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Abst rac t .  Using a finite difference method to discretize a two dimen- 
sional elliptic boundary value problem, we obtain systems of linear equa- 
tions Ax = b, where the coefficient matrix A is a large, sparse, and 
nonsingular. These systems are often solved by preconditioned iterative 
methods. This paper presents a data distribution and a communication 
scheme for the parallelization of the preconditioner based on the incom- 
plete LU factorization. At last, parallel performance tests of the precon- 
ditioner, using BiCGStab(g) and GMRES(m) method, are carried out on 
a distributed memory parallel machine AP1000. The mlmerical results 
show that the preconditioner based on the incomplete LU factorization 
can be used even for MIMD parallel machines. 

1 I n t r o d u c t i o n  

We are concerned with the solution of linear systems of equations 

Ax = b (1) 

which arises from the discretization of partial differential equations. For example, 
a model problem is the two dimensional elliptic partial differential equation: 

-u,~: - uyy + ,r(x, y)ux + ",/(x, y)uy = f ( x ,  y) (2) 

which defined on the unit square Y2 with Dirichlet boundary conditions u(x,  y) = 
g(x,  y) on c~Y2. We require r y) and 3'(x, y) to be a bounded and sufficiently 
smooth function taking on strictly positive values. We shall use a finite difference 
approximation to discretize the equation (2) on a uniform grid points ( M E S H  
x M E S H )  and allow a five point finite difference molecule A. The idea of 

N 

incomplete LU faetorization [1,4, 7] is to use A = LU - R,  where 

A = A. ~. A <  AE. ; LW. L. ~. 0 8 = 0 Ui~ UE. (3) 
~3 ~,3 G3 ~ ~3 %3 ' ~,3 

AS.. LS.. 0 
%3 "G3 

where L and /] are lower and upper triangular matrices, respectively. The in- 
complete LU factorization preconditioner which is efficient and effective for the 
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Fig. 1. The data depen- Fig. 2. The data distribu- Fig. 3. The cyclic data 
dency among neighbor- tion for N processors, distribution for N proces- 
hoods, sors. 

single CPU machine, may not be appropriate for the distributed memory parMlel 
machine just like AP1000. 

In this paper, we describe some recent work on the efficient implementa- 
tion of preconditioning for a MIMD parallel machine. In section 2, we discuss 
the parallelization of our algorithm, and then we describe the implementation 
of incomplete LU factorization on the MIMD parallel machine. In section 3, 
we present some numerical experiments in which BiCGStab(~) algorithm and 
GMRES(m) algorithm are used to solve a two dimensional self-adjoint elliptic 
boundary value problem. 

2 P a r a l l e l i z a t i o n  

In section 1, as we presented the incomplete LU factorization, it involves in two 
parts. One is the decomposition of A into L and U. The another is the inversion 
of L and D by forward and backward substitution. First of all, we consider the 
decomposition process. The data dependency of this factorization is given in 
Fig. 1. Namely, the entry of L~j can be calculated as soon as Lc_I,j and Lied_ 1 
have been calculated on the grid points. The LCl,j only depends on L~j_  1 on the 
west boundary and LCi,1 only depends on Lc' 1,1 on the south boundary. Next, we 

consider the inversion process. The calculation of wi,j = ~,-iv and wi,j = [~r-1 v 
is given by forward and backward substitution as follows�9 

W i , j  ( V i , j  S - -  L . V ~ . W i _ l , j ) / L C j  = - -  L i,j W i , j -  1 ~,3 

__ N q j j  
?2)i,j ~ ~)i,j U i , j  i , j + l  - -  U g w i + l , j  

(4) 
(5) 

We now consider brief introduction to the method of parallelization by Bas- 
tian and Horton [4]�9 They proposed the algorithm of dividing the domain f2, 
as shown in Figure 2, when we do the parallel processing by N processors such 
as PU(1), . . . ,  PU(N).  Namely, PU(1) starts with its portion of the first low of 
grid points. After end, a signal is sent to PU(2), and then it starts to process its 
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Fig. 4. The efficiency of parallel computation in the grid points on Y2. 

section of the first row. At the time, PU(1) has started with the calculation of 
its component of the second row. All processors are running when PU(N)  begins 
with the calculation of its component of the first row. 

2.1 General izat ion of  the algorithm by Bast ian and Horton 

As we can show in Fig. 3, we divide the domain ~2 by N processors cyclically. 
Here, we denote CYCLIC which denotes the number of cyclic division of the 
domain. The parallelization of Fig. 2 is equal to CYCLIC=I .  If it divides as 
shown in the Fig. 3, the computation of the k-th processor PU(k) can be begun 
more quickly than the case of Bastian and Horton. Therefore, in this case, the 
efficiency of parallel processing will be higher than the ordinary one. 

In Fig. 4, we show the efficiency of parallel computat ion in the square grid 
points for CYCLIC= 1, 2, respectively. In these figures, the efficiency of parallel 
processing is shown a deeper color of the grids is low. 

The efficiency E of the parallel processing by this division is calculated as 
following equation 6. The detailed derivation of this equation is given in the 
forthcoming our paper [10, 11]. 

CYCLIC • MESH 
E = CYCLIC • MESH + N - 1 (6) 

On the other hand, for distributed memory parallel machine, the number of 
CYCLIC is increased, the communication between processors is also increased. 
Moreover, concealment of the communication t ime by calculation time also be- 
comes difficult. Therefore, we will consider the trade-off between the efficiency 
of parallel processing and the overhead of communication. 

3 N u m e r i c a l  E x p e r i e n c e s  

In this section we demonstrate the effectiveness of our proposed implementation 
of ILU factorization on a distribute memory machine Fujitsu AP1000 for some 



Table  1. AP1000 specification 

Architecture IDistributed Memory, MIMD 
Number of processors 64 
Inter processor networks Broadcast network(50MB/s) 

Two-dimensional torus network 
(25MB/s/port) 
Synclronization network 
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Tab le  2. The computational time (sec.) for the multiplication of 
matrix A(LU) -1 and vector v on example 1. 

Mesh Size CYCLIC 
1 

128x128 2 

1 

256x256 2 
4 
1 
2 

512x512 4 

8 

( L ( f ) - l  v Av  Total 
2.52 x 10-212.88 x 10-~12.81 x 10 -~ 
5.86 x 10 -2 6.08 x 10 -a 6.47 x 10 -2 
5.44 x 10 -2 9.18 x 10 -~ 6.36 x 10 -~ 
1.41 x 10 - I  1.41 x 10 -2 1.55 x 10 -1 
2.12 x 10 -1 2.68 x 10 -2 2.38 x 10 -1 
1.56 x 10 -1 4.16 x 10 -2 1.98 x 10 -~ 
3.31 x 10 -1  5.05 X 10 -2  3.81 x 10 - I  

5.05 X 10 -1 6.70 • 10 -2 5.72 X 10 -1 
S.26 X 10 -1 1.21 • 1 0  - 1  9.47 • 10 -1 

large sparse matr ices  problems.  The  Specification of AP1000 is given in Tab le  1. 
Each cell of AP1000 employs RISC-type  SPARC or SuperSPARC processor chip. 
As Table  2 shows, the compu ta t iona l  t ime for A ( L U ) - l v  for various CYCLIC,  
which ob ta ined  by the following example  1. From these results,  it is considered 
sui table  by the AP1000 to decrease da t a  volume of the c o m m u n i c a t i o n  between 
processors, us ing C Y C L I C =  1. So, we use 1 as the n u m b e r  of CYCLIC in  the 
following numer ica l  experiments .  

[ E x a m p l e  1.] This  example  involves discret izat ions of b o u n d a r y  value p rob lem 
for the par t ia l  differential equat ion (Jouber t  [5]). 

-u~:~: - Uyy + o'ux = f ( x ,  y) 

where the r igh t -hand  side is taken such tha t  the t rue solut ion is u ( x ,  y) = 1 + x y  
on t2. We discretize above equat ion  7 on a 256 x 256 mesh of equal ly  spaced 
discret izat ion points .  By varying the cons tan t  c~, the a m o u n t  of n o n s y m m e t r i c i t y  
of the ma t r ix  may  be changed. We util ize the in i t ia l  app rox ima t ion  vector of 
x0 = 0 and use s imple s topping cri ter ion Ilrkll/llroll < 10 -12. We also used 
double  precision real a r i thmet ic  to perform the runs  presented here. 

In  Table  3, we show the compu ta t i ona l  t imes required to reduce the residual  
n o r m  by a factor of 10 -12 for an average over 3 tr ials  of p recondi t ioned  or un-  
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T a b l e  3. T he  c o m p u t a t i o n a l  t ime  (sec.) for example  1. 

ah 
Algorithm 0 2 -~ 2 -~ 2 -1 2 U 21 

G M I ~ E S ' ~ - -  * * 63.25 31.74 33.51 32.15 
GMRES(5)+ILU * 48.21 25.74 27.29 22.91 18.10 
GMRES(10) * 117.04 50.52 47.75 50.41 50.89 
GMRES(10)+ILU 296.18 36.25 39.58 40.95 37.02 25.45 
GMRES(20) * 109.68 89.45 88.79 94.16 92.41 
GMRES(20)+ILU 197.47 60.54 76.01 70.29 54.82 36.51 
B i C G S t a b ~ - ~ - -  30.11 23.83 20.341 20.66~ 23.18 23.04 
BiCGStab(1)+ILU 3O.34 21.28 17.82 17.25 15.09 10.91 
BiCGStab(2) i35.16 20.78 24.14 24.67 26.38 29.65 
BiCGStab(2)+ILU] 31.86 22.87 19.67 21.27 16.471 10.37 
BiCGStab(4) 47.28 33.4C 30.93 32.86 39.23 39.51 
BiCGStab(4)+ILU I 34.38 i 24.56 22.47 23.171 18.99 12.0(] 
�9 It does not converge after 3000 iterations. 

2 ~ 

32.98 
12.24 
50.75 
16.08 
92.00 
29.32 
48.42 

8.46 
30.07 

7.47 i 
36.47 

8.49 

2 ~ 24 2 ~ 
32.82 36.68 43.91 

9.23 7.07 6.13 
47.82 44.42 43.54 
11.94 8.31 6.63 
90.39 84.65 79,01 
15.55 9.83 5.89 

101.04 
6,73 4.86 3.13 

25.64 24.69 24.90 
6.51 5.23 3.63 

36.75 32.33 30.96 
7.79 5.69 4.30 

preconditioned BiCGStab(f) and GMRES(m) algorithm. For the preconditioner 
of incomplete LU factorization, in most cases both methods worked quite well. 

R e f e r e n c e s  

1. Meijer ink,  J. A. and  van  der  Vorst,  H. A.: A n  i te ra t ive  solut ion m e t h o d  for l inear  
sys tems  of which the  coefficient m a t r i x  is s y m m e t r i c  M - m a t r i x ,  Math. Comp., Vol. 
31, pp.  148-162 (1977). 

2. Gus tafsson ,  I.: A class of first order  fac tor iza t ions ,  B I T  Vol. 18, pp.  142-156 (1978). 
3. Saad,  Y. and  Schultz,  M. H.: G M R E S :  A general ized min ima l  res idual  a l g o r i t h m  

for solving n o n s y m m e t r i c  l inear  sys tems,  S I A M  J. Sci. Stat. Comput., Vol. 7, No. 3, 
pp. 856-869 (1986). 

4. Bas t i an ,  P. a n d  Hor ton ,  G.: Para l le l iza t ion  of robus t  mul t ig r id  me thods :  ILU fac tor-  
iza t ion  a n d  f requency decompos i t ion  m e t hod ,  S I A M  J. Sci. Stat. Comput., Vol. 12, 
No. 6, pp. 1457-1470 (1991). 

5. Joube r t ,  W.:  Lanczos  m e t h o d s  for the  solut ion of n o n s y m m e t r i c  sys t ems  of l inear  
equat ions ,  S I A M  J. Matrix Anal. Appl., Vol. 13, No. 3, pp.  926-943 (1992). 

6. Sleijpen, G. L. G. and  Fokkema,  D. R.: B i C G S T A B ( g )  for l inear  equa t ions  involving 
u n s y m m e t r i c  mat r ices  wi th  complex spec t rum,  ETNA,  Vol. 1, pp. 11-32 (1993). 

7. Bruase t ,  A. M.: A survey of p recondi t ioned  i t e ra t ive  m e t h o d s ,  P i t m a n  Resea rch  
Notes  in M a t h .  Series 328, L o n g m a n  Scientific & Technical  (1995). 

8. Nodera ,  T.  a n d  Noguchi,  Y.: Effect iveness of B i C G S t a b ( g )  m e t h o d  on  AP1000 ,  
Trans .  of I P S J  (in Japanese ) ,  Vol. 38, No. 11, pp.  2089-2101 (1997). 

9. Nodera ,  T.  and  Noguchi,  Y.: A no te  on B i C G S t a b ( 0  M e t h o d  on AP1000 ,  IMACS 
Lecture Notes on Computer Science, to  a p p e a r  (1998). 

10. Tsuno ,  N.: T h e  a u t o m a t i c  r e s t a r t e d  G M R E S  m e t h o d  and  the  para l l e l i za t ion  of 
the  incomple te  LU factor iza t ion,  M a s t e r  Thes i s  on  G r a d u a t e  School of Science 
a n d  Technology, Keio Univers i ty  (1998). 

11. Tsuno ,  N. and  Nodera ,  T.: T he  para l le l i za t ion  and  p e r f o r m a n c e  of the  incomple t e  
LU fac to r iza t ion  on AP1000,  Trans.  of IPSJ  (in Japanese ) ,  s u b m i t t e d .  


