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Abstract. Waveform relaxation (WR) methods for second order equa-
tions y' = f(t,y), y(to) = yo, ¥'(to) = yi are studied. For linear case,
the method converges superlinearly for any splittings of the coefficient
matrix. For nonlinear case, the method converges quadratically only for
waveform Newton method. It is shown, however, that the method with
approximate Jacobian matrix converges superlinearly. The accuracy, ex-
ecution times and speedup ratios of the WR methods on a parallel com-
puter are discussed.

1 Introduction

In this paper we propose a waveform relaxation (WR) method for solving v/ =
f(z,y) on a parallel computer. The basic idea of this method is to solve a se-
quence of differential equations, which converges to the exact solution, with a
starting solution yl%(z). In this iteration, we can solve each component (block)
of the equation in parallel.

2 Linear Differential Equation
Consider first the linear equation of the form

y'(2) = Quy(z) +9(=), y(zo) =%, ¥(zo) =3y, yeERT, (1)

where we assume —(@ is a positive definife matrix. The Picard iteration for
solving (1) is given by

y["+1]“(1‘) — Qy[u](w) +g(13), y[U](-Z'O) = Yo, y[ll]/(xo) = y6 (2)

Here we consider the rate of convergence of (2) and propose an acceleration of
the iteration.
The solutions of (1) and (2) are given by

(&) = o+ (o — ooty + | ’ / {Qy(r) + g(r)}drds, )

W (@) = yo + (= — zo)yh + /”” /S{Qy[”](T) +g(r)}drds, (4)
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respectively. By subtracting (3) from (4) we can obtain

bl / / Qe (r)drds, (5)

where el')(z) = yl!)(z)—y(x). Taking the norm of the left-hand side and assuming
~x

el (x| < F ( o), we have by induction
2v41
2 Az —wo)™ ™
)l < kA2 0
where we set ¢; = ||Q]|. The inequality shows that Picard iteration (2) converges

on any finite interval ¢ € [©g,T] and the rate of convergence is superlinear. It is,
however, expected that the method converges slowly if the system is stiff or the
length of the interval is large.

Here we propose an acceleration of the Picard iteration using the splitting
@@ = N — M. The iterative method to be considered is

P (@) + My (@) = NyP(e) + g(a), ™

where we assume that matrix M is symmetric and positive definite. The error
of the iterate y[”](:v) satisfies the differential equation

6[u+1]"(x) + Melt(z) = NE[”](x). (8)

In order to obtain the explicit expression for 6[”](90), here we define the square
root and the trigonometric functions of matrices.

Let Ax (k = 1,...,m) be the eigenvalues of M, and P is a unitary matrix
that diagonalizes M, i.e. M = Pdiag(\y,...,Ay) P71, then using P the square
root of M can be defined by

VM = Pdiag (\/)\1, N .,\/Am) p-1.
For any square matrix H and scalar z, the trigonometric functions can be defined
by

oo kH2k 0 kH2k+1

2k g 22+l
cos(Hz) = Z om! , sin(Hz) = kz—:o k) .

Using the functions defined above we have
6[V+1](J:) =
(VM)_I/ (COS(\/ 17)sin(vVMz) — cos(vV Mz) sin(vV M) ) Nell(r)dr

Lo

= (\/M)_1 /; sin (\/]T/I_(a: - 7')) Ne(r)dr
::/::/Tcos (\/M(:c-r)) Nell(s)dsdr, 9)

Zo
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where the condition e+1(2)[,=p, = Sel+1(2)]s24, = 0 is used. To bound

el ](x) if we use the Euclidean norm then we have
| cos(vMa)|| < ||P] ||diag (cos(\/)\lx), N .,cos(\/xnx))n P-4 <1, (10)

since ||P]| = ||P~"|| = 1. Assuming ||el®)(z)|| < K(z — x0) as before and letting
¢2 = ||N||, we find by induction the inequality
v 2v+1
[v] < K& (z = o)
V) < KT
The result shows that although the rate of convergence of splitting method (7)
remains superlinear, we can accelerate the convergence by making the value of
[| V]| small.

(11)

3 Nonlinear Differential Equation

Next we discuss the rate of convergence of the waveform relaxation for the second
order nonlinear equation

y'(z) = flz,9), y(zo)=w0, (z0)=vp, y€ER™ (12)

For the first order nonlinear equation y' = f(z,y), the method called the wave-
form Newton method is proposed[5]. The method is given by

y["”}‘l],(x) _ va[u+l](:c) — f(y["](:c)) - Jyy[V](CC), (13)

where J, is the Jacobian matrix of f(y*!). It is shown by Burrage[1] that the
waveform Newton method converges quadratically on all finite intervals z €
[zo, TT]. In this section we first consider the convergence for the case that J, is
replaced with an approximation in order to enhance the efficiency of the parallel

computation.
Instead of (13) let us consider the iteration
/ ~ ~
Y (@) - Lyt t(e) = f(y () - Jyt(@), (14)
where J,, is an approximation to J,. Let el = o] — 4 then we have
y v of 1 v
FOM) = flu+eM) = ) + Z e+ OIMIP). (15)

Substituting (15) into (14) and ignoring the term O(]|el*}]|2), we have
A = J vty (J,, - JL) el (16)
and taking the inner product we have

<_d_5[u+11,5[u+1]> = (Toelt, 41 (1, = T, el )

dz
< p [T 2 4 gl 1) (M) (17)
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where the norm || - || is defined by |[|u||* :=< u,u >, and p1 and ps are the
subordinate matrix norms of J, and J, — J,,, respectively. The left-hand side of
(17) can be written as

d 1d
[V+1] [u+1] [v41} 2 _ [v+1] v+1)
(s ) = Ja e = e gt

so that, under the assumption that ||el*+1)|| # 0, we have

d

L0 < gAY+ 1) 019)
Assuming ||l(z)|| < K (2 — z,) as before and using |[e!%(z0)|| = 0, we have

@) < poert=20) [ emmlemeoleblga)) ds

< et (@=0) / [ (s)]] ds, (19)

which leads to
(et = (o = 20) "+

fv] < K
¥ (a)]l < K o , (20)
showing that the rate of convergence of iteration (14) is not quadratic but su-
perlinear.
By the way, the second order nonlinear equation
y'(2) = f(z,y), yl(@o) =w, y(zo)=1), yERT (21)
can be rewritten as the first order system
2'(2) = (' (2), f(2,y))" = F(a(2)), (22)
where z(z) = (y(z),y'(z))T. The waveform Newton method for (22) is given by
24 () — g, ) () = FM() = J, M) (a). (23)
In this case the Jacobian matrix J,, is given by
oF 9y 2y 0 I
=== %% ):<QL )) (24)
0z (55 %)~ \Ho

where I is an identity matrix. This result shows that for second order equation
(12), if we define the waveform Newton method analogously by

d? af of

— ey — 2Ly — ] _ 2y 25
oY @) 5y (2) = f(y* (=) 3" (), (25)
then the method also converges quadratically. Moreover, from the same discus-
sion as for the first order equation, we can conclude that if an approximate
Jacobian J,, is applied, then the rate of convergence of the iteration

2 ~
@)~ L) = @) ~ T () (26)

1s superlinear.
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4 Numerical Experiments

4.1 Linear-Equations

In order to examine the efficiency of the waveform relaxations, we solve first
the large linear system of second order differential equations. Consider the wave
equation

0%u  8%u

o2~ Ox?’ - = (27)

u(z,0) =sin(rz), u(0,t) =wu(l,t)=0,

where the exact solution is u(x,t) = cos(mt) sin(rz). The semi-discretization by
3-point spatial difference yields the system of linear equations

y'(t) = Qut), ) =(uv,..., um)T, (28)

21 0

1 -2 1
Q: 1 ., - .. eRme Ax: 1
(Az)? N ’ —

0 1 =2

In the splitting method given here we take M as the block diagonal matrix
given by M = diag(My, Ms, ..., M,), and each block M, is the tridiagonal matrix

given by
9 -1 0
-1 2 -1

where

ERdXd7 l:1a23--->/‘L> u:m/d,

-1 2 -1
0 -1 9
where we have assumed that m is divisible by d and, as a result, g = m/d is
an integer. In the implementation, the system is decoupled into p subsystems
and each of the subsystems is integrated concurrently on different processors, if
the number of processors available are greater than that of the number of the
subsystems. If this is not the case each processor integrates several subsystems
sequentially. In any way our code is designed so as to have a uniform work load
across the processors. The basic method to integrate the system is the 2-stage
Runge-Kutta-Nystrom method called the indirect collocation, which has an ex-
cellent stability property[3]. In our experiment we set m = 256 and integrate
the system from & = 0 to 1 with the stepsize 2 = 0.1 under the stopping criteria
|y =y =] < 10~7. The result on the parallel computer KSR1, which is a par-
allel computer with shared address space and distributed physical memory(see
e.g. [6]), is shown in Table 1.
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Table 1. Result for the linear problem on KSR1

CPU time(sec)
d serial |parallel

1 11579 |[566.02| 61.92 |9.14 [2.58(0.57]|0.16{16| 256
2 6012 |586.73;] 53.79 (10.91]2.97]0.68|0.19(16] 128
4

8

iterations Sp | Sp | E|E" |Plu=m/d

3052 1362.94| 31.44 |11.54)5.08|0.72]0.32|16 64
1462 {240.81| 19.56 |(12.31|8.17(0.76|0.51{16 32
16 688 [181.74( 13.94 [13.0411.5|0.81]|0.72|16 16
32 427  {201.56| 27.11 | 7.43(5.89(0.93|0.73| 8 8
64 403  (369.86| 97.27 | 3.80(1.64(0.95(0.41| 4 4
128/ 403 |791.10| 407.41 | 1.94 (0.39]0.97]0.20) 2 2

[256] 1 15976 - [ - Jroof - [ - J1] 1 |
g = CPU time(serial) + _ CPU time(serial, d = 256)
P CPU time(parallel)’ "7 = CPU time(parallel) '
SI
E= %, E = Fp’ P =number of processors

4.2 Nonlinear-Equations

Next we consider the nonlinear wave equation given by
v/ = exp(vi—1(z)) — 2exp(vi(z)) + exp(vit1(x)), ©=0,£1,4£2,...,. (29)

This equation describes the behaviour of the well-known Toda lattice and has
the soliton solution given by

vi(z) = log(1 + sinh? 7 sech? (it — w(z + q))), 1=0,%£1,£2,...,

w = sinh 7,

where ¢ is an arbitrary constant. The equation to be solved numerically is not
(29) but its m-dimensional approximation given by

v = exp(yi-1) — 2exp(yi) + exp(¥i+1), 1=2,...,m~—1
yY =1— 2exp(y1) + exp(y2), (30)
Y, = eXP(Ym—1) — 2exp(ym) + 1

initial conditions :  ¢;(0) = v/(0), ¥ (0) = v;(0),

where we have to choose a sufficiently large m to lessen the effect due to the
finiteness of the boundary. As the parameters we take ¢ = 40, 7 = 0.5 and
w = sinh0.5. The approximate Jacobian J, used here is the block diagonal
matrix given by

Ty = [ D A=) +1<ig<dLT=1, . m/d
vib )= 0, otherwise,
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where we have assumed m is divisible by d as before.

In our numerical experiment we use the KSR1 parallel computer, and inte-
grate the 1024-dimensional system from z = 0 to 5 with stepsize h = 0.05 under
the stopping criteria ||[y*! — 4 ~1|| < 1071°. The result is shown in Table 2.

In our algorithms, if the value of d becomes small then the degree of paral-

Table 2. Results for the nonlinear problem on KSR1

] i CPU time(se?)f , ,
d literations[ ooy parallel Sp | Sy | £ | B |Plu=m/d
1 17 53.98 6.10 (8.85(3.49]0.55]|0.22]16| 1024
2 15 61.44 | 6.43 [9.55|3.31]|0.60|0.21{16] 512
4
8

14 58.14 | 6.24 19.32(3.41]0.58(0.21({16] 256
14 60.19 | 6.37 [9.46(3.34]0.59]0.21]16 128
16 13 54.33 | 5.87 [9.25|3.63/0.58(0.23(16 64
32 12 50.81 | 5.71 |8.91]3.73]0.56]0.23|16 32

64 6 25.74 | 3.05 |8.4316.9810.5310.44]16 16
128 6 26.79 | 4.78 |5.60/4.46|0.70(0.56| 8 8
256 4 20.33 | 6.43 |(3.16{3.31]0.79/0.83] 4 4
512 4 21.03 | 11.84 |1.78(1.71,0.890.86] 2 2
[1024] 4 J2130 ] — [—TJroo] - | -J1] 1 ]
S = CPU time(serial) , _ CPU time(serial, d = 1024)
P 7 CPU time(parallel)’ "7 CPU time(parallel)
P =number of processors
Sp ;S
E = F, E = F

lelism becomes large, since the number of the subsystems p(= m/d) becomes
large and, moreover, the cost of the LU decomposition that takes place in the
mner iteration in each of the Runge-Kutta-Nystrom schemes, which is propor-
tional to d®, becomes small. However, as is shown in the tables, it is in general
true that the smaller the value of d, the larger the number of the WR itera-
tions, which means the increase of the overheads such as synchronisation and
communications. Therefore, small d implementation is not necessary advanta-
geous. In our experiments we can achieve the best speedups when the number
of subsystems is equal to that of processors.
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