
Dynamic Type Information in Process Types 

Franz Punt igam 

Technische Universitgt Wien, Institut ffir Computersprachen, Argentinierstr. 8, 
A-1040 Vienna, Austria. 

franz@complang, tuwien, ac. at 

Abstract. Static checking of process types ensures that each object ac- 
cepts all messages received from concurrent clients, although the set of 
acceptable messages can depend on the object's state. However, conven- 
tional approaches of using dynamic type information (e.g., checked type 
casts) are not applicable in the current process type model, and the typ- 
ing of self-references is too restrictive. In this paper a refinement of the 
model is proposed. It solves these problems so that it is easy to handle, 
for example, heterogeneous collections. 

1 Introduction 

The process type model was proposed as a statically checkable type model for 
concurrent and distributed systems based on active objects [10, 11]. A process 
type specifies not only a set of acceptable messages, but also constraints on the 
sequence of these messages. Type safety can be checked statically by ensuring 
that  each object reference is associated with an appropriate  type mark which 
specifies all message sequences accepted by the object via this reference. The 
object accepts messages sent through different references in arbi t rary interleav- 
ing. A type mark  is a limited resource that  represents a "claim" to send messages. 
It can be used up, split into several, more restricted type marks  or forwarded 
from one user to another, but it must  not be exceeded by any user. 

Support  of using dynamic type information shall be added. But, checked 
type casts break type safety: An object 's  dynamic type is not a "claim" to send 
messages. This problem is solved by checking against dynamic type marks.  

Each object has bet ter  knowledge about  its own state than about  the other 
objects '  states. The additional knowledge can be used in changing the self- 
references' type marks  in a very flexible and still type-safe way. 

The rest of the paper  is structured as follows: An improved version of the 
typed process calculus presented in [11] is introduced in Sect. 2. Support  of 
using dynamic type information is added in Sect. 3, a more flexible typing of 
self-references in Sect. 4. Static type checking is dealt with in Sect. 5. 

2 A T y p e d  C a l c u l u s  o f  Active  Objects 

The proposed calculus describes systems composed of active objects that  com- 
municate through asynchronous message passing. An object has its own thread 
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of execution, a behavior, an identifier, and an unlimited buffer of received mes- 
sages. According to its behavior, an object accepts messages from its buffer, sends 
messages to other objects, and creates new objects. All messages are received 
and accepted in the same logical order as they were sent. 

We use following notation. Constants (denoted by x , y , z , . . . )  are used as 
message selectors and in types. Identifiers (u, v, w , . . . )  in the infinite set V are 
used as object and procedure identifiers as well as formal  parameters .  For each 
symbol e, g is an abbreviation of e l , . . . ,  en; e.g., $ is a sequence of constants. {g} 
denotes the smallest set containing g, and Igl the length of the sequence. For each 
symbol . ,  ~.g stands for e l ' g , . . . ,  e,~.g, and ~.~ for e~.g~, . . . ,  e~.g~ (1~1 = I~1). 

Processes (p, q , . . . )  specify object behavior. Their  syntax is: 

p : : ~  

S ::~--- 

~Tt : : ~  

Og ::~-~- 

7- : : ~  

a ::~--- 

~o ::= 
# ::= t l o t  I pt 

A selector {~} specifies a possibly empty, finite set of guarded processes (r, s , . . .  ). 
Each si is of the form x(ft);p, where x is a message selector, g a list of formal  
parameters ,  and p a process to be executed if si is selected. An si is selectable 
if the first received message in the object 's  buffer is of the form x(&, 5), where 
(~, ~ are arguments to be substi tuted for the parameters  fi (lSz, ~l = Ifil); 5~ is a 
list of types and 5 a list of object and procedure identifiers. A process u . m ; p  
sends a message rn to the object with identifier u, and then behaves as p. A 
procedure definition u : =  ((~)p:~); q introduces an identifier u of a procedure of 
type ~ and then behaves as q; the procedure takes fi as parameters  and specifies 
the behavior p. A process v$u(&, fi); p creates a new object with identifier v and 
then behaves as p; the new object behaves as u(&, ~). A call u(&, fi) behaves as 
specified by the procedure with identifier u. A conditional expression u=v ? p I q 
behaves as p if the identifiers u and v are equal, otherwise as q. 

There are two kinds of types, object types (Tr, t), c~, r , . . . )  and procedure types 
(~, ~b,... ). A type is denoted by a,/3, 3',. �9 �9 if its kind does not mat ter .  Further- 
more, there are meta- types (p, v , . . . ) :  "ot" is the type of all object types, "pt" 
the type of all procedure types, and %" the type of all types of any kind. 

The  activating set [2] of an object type {g}[2] is a multi-set of constants,  the 
behavior descriptor {fi} a finite collection of message descriptors (a, b, c, . . . ). A 
message descriptor x(~:fi, &)[~]~,[2] describes a message with selector x, type pa- 
rameters  fi of recta-types/~, and parameters  of types c~. The fi can occur in c~. The 
message descriptor is active if the activating set [2] contains all constants in the 
multi-set [~] (in-set). When a corresponding message is sent (or accepted), the 
type is updated by removing the constants in the imset from the activating set 
and adding those in the multi-set [2] (out-set). Using type updat ing repeatedly 
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for all active message descriptors, the type specifies a set of acceptable message 
sequences. An expression .u{a}[2]  is a recursive version of an object type. A 
type combination ~r + r specifies a set of acceptable message sequences that  in- 
cludes all arbitrary interleavings of acceptable message sequences specified by c~ 
and T. An identifier u can be used as type parameter.  

A procedure type (~:/5, 6~)7 specifies that a procedure of this type takes type 
parameters ~ of meta-types /5 and parameters of types &. Objects behaving 
according to the procedure accept messages as specified by T. 

For example, a procedure B := ((u){put(v_); {get(w); w.back(v); B(u)}}:~B) 
specifies the behavior of a buffer accepting "put" and "get" in alternation and 
sending "back" to the argument of "get" after receiving "get". The type of B 
is given by ~U =d~f (_u:t){put{u)[e]~,[t], get({back(u}[once]>[]}[once])[f]~,[e]}[e]. 
The type of a procedure specifying the behavior of an infinite buffer that  accepts 
as many "get" messages as there are elements in the buffer can be given by 
(flBI = d e f  (u__:t){put(u)~t,[f], get({back(u)[once]~,~}[once])[f]~,[]}~. 

Each underlined occurrence of an identifier binds this and all following occur- 
rences of the identifier. An occurrence is free if it is not bound. Free(e) denotes 
the set of all identifiers occurring fl'ee in e. Two processes are regarded as equal 
if they can be made identical by renaming bound identifiers (a-conversion) and 
repeatedly applying the equations {~, s} = {~, s, s} and {~, s, ~} = {~, a, s} 
to selectors. Two types are regarded as equal if they can be made identical by 
renaming bound identifiers (a-conversion) and applying these equations: 

~ + r = r + c ~  @ + ~ ) + r  

�9 ~_a = [,~_a/q~ {a}[2, 9] 
{~(~:~, ~}[~]~[9, 9'], a}[~] 

{a}[2] + {~}[~] 

: {a,  ~, c}  [2, y, ~] : [2, 9, y] 

: {a}[2] (~ ~ Elf{a}) 

= {.<_~:,~,,~>[@>[.q, a}[~ (~' ~ {2}uEft{a})  
= {a, ~}[2,~] (2 6 Eft{5}; fl ~ Eff{~}) 

where Ey' f{~<_q:#,,  '~,>[.h]~[~d,. . . ,  ~(_a{:,~{, ,~d[}d~>[.~d} : { : h }  u . . .  u { } d .  
Subtyping on meta-types is defined by ot < t and pt < t. Subtyping for types 

depends on an environment H containing typing assumptions of the forms u < a 
and ~ < u. The subtyping relation < on types and the redundancy elimination 
relation ~. on object types are the reflexive, transitive closures of the rules: 

n u { u < a } ~ - u < a  s  u}~-o,_< ~ 

/]rl-- {a,6-}[2]-{a}[2] (VcE {6}.3a E {a,}. 
c : ~<_~:,a, ,~)[9, 9']~>[~, z'] A Z' ~ E f t { a }  A 

: x @ , > ,  ~,)[@>[< Z"] A ,a < ~ ,,, ~r ~- ,~ < ~,) 

(a < fl and c~ -- T are simplified notations for 0 l- a < fl and 0 l- c~ -- r .)  The 
relation ~ is used for removing redundant message descriptors from behavior 
descriptors. Using these definitions we can show, for example, WB~ < ~oB. 
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A type {5}[~] is determinis t ic  if all message descriptors in {5} have pairwise 
different message selectors. For each deterministic type cr and message m there 
is only one way of updating ~ according to m. 

A sys t em configuration C contains expressions of the forms u ~+ (p, (n} and 
u ~-~/~}p:~. The first expression specifies an object with identifier u, behavior p 
and sequence of received messages ~ .  The second expression specifies a procedure 
of identifier u. C contains at most one expression u ~-+ e for each u ~ %7. C[ul  

e l , . . . ,  u,~ ~-+ e,~] is a system configuration with expressions added to C, where 
Ul, . . . ,  u,~ are pairwise different and do not occur to the left of ~-+ in C. 

For each u E %/the relation -Y-> on system configurations (defined by the 
rules given below) specifies all possible execution steps of object u. ([~/,5]/is the 
simultaneous substitution of the expressions ~ for all free occurrences of ~ in f , )  

c[~ ~ <{x/~);> a}, x(~, ~), <>] 

C[u F-+ iv,m; p, rh>, v ~+ /q, rh')] 

C[u ~ (v_:: (i~>P:F); q, <)] 
C[u ~+ (~$w(a, ~>;p, <>] 

C[u ~ <~<~, ~>, ,~>, ~ ~ i~>v:~] 
c[u ~ (v :~  ? p I q, ~>] 
C[u ~-~ <v=w ? p l q, '6z>] 

"> c[u~+ 

"> C[u~ 
--% c[u 
_2_+ c[u 

(iv, <}, v ~-+ <q, <' ,  m}] 

i([a, ~/~];), <>, v ~/~>v:~] 
iv, ~>] 

---+ denotes the closure of these relations over all u E V, and * > the reflexive, 
transitive closure of.  >..7 > defines the operational semantics of object systems. 

3 D y n a m i c  T y p e  I n f o r m a t i o n  

It seems to be easy to extend the calculus with a dynamic type checking concept: 
Processes of the form a_<fl ?p ] q are introduced, where a or/~ initially is a type 
parameter  to be replaced with a (dynamic) type during computation.  The typing 
assumption a _< ~ (for a or/3 in V) is statically known to hold in p. The relation 
u > (for each u E •) is extended by the rules: 

C[u ~ i~_<9?plq, <)] ."> C[u ~+ (q,~>] (~ ~ ~) 

For example, assume that a reference w is of type mark St[0 , where St ~-def 

{put/u_:t,u)[e]~[f], get(R[one])[f]>[e]} and R =def {back{v:t,v)[one]~G}. The 
process w.get/w'); {back{u_, v_}; u<_St[e] ? v.put/St[f], v}; {} I{}} (w' denotes the 
object 's self-reference) is type-safe. First, "get" is sent to w; then "back" is ac- 
cepted. If the type mark of v is a subtype of St[el, v is put into v. The type used 
as argument of "put" is St[f] because the type is updated when sending "put",  

Type information is lost when types are updated. St[e] is a supertype of v's 
type mark u; but, put /u  , v} cannot be sent to v: So far it is not possible to specify 
that  v's type mark is equal to u, except that  u is updated. To solve the problem, 



724 

processes of the form c~_<r?V__;p[ q are introduced, where (~ initially is a type 

parameter  to be replaced with an object type. The relation ~ ) is extended: 

c[~ ~ <o-_<~-?v;pl q, ,~}] - %  c[.~ ~ (([~/~]p), ,~>] (T+ 6 -  ~) 

v in p is replaced with a dynamically determined object type ~ which specifies 
the difference between c~ and ~-. This version of the above process keeps type in- 
formation: w.get(w');  {back@, v); u<St[e] ?_u'; v.put(St[t] + u/, v); {} I {}}. The 
type St[f] + u'  equals u after removing e and adding f to the activating set. 

4 T y p i n g  S e l f - R e f e r e n c e s  

Without  special t reatment ,  static typing of self-references is very restrictive: If  
an object behaves according to a type ~-, the type mark  ~r of a self-reference is 
a subtype of T. Both, ~r and v specify all messages that  may  return results of 
possibly needed services. In general, it is impossible to determine statically which 
services are needed. Hence, a and ~- usually specify much larger sets of message 
sequences than needed. This problem can be solved because each object has 
much more knowledge about  its own state than other objects: Before a message 
with a self-reference as argument is sent to a server, this reference's type mark  
is selected so that  it supports the messages returned by the server. At the same 
t ime the object 's  type is extended correspondingly. The objeet 's  type and self- 
reference's type mark  are determined dynamical ly as needed in the computat ion.  

We extend the calculus: The distinguished name "self'  can be used as argu- 
ments in procedures; "self' is replaced with a self-reference when the procedure 
is called. The fifth rule in the definition of " ) has to be replaced with: 

The type mark  of an occurrence of "self" as argument  is equal to the type of the 
corresponding formal parameter.  (Elements of V t2 {self} are denoted by o , . . . )  

An example demonstrates  the use of self and dynamic type comparisons: 

~_ := (((~, ~', ~, w_') ~<st[~] ?,.get(self); {baek(~, ~); ~(~, ~', v, ~ ')} 
I w ' ( u , v ) )  : (u : t ,u_ ' :o t ,  u , ( u : t , u ) u ' ) u ' ) ;  . . .  

The procedure w takes as parameters  a type u, an object type u', an identifier v 
of type u and a procedure identifier w' of type {u:t, u)u'. I f  v is a non-empty  store, 
an element is got from the store and w is called recursively with the element 
and its type as arguments.  Otherwise w' is called with u and v as arguments.  
The type mark  of self is R[one], as specified by St. The corresponding message 
"back" is accepted if the expression containing self is executed. 
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5 Static  Type  Checking 

An important result is that the process type model with the proposed extensions 
supports static type checking. Type checking rules are given in Appendix A. 

T h e o r e m  1. Let C = {u l  ~-~ <pl), . . .  , u s  ~ <Pn)} be a sys tem configuration 
and c%j and Ti (1 <_ i , j  <_ n) object types such that ri <_ cri,t + . ." + (ri,n and 
0, {Ul:Cq,i, . . . ,u,~:~,i} t- (pi:Ti} as defined by the type checking rules. Then, 

f o r  each sys tem configuration D with C *> D, i f  D contains an expression 
u ~ <p, m, (n>, there exists a sys tem configuration E with D ~ ~ E .  

(The proof is omitted because of lack of space.) Provided that  type checking 
succeeds for an initial system configuration, if an object has a nonempty buffer 
of received messages, the execution of this object cannot be blocked. Especially, 
the next message in the buffer is acceptable. Theorem 1 also implies that  sep- 
arate compilation is supported: If a process pi in C is replaced with another p~ 
satisfying the conditions, the consequences of the theorem still hold. 

6 Related Work 

Much work on types for concurrent languages and models was done. The lnajor- 
ity of this work is based on Milner's 7r-calculus [3, 4] and similar calculi. Espe- 
cially, the problem of inferring most general types was considered by Gay [2] and 
Vasconcelos and Honda [14]. Nierstrasz [5], Pierce and Sangiorgi [8], Vasconce- 
los [13], Colaco, Pantel and Sall'e [1] and Ravara and Vasconcelos [12] deal with 
subtyping. But their type models differ in an important aspect, from the process 
type model: They cannot represent constraints on message sequences and ensure 
statically that all sent messages are acceptable; the underlying calculus does not 
keep the message order. 

The proposals of Nielson and Nielson [6] can deal with constraints on message 
sequences. As in the process type model, a type checker updates type informa- 
tion while walking through an expression. However, their type model cannot 
ensure that  all sent messages are understood, and dealing with dynamic type 
information is not considered. 

The process type model can ensure statically that  all sent messages are un- 
derstood, although the set of acceptable messages can change. Therefore, this 
model is a promising approach to strong, static types for concurrent and dis- 
tributed applications based on active objects. However, it turned out that  the 
restrictions caused by static typing are an important difficulty in the practical 
applicability of the process type model. So far it was not clear how to circum- 
vent this difficulty without breaking type safety. New techniques for dealing with 
dynamic type information (as presented in this paper) had to be found. 

The approach of Najm and Nimour [7] has a similar goal as process types. 
However, this approach is more restrictive and cannot deal with dynamic type 
information, too. 
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The work presented in this paper refines previous work on process types [9- 
11]. The major  improvement  is the addition of dynamic type comparisons and 
a special t rea tment  of self-references. Some changes to earlier versions of the 
process type model were necessary. For example, the two sets of type checking 
rules presented in [11] had to be modified and combined into a single set so that  
it was possible to introduce "self". 

Dynamic type comparisons exist in nearly all recent object-oriented pro- 
g ramming  languages. However, the usual approaches cannot be combined with 
process types because these approaches do not distinguish between object types 
and type marks  and cannot deal with type updates. Conventional type models 
do not have problems with the flexibility of typing self-references. 

7 C o n c l u s i o n s  

The process type model is a promising basis for strongly typed concurrent pro- 
gramming languages. The use of dynamic type information can be supported in 
several ways so that  the process type model becomes more flexible and useful. 
An impor tan t  property is kept: A type checker can ensure statically that, clients 
are coordinated so that  all received messages can be accepted in the order they 
were sent, even if the acceptability of messages depends on the server's state. 
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A T y p e  C h e c k i n g  R u l e s  

/7 l- {fi}[~)] < 7 V l < i < n  �9 ~)i:6zi] I- (p{:{a}[S{]) ( t )  
/ I , j  ~ }- ({~1(~1, ~ l ) ; P l , . . .  ,Xn(~__~.,V__n);pn}:T ) 

H ~- er _< {a}[~] -4- ~ n , F [ u : { a } [ 0 ]  + ~] t- (Er:~,&([~/~]~/),p:T) (2) 

/7 ,0[~:zS,~z:~,u: r163 O:6:] ~- ( r  0 /7,1"[u:r ~- (q:T) (3) 
Lr, F ~- ((u := ((~, ~)p:,~_r q):~) 

SEL 

SEND 

DEF 

NEW 

CALL 

n, rb:~,  ~,:r ~ ( v )  n, rb:~,  ~:r ~ (q:~) 

/ / ,  P[u:/~] /- ((u<a ?plq):T) 

HU{ct<_u},P[u:t~]F-(p:r) /7, P[u:l~]b-(a:t,,q:T} (uf~Free(a)) SUB2 
/7, P[u:/~] b- ((a<_u ?p[q) :v )  

H U {u < a}, P[u:ot ,  v:ot] b (p:r) / / ,  r[u:ofl] f- (a:ot,  q:T) (U ~ Free(a)) SPLIT 
// ,  Flu:or] ~- <(u<z ?v;p t q):r) 

n ~ ~ _< ~ + ~- /L rb:d ~ (~:~) osJ  

/7, F ~- ff:~, p:a + r) SELS 

H,/7  ~- (self:a, e:g,p:r} 

PROC 
n, Fb:r e (~:~, ~:0) 

TPAR 
n ,  r b : . ]  ~ (~:,, ~:0) 

V l < i < n  �9  F[u:ot,  ill:/],] l- (c}i:t, {} :{}~)  H, F I- (~:0) ot < v 
n , - ~  I-- (*~_{Xl(~I :/]1, (~I}[01]I>[Zl],... ,20,,(~_n:~ln,~n}[~]n]D[Z.n]}[~]]:%,C: ~ OB']T1 

H , F  ~- (~r:ot, r :ot,e:O) ot < p 
// ,  F ~- ((0" + T):p, e:g) OBJT2 

i7, P[u:pt ,  flit]] I- (6~:t, r :ot ,  {}:{}[]) H, F b (~:~) pt _< u 
PROCT 

n ,  r ~ ((,~_(~:~, ~>~):., ~:~) 

(1) Act{a}[O] : {x~(~ :p , , c} , ) [ ]~[h]  ..... ~ ( ~ : # ~ , c } ~ } [ ] ~ [ ~ ] }  where 

Act{}[Y:] : { ]  
Act {x(~:t], &)[2]~[0'], ~}[2, ~] : {x(u-:t], &)[]~[0', 2], ~} (Act{~}[9, ~] = {~}) 

Act{x(fi:[~, c})[~?]v,[~)'], fi}[5] : Act{a}[2] (V2' �9 [2] # [2, ~']) 

and {fi}[t)] is deterministic. 

(2) a : x(u-:/~, 7)[k]~'[0] 

(3) r = (u_':t~,~}~ and F = {~ :~ ,~ :qS ,~b~:} ]  


