
An Algebraic Semantics for an Abstract
Language with Intra-Object-Concurrency*

Thomas Gehrke

Institut ffir Informatik, Universits Hildesheim
Postfach 101363, D-31113 Hildesheim, Germany

gehrke@informatik.uni-hildesheim.de

Object-oriented specification and implementation of reactive and distributed sys-
tems are of increasing importance in computer science. Therefore, languages like
Java [1] and Object REX)([3, 7] have been introduced which integrate object-
orientation and concurrency. An important area in programming language re-
search is the definition of semantics, which can be used for verification issues and
as a basis for language implementations. In recent years several semantics for
concurrent object-oriented languages have been proposed which are based on the
concepts of process algebras; see, for example, [2, 6, 8, 9]. In most of these seman-
tics, the notions of processes and objects are identified: Objects are represented
by sequential processes which interact via communication actions. Therefore, in
each object only one method can be active at a given time. Furthermore, lan-
guage implementations based on these semantics tend to be inefficient, because
the simulation of message passing among local objects by communication actions
is more expensive than procedure calls in sequential languages.

In contrast to this identification of objects with processes, languages like Java
and Object REXX allow for intra-object-concurrency by distinguishing passive
objects and active processes (in Java, processes are objects of a special class).
Objects are data structures containing methods for execution, while system ac-
tivity is done by processes. Therefore, different processes may perform methods
of the same object at the same time. To avoid inconsistencies of data, the lan-
guages contain constructs to control intra-object-concurrency.

In this paper, we introduce an abstract language based on Object REXX
for the description of the behaviour of concurrent object-based systems, i.e. we
ignore data and inheritance. The operational semantics of this language is de-
fined by a translation of systems into terms of a process calculus developed
previously. This calculus makes use of process creation and sequential composi-
tion instead of the more common action prefixing and parallel composition. Due
to the translation of method invocation into process calls similar to procedure
calls in sequential languages, the defined semantics is appropiate as a basis for
implementation.

The language O: An O-system consists of a set of objects and an additional
sequence of statements, which describes the initial system behaviour. Each ob-
ject is identified by a unique object identifier O and must contain at least one

* This work was supported by the DFG grant EREAS (Entwurf reaktiver Systelne).

734

object O1
me thod ml

a;b
method m2

a; reply; b
me thod m3

a [] reply; b

object 02
method ml guarded

c; reply; d
method rn2 guarded

e; guard off; reply; f

object 03
me thod ml guarded

a; reply; b

object 04
me thod ml guarded

c; d

Fig. 1. O examples.

method. The special object identifier self can be used for the access of meth-
ods of the calling object (self is not allowed in the initial statement sequence).
Methods are identified by method identifiers m and must contain at least one
statement. Statements include single instructions and nondeterministic choices
between sequences: Sl[]S2 performs either sl or s2. We distinguish five kinds of
instructions: atomic actions a representing the visible actions of systems (e.g. ac-
cess to common resources), methods calls O.m and the three control instructions
rep ly , g u a r d on and g u a r d off. ; denotes sequential composition; for syntac-
tical convenience we assume that ; has a higher priority than [] (e.g., a [] b; c is
a [] (b; c)). System runs are represented by sequences al...aN of atomic actions,
called traces.

During the execution of a called method, the caller is blocked until the called
method has terminated. For example, the execution of the sequence O l . m l ; c in
combination with the object O1 in Figure 1 generates the trace a bc. In some
cases it is desirable to continue the execution of the caller before the called
method has finished (e.g., the execution of the remaining instructions of the
called method does not influence the result delivered to the caller). The in-
struction r e p l y allows the caller to continue its execution concurrently to the
remaining instructions of the called method. Therefore, the execution of O l .m2 ;e
leads to the traces a b c and a c b. Furthermore, the execution of Ol .m3; c leads
to the traces a c, b c and c b.

Methods of different objects can always be executed in parallel. Concurrency
within objects can be controlled by the notion of guardedness. If a method m of
an object O is guarded, no other method of O is allowed to become active when
m is taking place. If m is unguarded, other methods of O can be performed in
parallel with m. The option g u a r d e d declares a method to be guarded. The
instructions g u a r d on and g u a r d off allow to change the guardedness of a
method during its execution. Consider the object 02 in Figure 1 in which both
methods are declared as guarded. Although O2.ml contains a r e p l y instruction,
the execution of the sequence O2.ml; 02 .m2 can only generate the trace cd e f ,
because the guardedness of the methods prevents their concurrent execution. On
the other hand the sequence O2.m2; 0 2 . m l leads to the traces e f c d and e c d f

- - - ~ Ti

735

,p~w,,(t) 2+ ,w,~.(t)

t 2 + t u 2 + u t 2 + t
T2 T3

(t;u) 2+ (t;u) (a : t) 2+ (a : t)
T4

t - % t'
- - R1 R2 R3
a -% 1 n _2+ O(n) spawn(t) -% spawn(t')

t - - ~ t' a # b t ~-~ t' u --% u' t -% t'
R4 R5 R6 R7

(b : t) - ~ (b : t') t + u - ~ t' t + u -% u' t; u -% t'; u

t A~ t' u--% U'R8 t A~ t' t' -% t" u_e~ u' { ~ , a ' } = { a , a ? } R 9

t; u ~ t ' ;u ' t; u ~ t";u '

Fig. 2. Transition rules.

(the t race e c f d is prevented by the guardedness of O2.rnl) . Guardedness does
not play a role in the initial s ta tement sequence.

As a thi rd example, consider the sequence O 3 . m l ; O 4 . r n l . This sequence
leads to the possible traces a b c d, a c b d and a e d b, because the called me thods
belong to different objects.

The process calculus P : To model the behaviour of O-systems, we in t roduce a
process calculus 7) , which is a slightly modified version of a calculus s tudied in
[5]. We assume a countable set C of act ion names, ranged over by a, b, c. A name
a can be used either for input , denoted a?, or for output , denoted with only the
name a itself. We somet imes use a t as a "meta-nota t ion" denot ing either a? or
a. The set of actions is denoted A = {at I a C C} U {r}, ranged over by a , ft. r is
a special action to indicate internal behaviour of a process. s = A U {5}, ranged
over by w, is the set of t ransi t ion labels, where 5 signals successful t e rmina t ion .
N', ranged over by n, n ' , is a set of names of processes. The calculus 7) , ranged
over by t, u, v, is de fned th rough the following g r a m m a r :

t : : = 0 I 1 l a I n I t;t I spawn(t)] t + t I (a :t)

0 denotes the inactive process, 1 denotes a successfully t e rmina ted term. A
process name n is interpreted by a funct ion 0 : iV" --+ 7), called process environ-
ment , where n denotes a process call of O(n) . t; u denotes the sequential com-
posit ion of t and u, i.e. u can perform actions when t has te rmina ted , spawn(t)
creates a new process which performs t concurrent ly to the spawning process:
spawn(t); u represents the concurrent execution of t and u. The choice opera tor
t + u performs either t or u. (a : t) restricts the execution of t to the actions in
A \ {a, a?}. The semantics o f /) is given by the t ransi t ion rules in Figure 2.

Translation: An object system is t ransla ted into a process envi ronment O and
a te rm representing the initial s ta tement sequence. The set Af of process names
is defined as JV = {O_m] 0 object, rn me thod of O} U { O _ m u t e x I 0 object}.
For each me thod m of an object O, we include a process name O_m into the

736

0 1 _ m l ~ a; b
Ol_m2 ~+ a; spawn(b)
Ol_m3 ~-> r; a + r; spawn(b)

0 2 _ m l F-> o2_1; c; spawn(d; o2_u)
02_m2 ~-~ o2_l; e; o2_u; spawn(o2_l; f; o2_u)
0 2 _ m u t e x ~-~ 02_/?; o2_u?; 02_rnutex

0 3 _ m l ~-~ o3_l; a; spawn(b; o3_u)
0 3 _ m u t e x ~+ o3_/?; o3_u?; 03_rnutex

0 4 _ m l ~+ o4_1; c; d; o4_u
0 4 _ m u t e x ~ o4_/?; o4_u?; 04_rnutex

Fig. 3. Process semantics of the objects in Figure 1.

set H ; the process te rm O(O_m) models the behaviour of the body of m. For
example, the method m l of object O1 in Figure 1 is translated into O h m l ~-~ a; b
(see Figure 3). The additional O_mutex processes are used for synchronizing
methods. Method calls are translated into process calls of the corresponding
process definitions. Therefore, the s ta tement sequence O l . m l ; c is t ranslated
into Ol_ml ; c, which is able to perform the following transitions: Ol_ml ; c - ~
a; b; c -% 1; b; c _2+ 1; 1; c -% 1; 1; 1. Note that the sequence of the transit ion
labels without r corresponds to the trace for O l . m l ; c.

The translation of the reply- ins t ruct ion is realized by enclosing the remain-
ing instructions of the method in a spawn-operator. For example, the method
m2 of O1 is translated into the process Ol_m2 ~-~ a; spawn(b). The sequence
01.m2; c is translated into Ol_m2; c, which leads to the following transit ion
system:

b 1;spawn(1);c

Ol_m2;c :~ a;spawn(b);r a 1;spawn(b);c ~ b 1;spawn(i);1
1;spawn(b);1

Choice operators sl [] s2 are translated into terms r ; t l + T;t2 where t l , t2
are the translations of sl and s2. The initial r-actions simulate the internal
nondeterminism of the n-operator . If an instruction sequence contains sub-
terms of the form (sl [] s2); sa, we have to distribute sequential composit ion
over choice, i.e. (sl [] s~);s~ has to be transformed into sl;sa [] s2;s3 before
the translation into the process calculus can be applied. This t ransformat ion
is necessary for correct translation of the reply- ins t ruct ion . For example, the
sequence (a; b [] r e p l y ; e); d is t ransformed into a; b; d [] r e p l y ; c; d, and then
translated into r; a; b; d + r; spawn(c; d).

Guardedness is implemented by mutual exclusion with semaphores. In the
absence of data, we have to simulate semaphores by communicat ion. Por each ob-

737

ject O using guardedness, we introduce a special semaphore process O_mutex ~-~
o_l?; o_u?; O_mutex. Communicat ion on channel o_l means locking the semaphore,
communicat ion on o_u the corresponding release (unlock). To ensure that only
one guarded method of an object can be active at the same time, methods of ob-
jects using guardedness have to interact with the corresponding semaphore pro-
cess. For example, consider the translation of object 0 2 in Figure 3. In order to
integrate unguarded actions into the synchronization mechanism, we have to en-
close every unguarded action by lock and unlock actions. Therefore, in 02'.m2 the
instruction f is t ranslated into o2d; f ; o2_u. Without the synchronization actions,
unguarded actions could be performed although a guarded method has locked
the semaphore. In objects without guardedness, the insertion of lock and unlock
actions is not necessary and therefore omit ted (see Figure 3). To enforce commu-
nication over the l and u channels, we have to restrict these actions to the transla-
tion of the initial instruction sequence. Furthermore, the semaphore process has
to be spawned initially. Therefore, the initial s ta tement sequence O2.ml ; 02 .m2
is t ranslated into ({o2_/, o2_u} : spawn(O2_mutex); O2_ml; O2_m2). The sema-
phore process is spawned initially and runs concurrently to the method calls.
o2d and o2_u are restricted, therefore they can only be performed in commu-
nications between 02_ml , 02_m2 and the semaphore process. It is easy to see
tha t the only possible trace is c d e f (with v-actions omitted).

In the full paper [4], the translation of O-systems is defined via translat ion
functions. Furthermore, weak bisimulation is used as a equivalence relation on
object systems.

R e f e r e n c e s

1. K. Arnold and J. Goshng. The Java Programming Language. Addison-Wesley, 1996.
2. P. Di Blasio and K. Fisher. A Calculus for Concurrent Objects, In Proceedings o]

CONCUR '96, LNCS 1119. Springer, 1996,
3. T. Ender. Object-Oriented Programming with REX)(. John Wiley and Sons, Inc.,

1997.
4. T. Gehrke. An Algebraic Semantics for an Abstract Language with Intra-Object-

Concurrency. Technical Report HIB 7/98, Institut fiir Informatik, Universit/it
Hildesheim, May 1998.

5. T. Gehrke and A. Rensink. Process Creation and Full Sequential Composition in a
Name-Passing Calculus. In Proceedings of EXPRESS '97, vol. 7 of Electronic Notes
in Theoretical Computer Science. Elsevier, 1997.

6. K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.
In Proceedings of ECOOP '91, LNCS 512. Springer, 1991.

7. C. Michel. Getting Started with Object REXX. In Proceedings of the SHARE
Technical Conference, March 1996.

8. E. Najm and J.-B. Stefani. Object-Based Concurrency: A Process Calculus Analysis.
In Proceedings of TAPSOFT '91 (vol. 1), LNCS 493. Springer, 1991.

9. D. Walker. Objects in the 7r-Calculus. Information and Computation, 116:253-271,
1995.

