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Abs t rac t .  In Krylov-based iterative methods, the computation of an 
orthonormal basis of the Krylov space is a key issue in the algorithms 
because the many scalar products are often a bottleneck in parallel dis- 
tributed environments. Using GMRES, we present a comparison of four 
variants of the Gram-Schmidt process on distributed memory machines. 
Our experiments are carried on an application in astrophysics and on a 
convection-diffusion example. We show that the iterative classical Gram- 
Schmidt method overcomes its three competitors in speed and in parallel 
scalability while keeping robust numerical properties. 

1 I n t r o d u c t i o n  

Krylov-based iterative methods for solving linear systems are attractive because 
they can be rather easily integrated in a parallel distributed environment. This 
is mainly because they are free from matrix manipulations apart from matrix- 
vector products which can often be parallelized. The difficulty is then to find 
an efficient preconditioner which is good at reducing the number of iterations 
without degrading too much the parallel performance. We consider the solution 
of a large sparse linear system 

A x = b  

where A is a nonsingular n x n matrix, b and x are two vectors of length n. 
Given a starting vector x0, the GMRES method [10] consists in building an 
orthonormal basis Vm for the Krylov space 

= 

The integer m is called the projection size, GMRES produces a solution whose 
restriction to this Krylov space has a minimal 2-norm residual. When one wants 
to limit the amount of storage for V,~, m is kept fixed and the method is restarted 
with a better initial guess: m is then called the restart parameter and the 
restarted GMRES method is denoted by GMRES(m).  The construction of the 
basis Vm is an important  step of GMRES. Several variants of the Gram-Schmidt  
(GS) process are available; they have different efficiencies and different numerical 
properties in finite precision arithmetic [1]. Classical GS (CGS) is the most effi- 
cient but is numerically unstable, modified GS (MGS) improves on CGS but can 
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still suffer from a loss of orthogonality. The iterative MGS (IMGS) method and 
the iterative CGS (ICGS) have been designed to reach the numerical quality of 
the Householder (or Givens) factorization with a reasonable computat ional  cost. 
From a point of view of computational efficiency, CGS and ICGS are the best 
because the scalar products can be gathered and implemented in a matrix-vector 
product  form. However, the iterative procedures ICGS and IMGS may require 
more than twice as much work than their counterparts CGS and ICGS, when 
reorthogonalization is needed. Our implementations are the ones described in 
[1]. From a numerical point of view, it has been proved that  MGS, IMGS and 
ICGS are able to produce a good enough computed Krylov basis to ensure the 
convergence of GMRES [4, 6]. 

In this paper, we wish to compare the efficiency of GMRES(m) with these 
four orthogonalization processes in a parallel distributed environment. It is well- 
known that  the many scalar products arising in the orthogonalization phase are 
the bottleneck of Krylov based methods. Our tests are based on a restarted GM- 
RES code developed at CERFACS which implements the four GS variants and 
uses reverse communication for the preconditioner, the matrix-vector products 
and dot products [5]. The numerical experiments have been performed on the 
128 node CRAY T3D available at CERFACS, using the MPI message passing 
library. We present results concerning an application in astrophysics developed 
in collaboration of M. Rieutord (Observatoire Midi-Pyr~n~es, Toulouse) and L. 
Valdettaro (Politecnico di Milano). In order to explain in depth these results, we 
study a model problem deriving from a convection-diffusion equation, on which 
we can test the scalability of GMRES. 

2 An application in astrophysics 

2.1 D e s c r i p t i o n  o f  t h e  application 

The application we are interested in belongs to the class of flow stability problems 
and arises in astrophysics, when modelling the internal structure of stars and 
planets, to study for instance the electromagnetic field in the earth kernel [8, 9]. 
The  study of the stability of a solution of a nonlinear problem begins by solving 
the eigenvalue problem verified by small perturbations of the original solution. 
Therefore, the inertial modes (or eigenmodes) for an incompressible viscous fluid 
located between two concentric spheres are obtained by solving the linearized 
Navier Stokes continuity equation 

{ E A V x u - - X T x ( e z x u ) = , ~ V x  xu ,  
div u = 0 

where u is the scaled velocity of the fluctuations, and (ez • u) is the non di- 
mensional Coriolis force. The Eckman number E is equivalent to the inverse 
of a scaled Reynolds number and is intended to be very small. When using a 
spherical geometry and after projecting on the space of Chebyshev polynomials, 
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one obtains a generalized eigenproblem A x  = )~Bx where A and B are two non 
hermit ian matrices, and B may  be singular. The smaller E,  the finer must  be 
the discretization and thus A and B must  be larger. 

All the eigenvalues have an imaginary part  between - 1 and 1. The eigenvalues 
of interest are those closest to the imaginary axis. The eigenproblem is solved by 
the Arnoldi method with a Chebyshev acceleration [2]. The strategy for selecting 
the interesting eigenvalues is based on a shift and invert technique, with several 
imaginary shifts c~ in the interval I - i ,  i]. We then solve for # the eigenproblem 

(A  - ~ r B ) - l  B x  = # x  

with # = 1 / (A-  cr) being the largest eigenvalue of C = ( A -  ~rB)- 1 B. The Arnoldi 
method,  like any Krylov-based iterative method,  requires only the application 
of C to a vector. Clearly in this case, this operation involves the solution of 
linear systems such as ( A  - a B ) x  = y. Even if A and B are sparse, the use of 
direct methods for solving this system imposes severe l imitations on the size of 
A and B, and consequently limits the range of possible values of the Eckman 
number  E.  We have therefore investigated the use of GMRES(m)  in a parallel 
distr ibuted memory  environment. 
After detailing some choices about  the da ta  distribution and the preconditioning, 
we give some results on the performance of GMRES(m)  on this example,  where, 
for sake of simplicity, we have assumed the shift a to be zero. In the rest of this 
paper,  the acronym GMRES will always refer to the restarted method.  

2.2 T h e  d a t a  d i s t r i b u t i o n  

The  mat r ix  A is tridiagonal by blocks. The  size of the diagonal blocks is usu- 
ally twice the size of the off-diagonal blocks (also called coupling blocks). For 
example,  the test mat r ix  Asss0 used in our experiments is 5850 x 5850, with 45 
diagonal blocks of size 130 x 130 and 88 off-diagonal blocks of size 61 x 61. Only 
the blocks are stored. They are dense enough so that  there is no substantial  gain 
to hope f rom a sparse storage. Note that  the mat r ix  B is diagonal by blocks, 
with a block size compatible with the storage of A: therefore the matrices A - a B  
can be stored identically as A. 

The mat r ix  is distributed over the processors so that  each processor possesses 
complete blocks only. The advantage of this distribution is that  it allows an easy 
implementat ion of the preconditioner but the drawback is that  it may  induce 
some load imbalance when the number of blocks is not a multiple of the number  
of processors. In the case of two processors for instance, processor 1 will receive 
the first 23 diagonal blocks of Asss0 and processor 2 the remaining 22 blocks. 
in other words, processor 1 (resp., processor 2) will t reat  a subproblem of size 
130 • 23 = 2990 (resp., 130 • 22 = 2860). But  out of 32 processors, 13 will have 
two blocks whereas 19 processors will have half of the load that  is one block only. 
Let n(p)  be the size of the subproblem treated by the first processor when the 
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mat r ix  is distributed over p processors. If the da ta  distribution were equilibrated, 
n(p) would be kept proportional to 1/p. Figure 1 shows the evolution of the ratio 
n(2)/n(p), where the opt imal  distribution (dotted line) would give n(2)/n(p) = 
p/2. We see that  our distribution is reasonably balanced whenever p < 16. 
When p >_ 32, the first processor is penalized by a larger amount  of da ta  than  
expected with the increase in processors. The opposite phenomena arises for the 
last processor which sees its load decrease faster than the increase in processors. 

16 

~- 8 

Ast ro-  5850 

2 4 8 16 
Number of processors 

Fig. 1. Load of the first processor 

32 

2.3 P r e c o n d i t i o n i n g  

The restarted GMRES method applied on this problem does not converge even 
with large restarts. We have chosen one of the simplest preconditioner: the block 
Jacobi preconditioner. The preconditioner consists in the diagonal blocks of A 
and is well adapted to the da ta  distribution. Each processor computes  once a 
dense LU factorization of its blocks at the beginning of the computat ion.  Ap- 
plying the preconditioner consists in performing two tr iangular solves per block 
locally on each processor. There is no communicat ion involved when building or 
applying the preconditioner. 

2.4 P e r f o r m a n c e  r e s u l t s  

We describe now the results obtained for the mat r ix  of size 5850. Since the num- 
ber of processors on the CRAY T3D has to be a power of 2, we show results for 
2, 4, 8, 16 and 32 processors (which is the m a x i m u m  allowed for 45 blocks). The 
sequential code could not be run due to memory  limitations: consequently, our 
reference for speed-ups will be the t ime obtained for 2 processors. 



755 

From a numerical point of view, the mat r ix  A is very ill-conditioned (with 
a condition number  larger than 1013). GMRES with a CGS reorthogonalization 
does not converge on this example. In our tests, we stop the iterations when 
the backward error on the preconditioned system becomes lower than 10 -7  . The 
original system then has a normwise backward error l I A r -  b I J2 / (IIA JJ 2 II z JJ 2 + l JblJ2) 
smaller than 10 - l ~  (here 2 denotes the computed solution). We will show the 
results obtained with a restart  of 100 since we obtained similar behaviors for 
other values. 

Because the mat r ix  is ill-conditioned, the number  of iterations may  vary sig- 
nificantly with the orthogonalization strategy and the number  of processors (see 
Figure 2). However, these variations are not monotonous and o n e  cannot predict 
the preeminence of one method over the other. The variation with the number  
of processors is due to the different orderings of the floating-point operations 
in the parallel matr ix-vector  and dot products. Because of this sensitivity, we 
have chosen to evaluate the performance of the code mainly  on one i teration 
rather  than on the complete solution: the times measured over the solution are 
then scaled by the number  of iterations required for this solution. However, to 
be fair, we first look at the total  computat ional  t ime needed to obtain the solu- 
tion (see Figure 3). Regardless of the number  of iterations, the fastest method is 
GMRES-ICGS and the slowest is GMRES-IMGS.  The success of GMRES- ICGS 
is mainly  due to the better  scalability properties of the ICGS orthogonalization 
scheme, as we will see in the next section. 
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Fig. 2. Number of iterations required 
for convergence 

Fig. 3. Time for convergence 

S p e e d - u p  fo r  t h e  p r e c o n d i t i o n e r .  The speed-up for the preconditioner is 
taken as the ratio 

preconditioning t ime on p processors 

preconditioning t ime on 2 processors 
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and is plotted on Figure 4. We cannot compare with the sequential t ime because 
the problem is too large to fit on one processor. It departs from its optimal value 
(dotted line) when p _> 16. This only reflects the imbalance of the processors 
load (see Figure 1) and, because there is no communication overhead, is the best 
one can expect from this data  distribution. 

S p e e d - u p  fo r  t h e  m a t r i x - v e c t o r  p r o d u c t .  The matrix-vector product  in 
parallel involves a local part corresponding to the contribution of the diagonal 
blocks and a communicat ion part with the left and right neighbours to take 
into account the contribution of the coupling blocks. It is implemented so as 
to overlap communication and computat ion as much as possible. The speed-up, 
computed as for the preconditioning is shown on Figure 5. Here again, it reflects 
rather faithfully the distribution of the load on the processors (see Figure 1), 
which proves that the overhead due to communications does not penalize the 
computation.  
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Fig. 4. Preconditioning Fig. 5. Matrix-vector product 

I n f l u e n c e  o f  do t  p r o d u c t s .  The dot products are the well-known bottle- 
neck for Krylov methods in a distributed environment. Figure 6 shows the time 
spent, per iteration, in the dot products and Figure 7 gives the percentage of 
the solution time spent in the dot products. Both figures indicate clearly that  
GMRES with ICGS is the best method for avoiding the degradation of the per- 
formance generally induced by the scalar products. We even see on Figure 6 that ,  
when p >__ 32, the time spent in iteration in the dot products starts increasing 
for IMGS and MGS whereas it continues to decrease with ICGS: this happens 
when the communication t ime overcomes the computat ion t ime in the dot prod- 
ucts for IMGS and MGS. By gathering the scalar products, ICGS ensures more 
computat ional  work to the processors. 

Finally, Figure 8 gives the speed-up, for an average iteration, of the complete 
solution. When comparing with the best possible curve with the given processor 
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load on Figure 1, we see that  GMRES-MGS and GMRES-IMGS give bad per- 
formance whereas GMRES-ICGS is less affected by scalar products. 

We now present a test problem for which it is easier to vary the size in order 
to test the parallel scalability properties of GMRES. 

A s t r o -  5850  
16 
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Fig. 8. Speed-up for an average iteration 

3 Sca lab i l i ty  on a m o d e l  p r o b l e m  

We intend to investigate the parallel scalability of the GMRES code and the 
influence of the orthogonalization schemes. For this purpose we consider the 
solution, via two classic domain decomposition techniques, of an elliptic equation 

0x2 + @2 + a -~x + b -~y = f (1) 
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on the unit square s = (0, 1) 2 with Dirichlet boundary conditions. 
Assume that the original domain s is triangulated by a set of non-overlapping 

coarse elements defining the N sub-domains s 
We first consider an additive Schwarz preconditioner that  can be briefly de- 

scribed as follows. Each substructure f2i is extended to a larger substructure 
~i ,  within a distance 5 from f?i, where ~ refers to the amount  of overlap. Let 
A~ denote the discretizations of the differential operator on the sub-domain Ds 
Let R T denote the extension operator which extends by zero a function on f?i 
onto s and Ri the corresponding pointwise restriction operator. With these no- 
tations the additive Schwarz preconditioner, MAD, c a n  be compactly described 
a s  

1 = RTAi  - F&u MADU Z 

We also consider the class of domain decomposition techniques that  use non- 
overlapping sub-domains. The basic idea is to reduce the differential operator 
on the whole domain to an operator on the interfaces between the sub-domains. 

Let I denote the union of the interior nodes in the sub-domains, and let 
B denote the interface nodes separating the sub-domains. Then grouping the 
unknowns corresponding to I in the vector ut  and the unknowns corresponding 
to B in the vector UB, we obtain the following reordering of the problem: 

{ d I I  AIB ) ( U U ; )  ~_ ( f ;  ) (2 )  
Au = \ A s 1  ABB 

For standard discretizations, AII is a block diagonal matr ix  where each diagonal 
block, Ai, corresponds to the diseretization of (1) on the sub-domain Di. 

Eliminating ui in the second block row of (2) leads to the following reduced 
equation for UB: 

SUB = gB = f s  -- ABzA-[ ) f t ,  (3) 

where 
S = ABB -- ABIA-[~AIB. 

S is referred to as the Schur complement matr ix  (or also the capacitance matrix).  
In our experiments, Equation (1) is discretized using finite elements. The Schur 
complement matr ix  can then be written as 

N 

s = (4) 
i = l  

where S (i) is the contribution from the i th sub-domain with S(i) a(i) ~ XBB -- 
A(i) tA(i)~_l~(i) and A(~ ) denotes submatrices of Ai 

Without  more sophisticated preconditioners, these two domain decomposi- 
tion methods are not numerically scalable [12]; that  is the number of iterations 
required grows significantly with the number of sub-domains. However, in this 
section we are only interested in the study of the influence of the orthogonaliza- 
tion schemes on the scalability of the GMRES iterations fi'om a computer  science 
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point of view. This is the reason why we selected those two domain decompo- 
sition methods tha t  exhibit a large amount  of parallelism and we intend to see 
how their scalability is affected by the GMRES solver. For a detailed overview 
of the domain decomposition techniques, we refer to [12]. 

For both  parallel domain decomposition implementat ions,  we allocate one 
sub-domain to one processor of the target  distributed computer .  To reduce as 
much as possible the t ime per iteration we use an efficient sparse direct solver 
f rom the Harwell l ibrary [7] for the solution of the local Dirichlet problems arising 
in the Schur and Schwarz methods. 

To study the scalability of the code, we keep constant the number  of nodes 
per sub-domain when we increase the number  of processors. In the experiments  
reported in this paper, each sub-domain contains 64 x 64 nodes. For the addi- 
tive Schwarz preconditioner, we selected an overlap of one element (i.e. 6 = 1) 
between the sub-domains that  only requires one communicat ion after the lo- 
cal solution A ' -1  while one more communicat ion would be necessary before the 
solution for a larger overlap. 

In Figure 9 are displayed the elapsed t ime for both the Schur and the Schwarz 
approaches observed on a 128 node Cray T3D. If the parallel code were perfectly 
scalable, the elapsed t ime would remain constant when the number  of processors 
is increased. 
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Fig. 9. Elapsed time 

We define also the scaled speed-up by 

T4 
SUp = p z  - -  

Tp 

where Te is the elapsed t ime to perform a complete restart  step of GMRES(50)  on 
s processors. For both  Schur and the Schwarz approaches we report  in Figure 11 
the scaled speed-ups associated with the elapsed t ime displayed in Figure 9. 
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As it can be seen in Figure 9, the solution of the Schur complement  sys- 
tem does not require iterative orthogonalization; the curves associated with 
C G S / I C G S  and MGS/ IMGS perfectly overlap each other. In such a situation, the 
C G S / I C G S  orthogonalizations are more at tract ive than MGS/ IMGS.  They are 
faster and exhibit a bet ter  parallel scalability as it can be seen in the left picture 
of Figure 11. On 128 nodes the sealed speed-up is equal to 114 for C G S / I C G S  
and only 95 for MGS/IMGS.  When iterative orthogonalization is required, as 
for the Schwarz method on our example for instance, CGS is the fastest and 
the most  sealable but may lead to a loss of orthogonality in the Krylov basis 
resulting in a poor and even a loss of convergence. In that  case ICGS offers the 
best trade-off between numerical robustness and parallel efficiency. Among the 
numerically reliable orthogonalization schemes, ICES gives rise to the fastest 
and the most  scalable iterations. 

4 C o n c l u s i o n  

The choice of the orthogonalization scheme is crucial to obtain good performance 
from Krylov-based iterative methods in a parallel distributed environment.  From 
a numerical point of view, CGS should be discarded together with MGS in some 
eigenproblem computat ions  [3]. Recent works have proved that  for linear sys- 
tems, MGS, IMGS and ICGS ensure enough orthogonali ty to the computed  
basis so tha t  the method converges, Finally, in a parallel distributed environ- 
ment,  ICGS is the orthogonalization method of choice because, by gathering the 
dot products, it reduces significantly the overhead due to communicat ion.  
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