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Abstract. Using a finite difference method to discretize a two dimen-
sional elliptic boundary value problem, we obtain systems of linear equa-
tions Arx = b, where the coefficient matrix A is a large, sparse, and
nonsingular. These systems are often solved by preconditioned iterative
methods. This paper presents a data distribution and a communication
scheme for the parallelization of the preconditioner based on the incom-
plete LU factorization. At last, parallel performance tests of the precon-
ditioner, using BiCGStab(f) and GMRES(m) method, are carried out on
a distributed memory parallel machine AP1000. The numerical results
show that the preconditioner based on the incomplete LU factorization
can be used even for MIMD parallel machines.

1 Introduction

We are concerned with the solution of linear systems of equations
Az =b (1)

which arises from the discretization of partial differential equations. For example,
a model problem is the two dimensional elliptic partial differential equation:

—Upy — Uyy + 0(2, Y)uy + ¥(z, Y)uy = f(z,y) (2)

which defined on the unit square £2 with Dirichlet boundary conditions u(z, y) =
g(x,y) on 812. We require o(x,y) and ¥(x,y) to be a bounded and sufficiently
smooth function taking on strictly positive values. We shall use a finite difference
approximation to discretize the equation (2) on a uniform grid points (MESH
x MESH) and allow a five point finite difference molecule A. The idea of
incomplete LU factorization [1,4,7] is to use A = LU — R, where

N 0 UN.
17] ~ - 1‘1‘7
A= A,V‘; Afj Afj L= Lf‘; ij 0, U=X0 U,% Ufj (3)
iy Ly 0

where I, and U are lower and upper triangular matrices, respectively. The in-
complete LU factorization preconditioner which is efficient and effective for the
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Fig.1. The data depen- Fig. 2. The data distribu- Fig.3. The cydlic data
dency among neighbor- tion for N processors. distribution for N proces-
hoods. SOYs.

single CPU machine, may not be appropriate for the distributed memory parallel
machine just like AP1000.

In this paper, we describe some recent work on the efficient implementa-
tion of preconditioning for a MIMD parallel machine. In section 2, we discuss
the parallelization of our algorithm, and then we describe the implementation
of incomplete LU factorization on the MIMD parallel machine. In section 3,
we present some numetical experiments in which BiCGStab(¢) algorithm and
GMRES(m) algorithm are used to solve a two dimensional self-adjoint elliptic
boundary value problem.

2 Parallelization

In section 1, as we presented the incomplete LU factorization, it involves in two
parts. One is the decomposition of A into L and U. The another is the inversion
of L and U by forward and backward substitution. First of all, we consider the
decomposition process. The data dependency of this factorization is given in
Fig. 1. Namely, the entry of Lf:j can be calculated as soon as LZ-C_L]» and ng_l
have been calculated on the grid ponts. The Lf ; only depends on Lf j—1 on the
west boundary and Lgl only depends on LZ-CLL1 on the south boundary. Next, we

consider the inversion process. The calculation of w; ; = L™!v and w; j = U~
is given by forward and backward substitution as follows.

wij = (vij — LF jwij_1 = Lwi15)/LE; (4)

— . N, . E. . )
wij = vij — Ujjwije — UijWivyj (5)

We now consider brief introduction to the method of parallelization by Bas-
tian and Horton [4]. They proposed the algorithm of dividing the domain £2,
as shown in Figure 2, when we do the parallel processing by N processors such
as PU(1), ..., PU(N). Namely, PU(1) starts with its portion of the first low of
grid points. After end, a signal is sent to PU(2), and then it starts to process its
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Fig. 4. The efficiency of parallel computation in the grid points on 2.

section of the first row. At the time, PU(1) has started with the calculation of
its component of the second row. All processors are running when PU(N) begins
with the calculation of its component of the first row.

2.1 Generalization of the algorithm by Bastian and Horton

As we can show in Fig. 3, we divide the domain §2 by N processors cyclically.
Here, we denote CYCLIC which denotes the number of cyclic division of the
domain. The parallelization of Fig. 2 is equal to CYCLIC=1. If it divides as
shown in the Fig. 3, the computation of the k-th processor PU(k) can be begun
more quickly than the case of Bastian and Horton. Therefore, in this case, the
efliciency of parallel processing will be higher than the ordinary one.

In Fig. 4, we show the efficiency of parallel computation in the square grid
points for CYCLIC= 1, 2, respectively. In these figures, the efficiency of parallel
processing is shown a deeper color of the grids is low.

The efficiency E of the parallel processing by this division is calculated as
following equation 6. The detailed derivation of this equation is given in the
forthcoming our paper [10,11].

CYCLIC x MESH

E = YCLICx MESHT N =1

(6)

On the other hand, for distributed memory parallel machine, the number of
CYCLIC 1s increased, the communication between processors is also increased.
Moreover, concealment of the communication time by calculation time also be-
comes difficult. Therefore, we will consider the trade-off between the efficiency
of parallel processing and the overhead of communication.

3 Numerical Experiences

In this section we demonstrate the effectiveness of our proposed implementation
of TLU factorization on a distribute memory machine Fujitsu AP1000 for some



Table 1. AP1000 specification

Architecture

Distributed Memory, MIMD

Number of processors |64

Inter processor networks

Broadcast network(50MB/s)
Two-dimensional torus network
(25MB/s/port)

Synclronization network

Table 2. The computational time (sec.) for the multiplication of

matrix A(LU)~! and vector v on example 1.

Mesh Size

CYCLIC

(LU o

Av

Total

128128

1

2.52 x 1072
5.86 x 1072

2.88 x 107°
6.08 x 1072

2.81 x 1072
6.47 x 1072

256x256

5.44 x 10~
1.41 x 1071
2,12 x 107!

9.18 x 1077
1.41 x 1072
2.68 x 10?2

6.36 x 1072
1.55 x 107!
2.38 x 107!

512x512

o IS O RN Y

1.56 x 1077
3.31 x 107!
5.05 x 107!
8.26 x 107}

4.16 x 10~
5.05 x 1072
6.70 x 1072
1.21 x 1071

1.98 x 1077
3.81 x 107!
5.72 x 107!
9.47 x 107!
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large sparse matrices problems. The Specification of AP1000 1s given in Table 1.
Each cell of AP1000 employs RISC-type SPARC or SuperSPARC processor chip.
As Table 2 shows, the computational time for A(LU)~!v for various CYCLIC,
which obtained by the following example 1. From these results, it is considered
suitable by the AP1000 to decrease data volume of the communication between
processors, using CYCLIC= 1. So, we use 1 as the number of CYCLIC in the
following numerical experiments.

[Example 1.] This example involves discretizations of boundary value problem
for the partial differential equation (Joubert [5]).

_uyy +UU:L' = f(xay)
u(z,y)lon = 1+ 2y

—Ugy

where the right-hand side is taken such that the true solution is u(z,y) = 1+ zy
on £2. We discretize above equation 7 on a 256 x 256 mesh of equally spaced
discretization points. By varying the constant ¢, the amount of nonsymmetricity
of the matrix may be changed. We utilize the initial approximation vector of
zo = 0 and use simple stopping criterion ||rgl|/||ro]] < 10712, We also used
double precision real arithmetic to perform the runs presented here.

In Table 3, we show the computational times required to reduce the residual
norm by a factor of 10712 for an average over 3 trials of preconditioned or un-
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Table 3. The computational time (sec.) for example 1.

oh

Algorithm g 5= 7= 5=T 5 51 57 55 5T 55
GMRES(5) * * 63.251 31.74| 33.51] 32.15| 32.98( 32.82| 36.68| 43.91
GMRES(5)+ILU * 48.21| 25.74| 27.29| 22.91| 18.10] 12.24| 9.23| 7.07] 6.13
GMRES(lO) * 117.04| 50.52| 47.75| 50.41| 50.89| 50.75{ 47.82| 44 .42| 43.54
GMRES(10)+1LU |296.18| 36.25| 39.58| 40.95| 37.02{ 25.45| 16.08] 11.94| 8.31| 6.63
GMRES(20) * 109.68] 89.45] 88.79| 94.16] 92.41| 92.00} 90.39| 84.65| 79.01
GMRES(20)+ILU [197.47] 60.54]| 76.01] 70.29| 54.82| 36.51| 29.32| 15.55| 9.83| 5.89
BiCGStab(1) 30.11| 23.83| 20.34| 20.66] 23.18| 23.04] 48.42{101.04 * *
BiCGStab(1)+ILU 30.34| 21.28| 17.82| 17.25| 15.09] 10.91 8.46 6.73 4861 3.13
BiCGStab(2) 35.16| 26.78| 24.14] 24.67| 26.38| 29.65( 30.07| 25.64| 24.69] 24.90
BiCGStab(2)+ILU| 31.86| 22.87| 19.67| 21.27( 16.47| 10.37] 7.47| 6.51 5.23) 3.63
BiCGStab(4) 47.28| 33.40| 30.93| 32.86| 39.23| 39.51) 36.47] 36.75| 32.33| 30.96

BiCGStab(4)+ILU| 34.38] 24.56| 22.47| 23.17| 18.99] 12.00{ 8.49] 7.79] 5.69] 4.30

* It does not converge after 3000 iterations.

preconditioned BiCGStab(¢) and GMRES(m) algorithm. For the preconditioner
of incomplete LU factorization, in most cases both methods worked quite well.
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