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Abs t r ac t .  Waveform relaxation (WR) methods for second order equa- 
tions y" = f ( t ,  y), y(to) = yo, y'(to) = y~ are studied. For linear case, 
the method converges superlinearly for any splittings of the coefficient 
matrix. For nonlinear case, the method converges quadratically only for 
waveform Newton method. It is shown, however, that the method with 
approximate Jacobian matrix converges superlinearly. The accuracy, ex- 
ecution times and speedup ratios of the WR methods on a parallel com- 
puter are discussed. 

1 I n t r o d u c t i o n  

In this paper we propose a waveform relaxation (WR) method for solving y" = 
f ( x ,  y) on a parallel computer.  The basic idea of this method is to solve a se- 
quence of differential equations, which converges to the exact solution, with a 
start ing solution y[~ In this iteration, we can solve each component(block) 
of the equation in parallel. 

2 Linear Differential Equation 

Consider first the linear equation of the form 

J ' ( x )  = Qy(x) +g(~) ,  y(~0) = y0, y'(~0) = y~, y e R ~ ,  (1) 

where we assume - Q  is a positive definite matr ix .  The Picard i teration for 
solving (1) is given by 

y[~"t-1]H(X) = Qy[~'](x) .-.~g(x), y[U](xo) : yo, y[t~]'(x0) -- y0. (2) 

Here we consider the rate of convergence of (2) and propose an acceleration of 
the iteration. 

The solutions of (1) and (2) are given by 

y (x )  = Yo + (x - xo)Y~o + {Qy(r)  + g(r)}dTds,  (3) 
0 0 

y[,+l] (x)  = Yo + (x - xo)Jo + {Qy['] (r) + g ( r )}d rds ,  (4) 
O O 
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respectively. By subtracting (3) from (4) we can obtain 

[f o e ["+1] (x) = s[~] (r)drds,  (5) 
0 a a J o  

where e ["] (x) = y["] (x) -y(x) .  Taking the norm of the left-hand side and assuming 
Ile[~ <_ h'(x - x0), we have by induction 

IId"J(x)ll _< K c~(~ - x ~  (2~ + 1)! ' (6) 

where we set cl = I]QII-The inequality shows that  Picard iteration (2) converges 
on any finite interval x E Ix0, T] and the rate of convergence is superlinear. It is, 
however, expected that  the method converges slowly if the system is stiff or the 
length of the interval is large. 

Here we propose an acceleration of the Picard iteration using the splitting 
Q = N - M. The iterative method to be considered is 

y[~'+l]" (x) + My[~'+l](x) = Ny[~'](x) + g(x), (7) 

where we assume that  matrix M is symmetric and positive definite. The error 
of the iterate y["](x) satisfies the differential equation 

~E~+ll"(~) + M~E~+ll(~) = Nj~1(~) .  (s) 

In order to obtain the explicit expression for g["](x), here we define the square 
root and the trigonometric functions of matrices. 

Let ),k (k = 1 , . . . ,  m) be the eigenvalues of M, and P is a unitary matr ix 
that  diagonalizes M, i.e. M = Pdiag (),1,---,),,~) p - i ,  then using P the square 
root of M can be defined by 

= 

For any square matrix H and scalar x, the trigonometric functions can be defined 
by 

~o (_l)kH2k+l  
cos(Hx) = (--1)kH2kx 2k, sin(Hx) = E (2k + 1)! x2k+l 

k=0 (~k)! k=0 

Using the functions defined above we have 

e['+l](x) = 

(x/M) - 1 J [ [  (c~ -cos (V~x)s in (vFM~-) )Nc[ ' ] ( r )d~  - 

i x (  ) = ( v ~ ) - '  sin v ~ ( ~  - ~) N~E'1(~)d~ 

:~i~:cos(v/--M(x-r))Ne[ '](s)dsdr,  (9) 
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where the condition J~+ll(x)]~=x o = a~[~+ll(x)l~=xo = 0 is used. To bound 
e[~l(x) if we use the Euclidean norm then we have 

II cos(v~x)LI z LIPll diag(cos(v~7~), . . . ,cos(V~X)) liP-111 < 1, (10) 

since IIPII = l IP- i l l  = 1. Assuming Ilei~ < t f (x  - xo) as before and letting 
c2 = IINII, we fiud by induction the inequality 

- ( ~ .  + 1)! (11) 

The result shows that  although the rate of convergence of splitting method (7) 
remains superlinear, we can accelerate the convergence by making the value of 
IINII small. 

3 N o n l i n e a r  D i f f e r e n t i a l  E q u a t i o n  

Next we discuss the rate of convergence of the waveform relaxation for the second 
order nonlinear equation 

y ' (x)  = f (x ,y ) ,  y(xo) = Yo, y'(xo) = y~, y e R "~. (12) 

For the first order nonlinear equation y' = f (x ,  y), the method called the wave- 
form Newton method is proposed[5]. The method is given by 

y [ ' + l ] ' ( x ) -  J.y['+l](x) = f(y[ ']  (x)) - J.y['] (x), (13) 

where J .  is the Jacobian matrix of f(y[ ' ]) .  It is shown by Burrage[1] that  the 
waveform Newton method converges quadratically on all finite intervals x E 
Ix0, T]. In this section we first consider the convergence for the case that  J~ is 
replaced with an approximation in order to enhance the efficiency of the parallel 
computation.  

Instead of (13) let us consider the iteration 

y [ ' + l ] ' ( x ) -  ].y['+l](x) = f ( y [ ' ] ( x ) ) -  ].y[~](x), (14) 

where ]~ is an approximation to J~. Let c['] = yM - y then we have 

Of ~[,] 
f (y[ ' ] )  = f ( y  + ~[']) = f(y) + -~y + O(lleMII2). (15) 

Substituting (15) into (14) and ignoring the term O(llc[~]ll~), we have 

g[~+111 = s + _ (16) 

and taking the inner product we have 

<dg[~'-F1] J~'-F1]> : <fftjg[~+l] g[~-F1]>-~-<(J~- fft~)j~] ~[~-F1] > 
_< ~lIe[~+l]ll~ + ~211e>+1]11 IId~]ll, (17) 
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where the norm 11. [I is defined by Ilull ~ ==< u ,u  >, and #1 and #2 are the 
subordinate matr ix  norms of ]~ and J .  - ] . ,  respectively. The left-hand side of 
(17) can be written as 

< d~e[~+1]'e['+1]> = ]-d---]JeW+till2 = 2  dx Ile[~+l]]ld-~lle['+1]]]' 

so that, under the assumption that l ls[v+1]]l 5s O, we have 
d 

d-7116~+1~1} _< mlld~+1111 + #211e{~111 . (18) 

Assuming ]]e[~ < K(x  - Xo) as before and using ]]g[~ I = O, we have 

F IleC"+ll(~)ll _< ~=e "~(~-~o) e -"~(~-~~  I ds 
J X O  

#2e #l (x- '~  Ile>](8)ll ds, (1.9) 
0 

which leads to 

ILer~J(x)ll < K (/~2e**~(~-~~ - x~ (~ + 1)! ' (20) 

showing that the rate of convergence of iteration (14) is not quadratic but  su- 
perlinear. 

By the way, the second order nonlinear equation 

y " ( x )  = f ( x , y ) ,  y (xo)  = yo, y ' (xo)  -- Jo, y C R m (21) 

can be rewritten as the first order system 

z'(~) = (W(x), f (~ ,y ) )T  - -Y(z (x ) ) ,  (22) 

where z (x )  = (y (x ) ,  y ' ( x ) )  T.  The waveform Newton method for (22) is given by 

z[-+l]'(~) - j .z[-+11(,)  = F (zH (~ ) )  - j S < ( . ) .  (2a) 

In this case the Jacobian matr ix J ,  is given by 

_ Oy' = ( 2 4 )  , 

where I is an identity matrix. This result shows that  for second order equation 
(12), if we define the waveform Newton method analogously by 

d2 y[~+l](x) - 0 fy[ '+z] (x]  = f ( y [ ' ] ( x ) )  - Cgfy[ '](x) ,  (25) 
d x  ~ Oy " Oy 

then the method also converges quadratically. Moreover, from the same discus- 
sion as for the first order equation, we can conclude that  if an approximate 
Jacobian J~ is applied, then the rate of convergence of the iteration 

d 2 dx2Y[~+1](x)- z~y[~'+1](x) = f(yM(x))- Y.y["](x) (26) 
is superlinear. 
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4 N u m e r i c a l  E x p e r i m e n t s  

4.1 L i n e a r - E q u a t i o n s  

In order to examine the efficiency of the waveform relaxations, we solve first 
the large linear system of second order differential equations. Consider the wave 
equation 

02 u _ 02u 
0t ~ cOx~, 0 < x <  1, (27) 

u(x,  0) = sin(r~x), u(0, t) = u(1, t) = 0, 

where the exact solution is u(x,  t) = cos(Trt) sin(r~m). The semi-discretization by 
3-point spatial difference yields the system of linear equations 

J ' ( t )  = Qy(t ) ,  y(t) = ( , ,~, . . . ,~*m) ~, (28) 

where 

- 2  1 
1 1 ". E R mxrn A~x -- . 

Q - ( A x )  2 "'" " "'" ' r e + l  
1 - 2  

1 

In the splitting method given here we take M as the block diagonal matr ix  
given by M = diag(M1, M 2 , . . . ,  M , ) ,  and each block Mt is the tridiagonal matr ix  
given by 

- 1  2 - 1  
1 

M l - -  (Ax) ~ ".. ' . .  " .  E R  axd, l = 1 , 2 , . . . , # ,  # = r e ~ d ,  

- 1  21 

where we have assumed that  m is divisible by d and, as a result, # = m / d  is 
an integer. In the implementation, the system is decoupled into # subsystems 
and each of the subsystems is integrated concurrently on different processors, if 
the number of processors available are greater than that  of the number of the 
subsystems. If this is not the case each processor integrates several subsystems 
sequentially. In any way our code is designed so as to have a uniform work load 
across the processors. The basic method to integrate the system is the 2-stage 
Runge-Kutta-NystrSm method called the indirect collocation, which has an ex- 
cellent stability property[3]. In our experiment we set re = 256 and integrate 
the system from x = 0 to 1 with the stepsize h = 0.1 under the stopping criteria 
ilyt.l_y[U-l] ]1 _< 10-7. The result on the parallel computer KSR1, which is a par- 
allel computer with shared address space and distributed physical memory(see 
e.g. [6]), is shown in Table 1. 



T a b l e  1. Result for the linear problem on KSR1 
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CPU time(sec) 
d iterations serial parallel Sp S~ E E '  P p = m/d 
1 11579 566.02 61.92 9.14 2.58 0.57 0.16!16 256 
2 6012 586.73 53.79 10.91 2.97 0.68 0.19 16 128 
4 3052 362.94 31.44 11 .545.080.720.3216 64 
8 1462 240.81 19.56 12.31 8.17 0.76 0.51 16 32 
16 688 181.74 13.94 13.04 11.5 0.81 0.72 16 16 
32 427 201.56 27.11 7.43 5.89 0.93 0.73 8 8 
64 403 369.86 97.27 3.80 1.64 0.95 0.41 4 4 
128 403 791.10 407.41 1.94 0.39 0.97 0.20 2 2 

12561 1 1159"761 - I - [1.001 - I I l l  1 ] 
CPU time(serial) , CPU time(seriM, d = 256) 

Sp = CPU time(parMlel) ' S~ = CPU time(parMlel) 

Sp E '  S~ E = - P '  = -P-' P =number  of processors 

4 .2  NonlineawEquations 

Next  we consider  the  nonl inear  wave equa t ion  given by 

v~' = e x p ( v i - l ( x ) )  - 2 e x p ( v i ( x ) )  + e x p ( v i + l ( x ) ) ,  i = 0, 4 - 1 , + 2 , . . . , .  (29) 

Th i s  equa t ion  descr ibes  the  behav iour  of the  wel l -known T o d a  l a t t i ce  and  has  
the  so l i ton  so lu t ion  given by 

vi(x)=log(l+sinh2rsech2(ir-w(x+q))), i = 0 , + 1 , •  

w = sinh r, 
where  q is an a r b i t r a r y  cons tan t .  The  equa t ion  to be solved numer i ca l l y  is no t  
(29) bu t  i ts m - d i m e n s i o n a l  a p p r o x i m a t i o n  given by 

{~{i  = e x p ( y i _ l ) -  2 e x p ( y i ) +  exp (y i+ l ) ,  i =  2 , . . . , m -  1 
= 1 -- 2 exp (y l )  q- exp(y2),  (30) 

y"  = e x p ( y ~ _ l )  - 2 e x p ( y ~ )  + 1 

initial  c o n d i t i o n s :  y~(0) = v~(0), V~(0) = v~(0), 

where  we have to  choose a sufficiently large  m to lessen the  effect due  to  the  
f ini teness of  the  boundary .  As the  p a r a m e t e r s  we take  q = 40, r = 0.5 and  
w = s inh0.5 .  The  a p p r o x i m a t e  J a c o b i a n  ]~ used here is the  block d i a g o n a l  

m a t r i x  given by  

{J~,(i,j), d(l- 1) + 1 _< i,j < dl, l = 1 , . . . , m / d  
J ' ( i ' J )  = 0, o therwise ,  
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where  we have assumed  m is d iv is ib le  by d as before.  
In  our  numer ica l  expe r imen t  we use the  KSR1 para l l e l  compu te r ,  and  inte-  

g ra t e  the  1024-dimensional  sys tem f rom x = 0 to 5 wi th  stepsize h = 0.05 under  
the  s t o p p i n g  c r i te r ia  [ly[ ~] - y [ ' - l ] l [  _< 10 - l ~  The  resul t  is shown in Tab le  2. 

In  our  a lgo r i thms ,  if the  value of  d becomes  smal l  then  the degree of  pa ra l -  

T a b l e  2. Results for the nonlinear problem on KSR1 

CPU time(sec) , E '  m /d  
d iterations serial parallel Sp Sp E P p = 

1 17 53.98 6.10 8.85 3.49 0.55 0.22 16 1024 
2 15 61.44 6.43 9.55 3.31 0.60 0.21 16 512 
4 14 58.14 6.24 9.32 3.41 0.58 0.21 16 256 
8 14 60.19 6.37 9.46 3.34 0.59 0.21 16 128 
16 13 54.33 5.87 9.25 3.63 0.58 0.23 16 64 
32 12 50.81 5.71 8.91 3.73 0.56 0.23 16 32 
64 6 25.74 3.05 8.43 6.98 0.53 0.44 16 16 
128 6 26.79 4.78 5.60 4.46 0.70 0.56 8 8 
256 4 20.33 6.43 3.16 3.31 0.79 0.83 4 4 
512 4 21.03 11.84 1.78 1.71 0.89 0.86 2 2 

[10241 4 [ 21.30 I - -  [ - -  [1.00[ - I I1[  1 [ 

CPU time(serial) CPU time(serial, d = 1024) 
Sp = CPU t ime(paral lel) '  S'~ = CPU time(parallel) 

P =number  of processors 
S'  E =  Sp E ' -  v 

- - f i  ' - - - f i  

le l i sm becomes  large,  since the n u m b e r  of the  subsys t ems  # ( =  re~d) becomes  
large and,  moreover ,  the  cost of the  L U  decompos i t i on  t ha t  takes  p lace  in the  
inner  i t e r a t i on  in each of the  R u n g e - K u t t a - N y s t r S m  schemes,  which is p ropo r -  
t iona l  to  d 3, becomes  smal l .  However,  as is shown in the  tables ,  i t  is in genera l  
t rue  t h a t  the  smal le r  the  value of d, the  larger  the  n u m b e r  of the  W R  i te ra -  
t ions,  which means  the  increase of  the  overheads  such as synch ron i sa t i on  and  
c om mun ica t i ons .  Therefore ,  smal l  d i m p l e m e n t a t i o n  is not  necessary  a d v a n t a -  
geous. In  our  expe r imen t s  we can achieve the  bes t  speedups  when the  n u m b e r  
of  subsys t ems  is equal  to t ha t  of processors .  
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