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Répartition de programmes Java paralleles

Résumé : Le but du projet Do! est de faciliter la programmation d’applications distri-
buées, et utilise le langage Java. Ce papier présente un framework parallele et un frame-
work distribué et décrit les mécanismes développés pour la répartition de programmes avec
I’environnement Do!.

Mots-clé : Java, framework, programmation parallele, transformations de programmes,
répartition



1 Introduction

The aim of the Do/ project is to ease the task of programming distributed applications using
object-oriented languages (namely Java). The Do! programming model is not distributed,
but is explicitly parallel. It relies on structured constructs (PAR) and shared objects. This
programming model is embedded in a framework described in section 3.1, without any
extension to the Java language. Programs distribution is expressed through distribution of
COLLECTIONs. The Do! preprocessor transforms the parallel program into a distributed
program that uses a distributed framework described in section 3.2. The generated codes
rely on a run-time managing remote creation of objects and remote methods invocations.
These mechanisms are described in section 2.

2 Programs distribution

During the execution of an object-oriented program, the control flow runs successively in the
distinct objects of the program, through methods invocations. We distribute the programs
control flow by distributing their objects on distinct processors. This requires:

e to map the objects of the program on distinct processors: when an object is located
on a processor, its attributes are managed by the local memory and its methods run
on this processor;

e to have a mechanism allowing objects to access objects located on distinct processors
(remote method invocations).

Programs distribution is obtained by objects transformations to allow transparent remote
accesses to objects (figure 1) and relies on a run-time allowing remote creations of objects.

- {>
N
o-am O

——» local reference
----- o~ remotereference

Figure 1: Program distribution
To map objects on distinct processors, the object creation semantics has been extended

to allow remote creation of objects. This extension is implemented through classes using
Java standard features. It is described in section 2.1.
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To allow objects to invoke remote objects methods, we use code transformations: a
preprocessor transforms objects in a way allowing transparent methods invocations wherever
they are located (section 2.2).

2.1 Remote creation of objects

The mapping of an object on a processor occurs at the object creation. We have implemented
an object creation with a semantics allowing the user to enforce the location of the new
instance he creates. Thus, the object that initializes the creation and the one that is created
may be located on distinct hosts. We have developed a runtime that supplies remote object
creation through a method remoteNew , instead of the standard new statement. This runtime
masks the problems of managing distinct Java Virtual Machines (3JvMs) and locating objects
maintained on distinct hosts. It is composed of classes, using Java standard features without
any change to the JvM. It relies on creation servers running on each processor, that manage
object creations using the reflection mechanism.

2.1.1 Creation servers.

To avoid synchronizations between processors involved in an object creation, a creation
server runs on each host. Each server is responsible for local creations of objects and
manages invocations to the remote servers: a server handles remote references to all other
servers. Each server has its own thread, distinct from the application computing thread.

—  method invocation

----- - Object creation

Figure 2: Creation servers
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Clients only deal with their local server. Given an identification of the class to instantiate
and its location, the server returns to the client a reference to the new object, possibly
mapped on a remote host: the server creates the new object if it is local, or invokes the
remote server responsible for the creation through its remote reference (figure 2).

2.1.2 Reflection.

To extend the object creation semantics, we have to manipulate language abstractions (such
as classes, constructors, instantiation...) at run-time: the reflection mechanism® allow us
to represent abstractions by first-class objects accessible in the program, proceeding in two
steps (figure 3):

e reification: abstractions are reified into meta-objects (e.g. a class is represented by
an object of type Class), that can be used like a basic object (e.g. retrieve the class
name, its constructors, ...)

o reflection occurs when these meta-objects are transformed into first-class objects (e.g.
the Class object is transformed into a basic object relevant to the application).

meta-objects

reflection

String
“MyObj’

base objects

Figure 3: Reflection

We process by first reifying the type identifier (the class name) into an object Class, that
we use to find the constructor (represented by an object of type Constructor), implementing
a newInstance method used to create and initialize the new object.

2.2 Transparent remote invocations

To distribute programs in a transparent way, we have to offer mechanisms masking the loca-
tions of objects: accesses to local and remote objects must be expressed in the same way in
the source code. Objects that may be accessed from remote hosts must be transformed, but

1Java offers reflection utilities as a core API (part of the standard Jpk) [7].
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all the objects of the program should not be transformed, either because this is not possible
(when the source code is not available) or because the programmer does not wish to make
them accessible (when the object is never accessed from remote hosts). The programmer
guides the preprocessor by labeling the classes to transform accessible (implementing the in-
terface Accessible). We developed a preprocessor (with the JavaCC [15] parser generator)
that transforms classes to be able to invoke the objects methods wherever they are located.
We split the source class in two classes (figure 4), the prozy class and the implementation
class:

e the proxy class has the same name and methods signatures as the source class, but the
methods bodies consist in remote invocations of the corresponding implementation in
the implementation class. The proxy object handles a reference on the implementation
object; it catches the invocations to the source object and redirects them to the right
host. The proxy object state is never modified, so it can be replicated on all processors
getting a reference on the source object.

e the implementation object contains the source methods implementations. It is not
replicated and is located where the source object has been mapped. It is shared
between all prozy objects.

MyObj remote
reference [~

source proxy implementation
class class class

Figure 4: Object transformation

At object creation, the proxy object is instantiated locally with the basic creation me-
chanism, and then uses the remote creation mechanism described above to instantiate the
implementation object on the target processor. Additional constructors are generated in
the prozy object with an additional parameter (the processor identification) to enforce the
implementation object location. The default constructors are used to create local objects.

2.3 Run-time — the Java RMI

The remote creation and invocation are implemented using the Java RMI [8], that offers
run-time mechanisms to access remote objects, but is not sufficient for our purpose (it does
not offer an easy programming model):

e clients of remote objects® interact with remote interfaces, never with the implementa-
tion classes of those interfaces and they must deal with additional exceptions that can
occur during a remote method invocation. So, the RMI is not transparent for the user;

2a remote object is one whose methods can be invoked from another jvM, potentially on a different host
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MyClass anlnstance = new MyClass(); /* object creation */
anInstance.aMethod(); /* local method invocation */

Non distributed code

Client code:

try { /* getting a reference to the remote object */
MyClass_Int anInstance = (MyClass_Int)

java.rmi.Naming.lookup("//"+remoteHostId+" /anInstanceld"); }

anInstance.aMethod(); /* remote method invocation */

catch (NotBoundException e) { ... }

catch (MalformedURLException e) { ... }

catch (UnknownHostException e) { ... }

catch (RemoteException €) { ... }

Server code:
MyClass_Impl anInstance = new MyClass_Impl(); /* object creation */
try { /* object registration */

java.rmi.Naming.bind("//"+myHostId+" /anInstanceld", anInstance); }
catch (AlreadyBoundException €) { ... }
catch (MalformedURLException e) { ... }
catch (UnknownHostException e) { ... }
catch (RemoteException e) { ... }

Distributed code with RMI

MyClass anlnstance = /* remote creation *

(MyClass)DoRuntime.remoteNew(1,"MyClass",new Object[0]);
anInstance.aMethod(); /* transparent remote method invocation */

Do! distributed code

Figure 5: Object creation and invocation

e to locate remote objects, a name server stores named references to remote objects and
provides methods to access thoses references. The programmer has to manage the
naming of objects and the synchronizations between the client and the owner of an
object;

e the parameter passing semantics depends on whether the argument is a remote object
or not: nonremote objects are passed by copy, whereas remote objects are passed by
reference. Moreover, the RMI parameter passing semantics may be different when used
locally (when the two objects involved in the method invocation are in the same JvM).
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We address this problem by transforming all objects that may be accessed from remote
hosts: the implementation object is never copied, so the local invocations semantics is
preserved (parameters are passed by reference).

Figure 5 shows the distribution of a code consisting in an object creation and invocation
by using the Java RMI or the Do! facilities.

3 Parallel programs distribution

Distributing sequential programs may be interesting for example to exploit the location of
specific resources (e.g. data collected in geographically distributed sites, expensive hard-
ware resources), but the sequential programming model do not benefit from the distributed
environment advantages: only one processor is used at a time. The parallel programming
model allows to run control flows concurrently; in a multithreaded environment, the parallel
activities may run concurrently, but sharing a global memory; in a distributed environment,
activities run concurrently on distinct computers.

In the Java language, parallelism is expressed by using Thread objects, that allow to
start asynchronous activities. The reification of activities into objects allow us to distribute
concurrent activities in the same way as we distribute objects of a program.

Java Threads provide us with asynchronism, but not with a structured parallel program-
ming model. To ease parallel programming, we have defined a parallel framework (sec-
tion 3.1), restricting the expressiveness of the Java parallel programming features. Using
this framework allows the programmer to write parallel programs by providing implemen-
tation for some objects (tasks and their arguments), the control and synchronizations being
managed by the framework.

i

Parallel framework Distributed framework

-} -0

.

Figure 6: Parallel program distribution

This framework provides us with structured parallel programs. We also use this struc-
ture for program distribution: we have defined a distributed framework (section 3.2), with
the same interface as the parallel framework. To distribute a program expressed with our
parallel framework, we use the distributed framework instead of the parallel framework,
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with the objects defined by programmer, some of those objects being transformed to allow
transparent remote accesses using the mechanisms described above (section 2). Figure 6 re-
presents a parallel program distribution by using the distributed framework and by objects
transformations.

The parallel framework is based on COLLECTIONSs of tasks and data. Parallel programs
are distributed by using the distributed framework, based on the parallel framework, but
using distributed COLLECTIONS to store distributed tasks and data.

3.1 Parallel framework

In this section, we give an overview of the parallel framework described in [13]. The aim
of this framework is to separate computations from control and synchronizations between
parallel tasks allowing the programmer to concentrate on the definition of tasks. This fra-
mework provides a parallel programming model without any extension to the Java language.
It is based on active objects (TASKs) and on a parallel construct (PAR) that allows to execute
COLLECTIONS of tasks in parallel.

A task is an object extending the class TASK implemented using the Java THREAD class;
its behavior is inherited from the run method of TASK, that can be re-defined to implement
the task specific behavior. A task is activated by invoking its run method and is active
during its whole execution. The asynchronous invocation of run methods is used for parallel
execution of tasks.

We have extended the operators design pattern [9] designed to express regular operations
over COLLECTIONS through OPERATORS; COLLECTIONs manage the storage and the accesses
to elements. OPERATORs represent autonomous agents processing elements. Including the
concept of active objects, we offer a parallel programming model: active and passive objects
are stored by COLLECTIONS; task parallelism is a processing over a TASKS COLLECTION,
tasks parameters being grouped in a DATA COLLECTION.

The class PAR implements the parallel activation of tasks grouped in a COLLECTION
with their parameters stored in another COLLECTION. A synchronization occurs at the end
of tasks execution. Nested parallelism can be expressed by including an object PAR in a
COLLECTION of tasks (the class PAR extends the class TASK).

Figure 7 shows an example of a simple parallel program, using ARRAY collections; the
class MY _TASK represents the program specific tasks; it extends TASK, and takes an object
of type PARAM as parameter.

3.2 Distributed framework

The distribution of parallel programs must preserve the program semantics: we consider
that running two parallel independent tasks in a shared multi-threaded environment should
be equivalent to running the same tasks on two distinct processors. If the tasks modify
shared objects, we consider that the semantics is preserved if the shared objects are not
replicated and have the same concurrent access management policy.
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import DO.SHARED.*;

public class SIMPLE PARALLEL {
public static void main (String argv| |) {
ARRAY tasks = new ARRAY(N);
ARRAY data = new ARrRAY(N);
for (int i=0; i<Nj; i++) {
tasks.add (new My _ Task(), i);
data.add (new param(), i); }

PAR par = new PAR (tasks,data);
par.call();

Figure 7: A simple parallel program

In the parallel framework, we use collections to manage the storage and accesses to active

and passive objects. The distributed framework is obtained by the distribution of collections
in the parallel framework. A distributed collection is a collection that manages distributed
elements (objects mapped on distinct processors), the location of the elements being masked
to the user. When a client retrieves a remote element through a distributed collection, it
gets a remote reference to the element, that can be invoked transparently. Distributed tasks
are activated by remote invocation of their run methods.

The physical implementation of COLLECTIONS is redefined without changing their inter-

face through inheritance: COLLECTION defines the collection interface and is implemented
by two classes (figure 8):

e ND_ COLLECTION implements a non distributed collection

e D_COLLECTION implements a distributed collection.

| coLLECTION[E] |

A

ND_COLLECTION [E] |<—| D_COLLECTION [E] |—>| LAYOUT MANAGER

Figure 8: Non distributed and distributed collections
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A distributed collection is composed of fragments, mapped on distinct processors, each
fragment managing the local subset of the collection elements. A local fragment is a non
distributed collection (figure 8: D _COLLECTION uses ND__COLLECTION); the distributed
collection processes an access to a distributed element by remote invocation to the fragment
owning this element (local to this element).

abstract public class LAYOUT MANAGER {

/* transforms a global key into a local key */
abstract public key gl2] (kY k);

/* returns the owner of the element identified by k */
abstract public int owner (KEY k);

/* returns the list of processors owning at least one element */
abstract public int[ | owners();

Figure 9: The LAYOUT MANAGER class

To access an element of a distributed collection, a client identifies this element with a
global identifier (relative to the whole set of elements). The distributed collection has to
identify the fragment owning the element and transform the global identifier into a local
identifier relevant to the local collection. The task of converting a global identifier into the
corresponding local identifier and the owner identifier devolves on a LAYOUT MANAGER ob-
ject (figure 9). Different LAYOUT MANAGER implementations provide different distribution
policies. The user guides the collection distribution by choosing a LAYOUT MANAGER im-
plementation. The figure 10 represents an example of class hierarchy of distribution layout

| LAYOUT_MANAGER |

| ARRAY LM | | LIST LM |

| BLOCK_ALM | | CYCLIC_ALM | | BLOCK_LLM | | CYCLIC_LLM |

Figure 10: Distribution layout managers
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managers; for example, the distribution of arrays by blocks is obtained through the use of
the BLOCK _ALM class.

4 Related work

Tools produce Java parallel (multi-threaded) programs, relying on a standard Java runtime
system; they do not generate distributed programs. The High Performance Java project
at Indiana University comprises the development of JAVAR [2], a restructuring compiler to
generate parallel programs from sequential Java programs with annotations, and JAVAB [1],
a tool to automatically detect and exploit implicit loop parallelism in bytecode. Roudier and
Ichisugi [5] have defined Tiny Data-Parallel Java as an example application of their extensible
Java preprocessor EPP: methods identified as data-parallel methods are translated by EPP
in Java multi-threaded codes.

Other projects are based on distributed objects and remote method invocations. Philipp-
sen and al [14] have extended the Java language by adding remote objects at the language
level. A runtime manages creation, distribution and migration of objects. The program-
ming model is explicitly distributed but remote method invocation is transparent from the
programmer point of view. Kalé and al [12] have defined a parallel extension to Java, pro-
viding dynamic creation of remote objects with load balancing, and object groups. It is
implemented using the Converse [11] interoperability framework, which makes it possible
to integrate parallel libraries written in Java with modules in other parallel languages in a
single application.

Some environments rely on a data-parallel programming model and a SPMD execution
model, without any extension to the Java language. Ivannikov and al [6] have defined a class
library, containing a set of Java classes and interfaces for the development of data-parallel
programs using a run-time based on MpPI. EPEE (Eiffel Parallel Execution Environment) [10]
is an object oriented design framework developed in our team. It proposes a programming
environment where data and control parallelism are totally encapsulated in regular Eiffel
classes, without any extension to the language nor modification of its semantics. This
research is very close to ours but uses no program transformation and the execution model
is limited to the SPMD model.

Like in the Do! project, parallelism may be introduced through the notion of active
objects. Caromel and al are developing Java// which is based on active objects and uses a
library that is itself extensible by the programmers. This work is based on Eiffel//[3] and
C-++// [4], and uses the reflection mechanism through a Meta-Object Protocol.

5 Conclusion
In this paper, we have presented the distribution of Java parallel programs. The program-

ming model we propose is explicitly parallel, based on a parallel framework, without any
extension to the Java language. Distributed programs are generated by objects transforma-
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tions (a preprocessor transforms objects to allow remote accesses) and generated programs
use a distributed framework based on the parallel framework. The runtime uses the standard
Java Virtual Machine, without any change in the bytecode.
This framework can be extended to handle dynamic creation of tasks, through dynamic
collections (e.g. lists); distributed scheduling could also be added to the framework.
Another foreseen extension of this work is to use a more efficient run-time than the RMI.
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