containing typing assumptions of the forms u < a
and ~ < u. The subtyping relation < on types and the redundancy elimination
relation ~. on object types are the reflexive, transitive closures of the rules:

n u { u < a } ~ - u < a s u}~-o,_< ~

/]rl-- {a,6-}[2]-{a}[2] (VcE {6}.3a E {a,}.
c : ~<_~:,a, ,~)[9, 9']~>[~, z'] A Z' ~ E f t { a } A

: x @ , > , ~,)[@>[< Z"] A ,a < ~ ,,, ~r ~- ,~ < ~,)

(a < fl and c~ -- T are simplified notations for 0 l- a < fl and 0 l- c~ -- r .) The
relation ~ is used for removing redundant message descriptors from behavior
descriptors. Using these definitions we can show, for example, WB~ < ~oB.

723

A type {5}[~] is determinis t ic if all message descriptors in {5} have pairwise
different message selectors. For each deterministic type cr and message m there
is only one way of updating ~ according to m.

A sys t em configuration C contains expressions of the forms u ~+ (p, (n} and
u ~-~/~}p:~. The first expression specifies an object with identifier u, behavior p
and sequence of received messages ~ . The second expression specifies a procedure
of identifier u. C contains at most one expression u ~-+ e for each u ~ %7. C[ul

e l , . . . , u,~ ~-+ e,~] is a system configuration with expressions added to C, where
Ul, . . . , u,~ are pairwise different and do not occur to the left of ~-+ in C.

For each u E %/the relation -Y-> on system configurations (defined by the
rules given below) specifies all possible execution steps of object u. ([~/,5]/is the
simultaneous substitution of the expressions ~ for all free occurrences of ~ in f ,)

c[~ ~ <{x/~);> a}, x(~, ~), <>]

C[u F-+ iv,m; p, rh>, v ~+ /q, rh')]

C[u ~ (v_:: (i~>P:F); q, <)]
C[u ~+ (~$w(a, ~>;p, <>]

C[u ~ <~<~, ~>, ,~>, ~ ~ i~>v:~]
c[u ~ (v :~ ? p I q, ~>]
C[u ~-~ <v=w ? p l q, '6z>]

"> c[u~+

"> C[u~
--% c[u
2+ c[u

(iv, <}, v ~-+ <q, <' , m}]

i([a, ~/~];), <>, v ~/~>v:~]
iv, ~>]

---+ denotes the closure of these relations over all u E V, and * > the reflexive,
transitive closure of. >..7 > defines the operational semantics of object systems.

3 D y n a m i c T y p e I n f o r m a t i o n

It seems to be easy to extend the calculus with a dynamic type checking concept:
Processes of the form a_<fl ?p] q are introduced, where a or/~ initially is a type
parameter to be replaced with a (dynamic) type during computation. The typing
assumption a _< ~ (for a or/3 in V) is statically known to hold in p. The relation
u > (for each u E •) is extended by the rules:

C[u ~ i~_<9?plq, <)] ."> C[u ~+ (q,~>] (~ ~ ~)

For example, assume that a reference w is of type mark St[0 , where St ~-def

{put/u_:t,u)[e]~[f], get(R[one])[f]>[e]} and R =def {back{v:t,v)[one]~G}. The
process w.get/w'); {back{u_, v_}; u<_St[e] ? v.put/St[f], v}; {} I{}} (w' denotes the
object 's self-reference) is type-safe. First, "get" is sent to w; then "back" is ac-
cepted. If the type mark of v is a subtype of St[el, v is put into v. The type used
as argument of "put" is St[f] because the type is updated when sending "put",

Type information is lost when types are updated. St[e] is a supertype of v's
type mark u; but, put /u , v} cannot be sent to v: So far it is not possible to specify
that v's type mark is equal to u, except that u is updated. To solve the problem,

724

processes of the form c~_<r?V__;p[q are introduced, where (~ initially is a type

parameter to be replaced with an object type. The relation ~) is extended:

c[~ ~ <o-_<~-?v;pl q, ,~}] - % c[.~ ~ (([~/~]p), ,~>] (T+ 6 - ~)

v in p is replaced with a dynamically determined object type ~ which specifies
the difference between c~ and ~-. This version of the above process keeps type in-
formation: w.get(w'); {back@, v); u<St[e] ?_u'; v.put(St[t] + u/, v); {} I {}}. The
type St[f] + u' equals u after removing e and adding f to the activating set.

4 T y p i n g S e l f - R e f e r e n c e s

Without special t reatment , static typing of self-references is very restrictive: If
an object behaves according to a type ~-, the type mark ~r of a self-reference is
a subtype of T. Both, ~r and v specify all messages that may return results of
possibly needed services. In general, it is impossible to determine statically which
services are needed. Hence, a and ~- usually specify much larger sets of message
sequences than needed. This problem can be solved because each object has
much more knowledge about its own state than other objects: Before a message
with a self-reference as argument is sent to a server, this reference's type mark
is selected so that it supports the messages returned by the server. At the same
t ime the object 's type is extended correspondingly. The objeet 's type and self-
reference's type mark are determined dynamical ly as needed in the computat ion.

We extend the calculus: The distinguished name "self' can be used as argu-
ments in procedures; "self' is replaced with a self-reference when the procedure
is called. The fifth rule in the definition of ") has to be replaced with:

The type mark of an occurrence of "self" as argument is equal to the type of the
corresponding formal parameter. (Elements of V t2 {self} are denoted by o , . . .)

An example demonstrates the use of self and dynamic type comparisons:

~_ := (((~, ~', ~, w_') ~<st[~] ?,.get(self); {baek(~, ~); ~(~, ~', v, ~ ')}
I w ' (u , v)) : (u : t ,u_ ' :o t , u , (u : t , u) u ') u ') ; . . .

The procedure w takes as parameters a type u, an object type u', an identifier v
of type u and a procedure identifier w' of type {u:t, u)u'. I f v is a non-empty store,
an element is got from the store and w is called recursively with the element
and its type as arguments. Otherwise w' is called with u and v as arguments.
The type mark of self is R[one], as specified by St. The corresponding message
"back" is accepted if the expression containing self is executed.

725

5 Static Type Checking

An important result is that the process type model with the proposed extensions
supports static type checking. Type checking rules are given in Appendix A.

T h e o r e m 1. Let C = {u l ~-~ <pl), . . . , u s ~ <Pn)} be a sys tem configuration
and c%j and Ti (1 <_ i , j <_ n) object types such that ri <_ cri,t + . ." + (ri,n and
0, {Ul:Cq,i, . . . ,u,~:~,i} t- (pi:Ti} as defined by the type checking rules. Then,

f o r each sys tem configuration D with C *> D, i f D contains an expression
u ~ <p, m, (n>, there exists a sys tem configuration E with D ~ ~ E .

(The proof is omitted because of lack of space.) Provided that type checking
succeeds for an initial system configuration, if an object has a nonempty buffer
of received messages, the execution of this object cannot be blocked. Especially,
the next message in the buffer is acceptable. Theorem 1 also implies that sep-
arate compilation is supported: If a process pi in C is replaced with another p~
satisfying the conditions, the consequences of the theorem still hold.

6 Related Work

Much work on types for concurrent languages and models was done. The lnajor-
ity of this work is based on Milner's 7r-calculus [3, 4] and similar calculi. Espe-
cially, the problem of inferring most general types was considered by Gay [2] and
Vasconcelos and Honda [14]. Nierstrasz [5], Pierce and Sangiorgi [8], Vasconce-
los [13], Colaco, Pantel and Sall'e [1] and Ravara and Vasconcelos [12] deal with
subtyping. But their type models differ in an important aspect, from the process
type model: They cannot represent constraints on message sequences and ensure
statically that all sent messages are acceptable; the underlying calculus does not
keep the message order.

The proposals of Nielson and Nielson [6] can deal with constraints on message
sequences. As in the process type model, a type checker updates type informa-
tion while walking through an expression. However, their type model cannot
ensure that all sent messages are understood, and dealing with dynamic type
information is not considered.

The process type model can ensure statically that all sent messages are un-
derstood, although the set of acceptable messages can change. Therefore, this
model is a promising approach to strong, static types for concurrent and dis-
tributed applications based on active objects. However, it turned out that the
restrictions caused by static typing are an important difficulty in the practical
applicability of the process type model. So far it was not clear how to circum-
vent this difficulty without breaking type safety. New techniques for dealing with
dynamic type information (as presented in this paper) had to be found.

The approach of Najm and Nimour [7] has a similar goal as process types.
However, this approach is more restrictive and cannot deal with dynamic type
information, too.

726

The work presented in this paper refines previous work on process types [9-
11]. The major improvement is the addition of dynamic type comparisons and
a special t rea tment of self-references. Some changes to earlier versions of the
process type model were necessary. For example, the two sets of type checking
rules presented in [11] had to be modified and combined into a single set so that
it was possible to introduce "self".

Dynamic type comparisons exist in nearly all recent object-oriented pro-
g ramming languages. However, the usual approaches cannot be combined with
process types because these approaches do not distinguish between object types
and type marks and cannot deal with type updates. Conventional type models
do not have problems with the flexibility of typing self-references.

7 C o n c l u s i o n s

The process type model is a promising basis for strongly typed concurrent pro-
gramming languages. The use of dynamic type information can be supported in
several ways so that the process type model becomes more flexible and useful.
An impor tan t property is kept: A type checker can ensure statically that, clients
are coordinated so that all received messages can be accepted in the order they
were sent, even if the acceptability of messages depends on the server's state.

R e f e r e n c e s

1. J.-L. Colaco, M. Pantel, and P. Sall'e. A set-constraint-based analysis of actors.
In Proceedings FMOODS '97, Canterbury, United Kingdom, July 1997. Chapman
& Hall.

2. Simon J. Gay. A sort inference algorithm for the polyadic rr-caleulus. In Conference
Record of the 20th Symposium on Principles of Programming Languages, January
1993.

3. Robin Milner. The polyadic w-calculus: A tutorial. Technical Report ECS-LFCS-
91-180, Dept. of Comp. Sci., Edinburgh University, 1991.

4. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and
II). Information and Computation, 100:1-77, 1992.

5. Oscar Nierstrasz. Regular types for active objects. ACM SIGPLAN Notices,
28(10):1-15, October 1993. Proceedings OOPSLA'93.

6. Flemming Nielson and Hanne Riis Nielson. From CML to process algebras. In Pro-
ceedings CONCUR '93, number 715 in Lecture Notes in Computer Science, pages
493-508. Springer-Verlag, 1993.

7. E. Najm and A. Nimour. A calculus of object bindings. In Proceedings FMOODS
'97~ Canterbury, United Kingdom, July 1997.

8. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
In Proceedings LICS'93, 1993.

9. Franz Puntigam. Flexible types for a eoncmTent model. In Proceedings of the
Workshop on Object-Oriented Programming and Models of Concurrency, Torino,
June 1995.

727

10. Franz Puntigam. Types for active objects based on trace semantics. In Elie Najm
et al., editor, Proceedings FMOODS '96, Paris, France, March 1996. IFIP WG 6.1,
Chapman & Hall.

11. Franz Puntigam. Coordination requirements expressed in types for active objects.
In Mehmet Aksit and Satoshi Matsuoka, editors, Proceedings EUOOP '97, num-
ber 1241 in Lecture Notes in Computer Science, Jyvs Finland, June 1997.
Springer- Verlag.

12. Antdnio Ravara and Vasco T. Vasconcelos. Behavioural types for a calculus of con-
current objects. In Proceedings Euro-Par '97, Lecture Notes in Computer Science.
Springer-Verlag, 1997.

13. Vasco T. Vasconcelos. Typed concurrent objects. In Proceedings ECOOP'94,
number 821 in Lecture Notes in Computer Science, pages 100-117. Springer-Verlag,
1994.

14. Vasco T. Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic
pi-calculus. In Proceedings CONCUR'93, July 1993.

728

A T y p e C h e c k i n g R u l e s

/7 l- {fi}[~)] < 7 V l < i < n �9 ~)i:6zi] I- (p{:{a}[S{]) (t)
/ I , j ~ }- ({~1(~1, ~ l) ; P l , . . . ,Xn(~__~.,V__n);pn}:T)

H ~- er _< {a}[~] -4- ~ n , F [u : { a } [0] + ~] t- (Er:~,&([~/~]~/),p:T) (2)

/7 ,0[~:zS,~z:~,u: r163 O:6:] ~- (r 0 /7,1"[u:r ~- (q:T) (3)
Lr, F ~- ((u := ((~, ~)p:,~_r q):~)

SEL

SEND

DEF

NEW

CALL

n, rb:~, ~,:r ~ (v) n, rb:~, ~:r ~ (q:~)

/ / , P[u:/~] /- ((u<a ?plq):T)

HU{ct<_u},P[u:t~]F-(p:r) /7, P[u:l~]b-(a:t,,q:T} (uf~Free(a)) SUB2
/7, P[u:/~] b- ((a<_u ?p[q) :v)

H U {u < a}, P[u:ot , v:ot] b (p:r) / / , r[u:ofl] f- (a:ot, q:T) (U ~ Free(a)) SPLIT
// , Flu:or] ~- <(u<z ?v;p t q):r)

n ~ ~ _< ~ + ~- /L rb:d ~ (~:~) osJ

/7, F ~- ff:~, p:a + r) SELS

H,/7 ~- (self:a, e:g,p:r}

PROC
n, Fb:r e (~:~, ~:0)

TPAR
n , r b : .] ~ (~:,, ~:0)

V l < i < n �9 F[u:ot, ill:/],] l- (c}i:t, {} :{}~) H, F I- (~:0) ot < v
n , - ~ I-- (*~_{Xl(~I :/]1, (~I}[01]I>[Zl],... ,20,,(~_n:~ln,~n}[~]n]D[Z.n]}[~]]:%,C: ~ OB']T1

H , F ~- (~r:ot, r :ot,e:O) ot < p
// , F ~- ((0" + T):p, e:g) OBJT2

i7, P[u:pt , flit]] I- (6~:t, r :ot , {}:{}[]) H, F b (~:~) pt _< u
PROCT

n , r ~ ((,~_(~:~, ~>~):., ~:~)

(1) Act{a}[O] : {x~(~ :p , , c} ,) []~[h] ~ (~ : # ~ , c } ~ } [] ~ [~] } where

Act{}[Y:] : {]
Act {x(~:t], &)[2]~[0'], ~}[2, ~] : {x(u-:t], &)[]~[0', 2], ~} (Act{~}[9, ~] = {~})

Act{x(fi:[~, c})[~?]v,[~)'], fi}[5] : Act{a}[2] (V2' �9 [2] # [2, ~'])

and {fi}[t)] is deterministic.

(2) a : x(u-:/~, 7)[k]~'[0]

(3) r = (u_':t~,~}~ and F = {~ :~ ,~ :qS ,~b~:}]

