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Abs t r ac t .  In this paper a parallel algorithm for finding a group of ex- 
treme eigenvalues is presented. The algorithm is based on the well known 
Davidson method for finding one eigenvalue of a matrix. Here we incor- 
porate knowledge about the structure of the subspace through the use 
of an arrowhead solver which allows more parallelization in both the 
original Davidson and our new version. In our numerical results various 
preeonditioners (diagonal, multigrid and ADI) are compared. The per- 
formance results presented are for the Paragon but our implementation 
is portable to machines which provide MPI and BLAS. 

1 I n t r o d u c t i o n  

A large number  of scientific applications rely on the computa t ion  of a few eigen- 
values for a given mat r ix  A. Typically they require the lowest or highest eigen- 
values. Our algorithm (DSE) is based on the Davidson algorithm, but calculates 
various eigenvalues through implicit shifting. DSE was first presented in [10] 
under the name RDME to express its ability to identify eigenvalues with mul- 
tiplicity bigger than one. The choice of preconditioner is an impor tan t  issue in 
eliminating convergence to the wrong eigenvalue [14] In the next section, we 
describe the Davidson algorithm and our version for computing several eigen- 
values. In [9] Oliveira presented convergence rates for Davidson type algori thm 
dependent on the type of preconditioner. These results are summarized here in 
Section 3. Section 4 addresses parallelization strategies discussing the da ta  dis- 
tr ibution in a MIMD architecture, and a fast solver for the projected subspace 
eigenproblem. In Section 5 we present numerical and performance results for 
the parallel implementat ion on the Paragon.  Further results about  the parallel 
algori thm and other numerical results are presented in [2]. 

2 T h e  D a v i d s o n  Algorithm 

Two of the most  popular  iterative methods for large symmetr ic  eigenvalue prob- 
lems are Lanczos and Davidson algorithms. Both methods solve the eigenvalue 
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problem Au = )~u by constructing an orthonormal basis Vk = Iv1, �9 �9 vk], at each 
k th iteration step, and then finding an approximation for the eigenvector u of A 
by using a vector uk from the subspace spanned by Vk. Specifically, the original 
problem is projected onto the subspace which reduces the problem to a smaller 
eigenproblem Sky = ~Yk, where Sk = VTAVk. Then the eigenpair (~k, Yk) can 
be obtained by applying a efficient procedure for small matrices. To complete 
the iteration, the eigenveetor Yk is mapped back as uk = Vkyk, which is an ap- 
proximation to the eigenveetor u of the original problem. The difference between 
the two algorithms consists on the way that  basis Vk is built. The attractiveness 
of the Lanczos algorithm results from the fact that each projected matr ix  Sk is 
tridiagonal. Unfortunately, sometimes this method may require a large number 
of iterations. The Davidson algorithm defines a dense matr ix  Sk on the subspace, 
but since we can incorporate a preconditioner in this algorithm the number of 
iterations can be much lower than for Lanczos. In Davidson type algorithms, a 
preconditioner Ma k is applied to the current residual, rk : A u k  - - /~kUk ,  and 
the preconditioned residual tk = Mxk rk is orthonormalized against the previous 
columns of Vk = Iv1, v=, . . . ,  vk]. Although in the original formulation Ma is the 
diagonal matr ix  (diag(A) - M)-1  [6], the Generalized Davidson (GD) algorithm 
allows the incorporation of different operators for Mx. The DSE algorithm can 
be summarized as follows. 

A l g o r i t h m  1 - R e s t a r t e d  D a v i d s o n  fo r  S e v e r a l  E i g e n v a l u e s  Given a ma- 
trix A, a normalized vector Vl, number of eigenpairs p, restart index q, and the 
minimal dimension m for the projected matrix S (m > p), compute approxima- 
tions 3~ and u for the p smallest eigenpairs of A. 

1. Set 71 ~ [l)1]- (initial guess) 
2. For j = 1, ..., p (approximation for j-th eigenpair) 

While k = 1 or Ilrk_lll < e do 
(a) Project Sk = VT A Vk . 
(b) If (re + q) <_ dim S (restart Sk) 

Reduce Sk +-- (Ak)(,~xm) to its m smaller eigenvectors, and 
update Vk for the new basis. 

(c) Compute the jth smallest eigenpair Ak, Yk of Sk. 
(d) Compute the Ritz vector uk +-- Vkyk. 
(e) Check convergence for rk +-- Auk -- )~kuk. 
(f) Apply preconditioner tk +-- Mrk.  
(g) Expand basis Vk+l +--- [Vk, tk] using modified Gram Schmidt (MGS'). 
End while 

3. End For. 

The core ideas of DSE (Algorithm 1) are based on the projection of A 
into the subspace spanned by the columns of Vk. The interation number k is 
not necessarily equal to dim Sk, since we have incorporated implicit restarts. 
The matr ix  Sk is obtained by adding one more column and row VTAvk to 
matr ix  Sk- ,  (step 2.a). Other important  aspects of the DSE algorithm are: 
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(1) the eigenvalue solver for the subspace matrix Sk (step 2.e); (2) the use 
of an auxiliary matrix Wk = [wl , . . . ,wk]  to provide a residual calculation 
rk = Auk - )~ku~ = wkyk -- )~kUk with less computational work (step 2.e); the 
choice of a preconditioner M (step 2.f); and the use of modified Gram-Schmidt 
orthonormMization (step 2.g) which preserves numerical stability when updat- 
ing the orthonormal basis Vk+l. At each iteration, the Mgorithm expands the 
matrix S either until all the first p eigenvalues have been converged, or S reaches 
a maximum dimension m + q; In the latter case, restarting is applied by using 
the orthonormM decomposition Sk = y T A k Y k  of S. It corresponds to step 2.b 
in the algorithm. Because of our choice for m, note that  in step 2.e dim S will 
be always bigger or equal to j. 

3 C o n v e r g e n c e  R a t e  

A proof of convergence (but without a rate estimate) for the Davidson algorithm 
is given in Crouzeix, Philippe and Sadkane [5]. A bound on the convergence 
rate was first presented in [10]. The complete proof is shown in Oliveira [9]. 
Let A be the given matrix whose eigenvalues and eigenvectors are wanted. The 
preconditioner M is given for one step, and Davidson's algorithm is used with 
uk being the current computed approximate eigenvector. The current eigenvalue 
estimate is the Rayleigh quotient ,~k flA (uk ) u T u T = = ( k A u k ) / (  k uk). Let the exact 
eigenvector with the smallest eigenvalue of A be u, and 

A u  ~ )~u. 

(If/~ is a repeated eigenvalue of A, then we can let u be the normalized projection 
of Uk onto this eigenspace.) 

T h e o r e m  1. Let P be the orthogonal projection onto ker(A - AI) • Suppose 
that A and M are symmetric  positive definite. I f  

l I P -  P M P ( A -  )~I)II2 < a < 1, 

then for almost any starting value x l ,  the convergence of the eigenvalue estimates 
Ak converge to )~ ultimately geometrically with convergence factor bounded by c ~ ,  
and the angle between the computed eigenvector and the exact eigenspace goes to 
zero ultimately geometrically with convergence factor bounded by er. 

A geometric convergence rate can be found for DSE (which obtains eigen- 
values beyond the smallest (or largest) eigenvalue) by modifying Theorem 1. In 
the following theorem assume that  

~' = l i P ' -  P ' M P '  P ' ( A  - Ap/)P'II2 

where P~ is the orthogonal projection onto the orthogonal complement of the 
span of the first p - 1 eigenvectors. Then we can shown, in a similar way to 
Theorem 1 that  the convergence factor for the new algorithm is bounded by 
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(a~)2 To prove Theorem 2 we use the fact that  P~sk = sk, as sk is orthogonal 
to the bot tom p eigenvectors, and that  although (A - ApI) is no longer positive 
semi-definite, PI ( A - ~vI)P I is. 

T h e o r e m  2. Suppose that A and M are symmetric positive definite and that 
the first p -  1 eigenvectors have been found exactly. Let P~ be the orthogonal pro- 
jection onto the orthogonal complement of the span of the first p -  1 eigenvectors 
of A. If 

l i P ' -  P ' M P ' ( A  - ApI)P'II2 < c / <  1, 

then for almost any starting value xl ,  the eigenvalue estimates'Ak obtained by our 
modified Davidson algorithm for several eigenvalues converges to Ap ultimately 
geometrically with convergence factor is bounded by (~)2, and the angle between 
the exact and computed eigenvector goes to zero ultimately geometrically with 
convergence factor bounded by (r t. 

4 P a r a l l e l  I m p l e m e n t a t i o n  

Previous implementations for the Davidson algorithm solve the eigenvalue prob- 
lem in subspace S by using algorithms for dense matrices: early works [3, 4, 17] 
adopt EISPACK [12] routines, and later implementations [13, 15] use LAPACK 
[1] or reductions to tridiagonal form. Partial parallelization is obtained through 
the matrix-vector operations and sparse format  storage for matr ix  A [13, 15]. 
Here we explore the relationship between two successive matrices Sk which al- 
lows us to represent Sk through an arrowhead matrix. The arrowhead structure 
is extremely sparse and the associated eigenvalue problem can be solved by a 
highly parallelizable method. 

4.1 D a t a  D i s t r i b u t i o n  

Data partitioning significantly affects the performance of a parallel system by 
determining the actual degree of concurrency of the processors. Matrices are 
parti t ioned along distinct processors so that  the program exploits all the best 
possible data  parallelism: The final distribution is well balanced, and most of 
the computat ional  work can be performed without communication. These two 
conditions make the parallel program very suited for distributed memory archi- 
tectures. Both computational workload and storage requirements are the same 
for all processors. Communication overhead is kept as low as possible. Matrix 
A is split into row blocks A i, i = 1 , . . . ,  N, each one containing ~ [n/N] rows 
of A. Thus processor i, i = 1 , . . . ,  N stores A i, the i th r o w  block of A. Matrices 
Vk and Wk are stored in the same fashion. This data  distribution allow us to 
perform many of the matrix-vector computations in place. 

The orthonormalization strategy is also an important  aspect in parallel en- 
vironments. Recall that the modi fed  Gram Schmidt (MGS) algorithm will be 
applied to the extended matr ix [Vk, tk] where the current basis Vk has been pre- 
viously orthonormalized. This observation reduces the computat ional  work by 
eliminating the outer loop from the two nested loops in the full MGS algorithm. 
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4.2 The  Arrowhead  Relat ionship  B e t w e e n  Matrices  Sk 

As pointed in [2, 10], the relationship between Sk and Sk-1 can be used to show 
that  Sa is explicitly similar to an arrowhead matr ix  Sk of the form 

(1) 

where ak = YI~-IVk_lWk,T T Skk = vTwk,  and the diagonal matr ix  Ak-1 corre- 
sponds to the orthonormal decomposition Sk-1 = Yk- lAk- lYkr_ , .  In practice, 
the matr ix  Sk does not need to be stored: only a vector for Ak and a matr ix  for 
Yk are required from one iteration to the next. Thus, given the eigenvalues Ak-1 
and eigenvectors Yk-, of Sk-1, matr ix Sk can be used to find the eigenvalues 
Ak of Sk. Arrowhead eigensolvers [8, 11] are highly parallelizable and typically 
perform O(k 2) operations, instead of the usual C9(k 3) effort of algorithms for 
dense matrices S. 

5 N u m e r i c a l  R e s u l t s  

In our numerical results we employ three kind of preconditiners: diagonal pre- 
conditioner (as in the original Davidson), multigrid and ADI. A preconditioner 
can be expressed as the matrix which solves Ax  = b by applying an iterative 
method to M A x  = Mb instead. In the case of a Diagonal preconditioner this 
would correspond to scaling the system and then solving. Multigrid and ADI 
preconditioners are more complex and for that we refer the reader to [16, 18, 19]. 
In our implementation level 1, 2 and 3 BLAS and the Message Passing Interface 
(MPI) library were used for easy portability. 

The computational  results in this section were obtained with a finite differ- 
ence approximation for 

- A u  + gu = f (2) 

on a unit square domain. Here g is null inside a 0.2 • 0.2 square on the center 
of the rectangle and g = 100 for the remaining domain. 

To compare the performance delivered by distinct preconditioners we observe 
the total timing and number of iterations required for the sequential DSE for 
finding the ten smallest eigenpairs (p = 10) assuming convergence for residual 
norms less or equal to 10 -7. The restart indexes were q = 10 and m = 15. 
This corresponds to apply restarting every t ime that  the projected matr ix  S~ 
achieves order 25, reducing its order to 15. Table 1 presents the actual running 
tIMINGS In a single processor of the Intel Paragon, running three grid sizes: 
31x31, 63x63, and 127x127 (matrices of orders 961, 3969 and 16129, respec- 
tively.). It reflects the tradeoff between preconditioning strategies: although the 
diagonal preconditioner (DIAG) is the easiest and fastest to compute, it requires 
an increasing number of iterations for larger matrices. Multigrid preconditioners 
(MG) are more expensive than DIAG, but they turn to be more effective for 
larger matrices. Finally, the ADI method aggregate the advantages of the previ- 
ous preconditioners in the sense that  it is more effective and less expensive than 
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MG. More details about the preconditioners used here can be found in [2] and 
its references. 

Table  1. Sequential times and number of iterations for three preeonditioners. 

16129 ] 
ime (~'~J 

4.7 ~ 16.2  ~ 80.7 l 
8.8 43.0 254.1 
8.6 43.2 386.0 

The overall behavior of the DSE algorithm (with a multigrid preconditioner) 
is shown in Figure 1 for matrices sizes 3969 and 16129, as a function of the 
number of processors. Note that the estimated optimal number of processors is 
not far from the actual optimal. The model for our estimates is presented in [2]. 
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Fig.  1. Actual and estimated times for equation (2). Results for two different matrix 
sizes performance on the Paragon are shown. 

To conclude, we compare the performance of the parallel DSE with PAR- 
PACK [7], a parallel implementation of ARPACK 1 Figure 2 presents the total 
running times for both algorithms for the problem described above, For these 
runs, DSE used our parallel implementation of the ADI as its preconditioner. 

1 ARPACK implements an Implicitly Restarted Arnoldi Method (IRAM) which in the 
symmetric case corresponds to the Implicitly Restarted Lanczos algorithm. We used 
the regular mode when running PARPACK. 
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The problem was solved by using 4, 8, and 16 processors to obtain relative resid- 
uals ]]Au-Aull/l[ul] of order less than 10 -5. We show our theoretical analysis for 
the parallel algori thm in [2]. Other numerical results for the sequential DSE algo- 
r i thm, including examples showing the behavior of the algorithm for eigenvalues 
with multiplicity greater than one, were presented in [10]. 
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Fig. 2. Running times for DSE and PARPACK using 4, 8, and 16 processors on the 
Paragon. 
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