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Object-oriented specification and implementation of reactive and distributed sys- 
tems are of increasing importance in computer science. Therefore, languages like 
Java [1] and Object REX)(  [3, 7] have been introduced which integrate object- 
orientation and concurrency. An important  area in programming language re- 
search is the definition of semantics, which can be used for verification issues and 
as a basis for language implementations. In recent years several semantics for 
concurrent object-oriented languages have been proposed which are based on the 
concepts of process algebras; see, for example, [2, 6, 8, 9]. In most of these seman- 
tics, the notions of processes and objects are identified: Objects are represented 
by sequential processes which interact via communication actions. Therefore, in 
each object only one method can be active at a given time. Furthermore, lan- 
guage implementations based on these semantics tend to be inefficient, because 
the simulation of message passing among local objects by communication actions 
is more expensive than procedure calls in sequential languages. 

In contrast to this identification of objects with processes, languages like Java 
and Object REXX allow for intra-object-concurrency by distinguishing passive 
objects and active processes (in Java, processes are objects of a special class). 
Objects are data  structures containing methods for execution, while system ac- 
tivity is done by processes. Therefore, different processes may perform methods 
of the same object at the same time. To avoid inconsistencies of data, the lan- 
guages contain constructs to control intra-object-concurrency. 

In this paper, we introduce an abstract language based on Object REXX 
for the description of the behaviour of concurrent object-based systems, i.e. we 
ignore data  and inheritance. The operational semantics of this language is de- 
fined by a translation of systems into terms of a process calculus developed 
previously. This calculus makes use of process creation and sequential composi- 
tion instead of the more common action prefixing and parallel composition. Due 
to the translation of method invocation into process calls similar to procedure 
calls in sequential languages, the defined semantics is appropiate as a basis for 
implementation. 

The language O: An O-system consists of a set of objects and an additional 
sequence of statements, which describes the initial system behaviour. Each ob- 
ject is identified by a unique object identifier O and must contain at least one 
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object  O1 
me thod  ml 

a;b 
method  m2 

a; reply; b 
me thod  m3 

a [] reply; b 

object  02 
method  ml guarded  

c; reply; d 
method  rn2 guarded  

e; guard  off; reply; f 

object  03 
me thod  ml guarded  

a; reply; b 

object  04 
me thod  ml guarded  

c; d 

Fig. 1. O examples. 

method. The special object identifier self  can be used for the access of meth- 
ods of the calling object (self is not allowed in the initial statement sequence). 
Methods are identified by method identifiers m and must contain at least one 
statement. Statements include single instructions and nondeterministic choices 
between sequences: Sl[]S2 performs either sl or s2. We distinguish five kinds of 
instructions: atomic actions a representing the visible actions of systems (e.g. ac- 
cess to common resources), methods calls O.m and the three control instructions 
rep ly ,  g u a r d  on  and g u a r d  off. ; denotes sequential composition; for syntac- 
tical convenience we assume that ; has a higher priority than [] (e.g., a [] b; c is 
a [] (b; c)). System runs are represented by sequences al...aN of atomic actions, 
called traces. 

During the execution of a called method, the caller is blocked until the called 
method has terminated. For example, the execution of the sequence O l . m l ;  c in 
combination with the object O1 in Figure 1 generates the trace a bc. In some 
cases it is desirable to continue the execution of the caller before the called 
method has finished (e.g., the execution of the remaining instructions of the 
called method does not influence the result delivered to the caller). The in- 
struction r e p l y  allows the caller to continue its execution concurrently to the 
remaining instructions of the called method. Therefore, the execution of O l .m2 ;e  
leads to the traces a b c and a c b. Furthermore, the execution of Ol .m3;  c leads 
to the traces a c, b c and c b. 

Methods of different objects can always be executed in parallel. Concurrency 
within objects can be controlled by the notion of guardedness. If a method m of 
an object O is guarded, no other method of O is allowed to become active when 
m is taking place. If m is unguarded, other methods of O can be performed in 
parallel with m. The option g u a r d e d  declares a method to be guarded. The 
instructions g u a r d  on  and g u a r d  off  allow to change the guardedness of a 
method during its execution. Consider the object 02  in Figure 1 in which both 
methods are declared as guarded. Although O2.ml  contains a r e p l y  instruction, 
the execution of the sequence O2.ml;  02 .m2  can only generate the trace cd e  f ,  
because the guardedness of the methods prevents their concurrent execution. On 
the other hand the sequence O2.m2; 0 2 . m l  leads to the traces e f c d and e c d f 
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,p~w,,(t) 2+ ,w,~.(t) 

t 2 + t  u 2 + u  t 2 + t  
T2 T3 

(t;u) 2+ (t;u) (a :  t) 2+ (a :  t) 
T4 

t - %  t'  
- -  R1 R2 R3 
a -% 1 n _2+ O(n) spawn(t) -% spawn(t') 

t - - ~  t' a # b t ~-~ t' u --% u' t -% t' 
R4 R5 R6 R7 

(b : t) - ~  (b : t') t + u - ~  t' t + u -% u' t; u -% t'; u 

t A~ t' u--% U'R8 t A~ t' t' -% t" u_e~  u' { ~ , a ' } = { a , a ? } R  9 

t; u ~ t ' ;u '  t; u ~ t";u '  

Fig. 2. Transition rules. 

(the t race e c f d is prevented by the guardedness of O2.rnl) .  Guardedness  does 
not  play a role in the initial s ta tement  sequence. 

As a thi rd  example,  consider the sequence O 3 . m l ; O 4 . r n l .  This  sequence 
leads to the possible traces a b c d, a c b d and a e d b, because the called me thods  
belong to different objects. 

The process calculus P :  To model  the behaviour  of O-systems,  we in t roduce a 
process calculus 7 ) ,  which is a slightly modified version of a calculus s tudied in 
[5]. We assume a countable  set C of act ion names,  ranged over by a, b, c. A name  
a can be used either for input ,  denoted a?, or for output ,  denoted with only the 
name  a itself. We somet imes use a t as a "meta-nota t ion"  denot ing  either a? or 
a. The  set of  actions is denoted A = {at  I a C C} U {r},  ranged over by a ,  ft. r is 
a special action to indicate internal behaviour  of a process. s = A U {5}, ranged 
over by w, is the set of t ransi t ion labels, where 5 signals successful t e rmina t ion .  
N', ranged over by n, n ' ,  is a set of names of  processes. The calculus 7 ) ,  ranged 
over by t, u, v, is de fned  th rough  the following g r a m m a r :  

t : : = 0  I 1 l a I n  I t;t I spawn(t) ] t + t  I (a  :t) 

0 denotes the inactive process, 1 denotes a successfully t e rmina ted  term. A 
process name n is interpreted by a funct ion 0 : iV" --+ 7 ), called process environ- 
ment ,  where n denotes a process call of O(n) .  t; u denotes the sequential  com- 
posit ion of t and u, i.e. u can perform actions when t has te rmina ted ,  spawn(t)  
creates a new process which performs t concurrent ly  to the spawning process: 
spawn(t);  u represents the concurrent  execution of t and u. The  choice opera tor  
t + u performs either t or u. (a : t) restricts the execution of t to  the actions in 
A \ {a, a?}. The  semantics o f / )  is given by the t ransi t ion rules in Figure 2. 

Translation: An object  system is t ransla ted into a process envi ronment  O and 
a te rm representing the initial s ta tement  sequence. The  set Af of  process names  
is defined as JV = {O_m ] 0 object,  rn me thod  of  O} U { O _ m u t e x  I 0 object}.  
For each me thod  m of an object O, we include a process name  O_m into the 
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0 1 _ m l  ~ a; b 
Ol_m2 ~+ a; spawn(b) 
Ol_m3 ~-> r; a + r; spawn(b) 

0 2 _ m l  F-> o2_1; c; spawn(d; o2_u) 
02_m2 ~-~ o2_l; e; o2_u; spawn(o2_l; f;  o2_u) 
0 2 _ m u t e x  ~-~ 02_/?; o2_u?; 02_rnutex  

0 3 _ m l  ~-~ o3_l; a; spawn(b; o3_u) 
0 3 _ m u t e x  ~+ o3_/?; o3_u?; 03_rnutex  

0 4 _ m l  ~+ o4_1; c; d; o4_u 
0 4 _ m u t e x  ~ o4_/?; o4_u?; 04_rnutex  

Fig. 3. Process semantics of the objects in Figure 1. 

set H ;  the process te rm O(O_m) models the behaviour of the body of m. For 
example, the method m l  of object O1 in Figure 1 is translated into O h m l  ~-~ a; b 
(see Figure 3). The additional O_mutex processes are used for synchronizing 
methods.  Method calls are translated into process calls of the corresponding 
process definitions. Therefore, the s ta tement  sequence O l . m l ;  c is t ranslated 
into Ol_ml ;  c, which is able to perform the following transitions: Ol_ml ;  c - ~  
a; b; c -% 1; b; c _2+ 1; 1; c -% 1; 1; 1. Note that  the sequence of the transit ion 
labels without r corresponds to the trace for O l . m l ;  c. 

The translation of the reply- ins t ruct ion  is realized by enclosing the remain- 
ing instructions of the method in a spawn-operator. For example,  the method 
m2 of O1 is translated into the process Ol_m2 ~-~ a; spawn(b). The sequence 
01.m2; c is translated into Ol_m2; c, which leads to the following transit ion 
system: 

b 1;spawn( 1 );c 

Ol_m2;c :~ a;spawn(b);r a 1;spawn(b);c ~ b  1;spawn(i);1 
1;spawn(b);1 

Choice operators sl [] s2 are translated into terms r ; t l  + T;t2 where t l , t2  
are the translations of sl and s2. The initial r-actions simulate the internal 
nondeterminism of the n-operator .  If  an instruction sequence contains sub- 
terms of the form (sl [] s2); sa, we have to distribute sequential composit ion 
over choice, i.e. (sl [] s~);s~ has to be transformed into sl;sa [] s2;s3 before 
the translation into the process calculus can be applied. This t ransformat ion 
is necessary for correct translation of the reply- ins t ruct ion .  For example,  the 
sequence (a; b [] r e p l y ;  e); d is t ransformed into a; b; d [] r e p l y ;  c; d, and then 
translated into r;  a; b; d +  r; spawn(c; d). 

Guardedness is implemented by mutual  exclusion with semaphores.  In the 
absence of data, we have to simulate semaphores by communicat ion.  Por each ob- 



737 

ject O using guardedness, we introduce a special semaphore process O_mutex ~-~ 
o_l?; o_u?; O_mutex. Communicat ion on channel o_l means locking the semaphore,  
communicat ion on o_u the corresponding release (unlock). To ensure that  only 
one guarded method of an object can be active at the same time, methods  of ob- 
jects using guardedness have to interact with the corresponding semaphore pro- 
cess. For example, consider the translation of object 0 2  in Figure 3. In order to 
integrate unguarded actions into the synchronization mechanism, we have to en- 
close every unguarded action by lock and unlock actions. Therefore, in 02'.m2 the 
instruction f is t ranslated into o2d; f ;  o2_u. Without  the synchronization actions, 
unguarded actions could be performed although a guarded method has locked 
the semaphore.  In objects without guardedness, the insertion of lock and unlock 
actions is not necessary and therefore omit ted (see Figure 3). To enforce commu-  
nication over the l and u channels, we have to restrict these actions to the transla- 
tion of the initial instruction sequence. Furthermore,  the semaphore process has 
to be spawned initially. Therefore, the initial s ta tement  sequence O2.ml ;  02 .m2  
is t ranslated into ({o2_/, o2_u} : spawn(O2_mutex); O2_ml; O2_m2). The  sema- 
phore process is spawned initially and runs concurrently to the method calls. 
o2d and o2_u are restricted, therefore they can only be performed in commu-  
nications between 02_ml ,  02_m2 and the semaphore process. It  is easy to see 
tha t  the only possible trace is c d e f (with v-actions omitted).  

In the full paper  [4], the translation of O-systems is defined via translat ion 
functions. Furthermore,  weak bisimulation is used as a equivalence relation on 
object systems. 
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