
Fault Tolerant QR-Decomposition Algorithm
and Its Parallel Implementation

Oleg Maslennikow 1, Juri Kaniewski 1,Roman Wyrzykowski 2

1 Dept. of Electronics, Technical University of Koszalin,
Partyzantow 17, 75-411 Koszalin, Poland

2 Dept. of Math. & Comp. Sci, Czestochowa Technical University,
Dabrowskiego 73, 42-200 Czestochowa, Poland

Abs t r ac t . A fault tolerant algorithm based on Givens rotations and a
modified weighted checksum method is proposed for the QR-decomposi-
tion of matrices. The algorithm enables us to correct a single error in each
row or column of an input M x N matrix A occurred at any among N
steps of the algorithm. This effect is obtained at the cost of 2.5N 2 +O(N)
multiply-add operations (M = N). A parallel version of the proposed
algorithm is designed, dedicated for a fixed-size linear processor array
with fully local communications and low I/O requirements.

1 I n t r o d u c t i o n

The high complexity of most of mat r ix problems [1] implies the necessity of solv-
ing them on high performance computers and, in particular, on VLSI processor
arrays [3]. Application areas of these computers demand a large degree of reli-
ability of results, while a single failure may render computat ions useless. Hence
fault tolerance should be provided on hardware o r /and software levels [4].

The algori thm-based fault tolerance (ABFT) methods [5 9] are very suit-
able for such systems. In this case, input da ta are encoded using error detecting
o r / and correcting codes. An original algorithm is modified to operate on en-
coded da ta and produce encoded outputs, from which useful information can
be recovered easily. The modified algorithm will take more t ime in comparison
with the original one. This t ime overhead should not be excessive. An A B F T
method called the weighted checksum (WCS) one, especially tailored for mat r ix
algorithms and processor arrays, was proposed in Ref. [5]. However, the origi-
nal WCS method is little suitable for such algorithms as Gaussian elimination,
Choleski, and Faddeev algorithms, etc., since a single transient fault in a module
may cause multiple output errors, which can not be located. In Refs. [8, 9], we
proposed improved ABFT versions of these algorithms.

For such impor tan t matr ix problems as least squares problems, singular value
and eigenvalue decompositions, more complicated algori thms based on the QR-
decomposition should be applied [2]. In this paper, we design a fault tolerant
version of the QR-decomposit ion based on Givens rotations and a modified WCS
method. The derived algorithm enables correcting a single error in each row or

799

column of an input M x N matr ix A occurred at any among N steps of the
algorithm. This effect is obtained at the cost of 2.5N 2 + O(N) multiply-add
operations. A parallel version of the algorithm is designed, dedicated for a fixed-
size linear processor array with local communications and low I /O requirements.

2 Fault Model and Weighted Checksum Method

Module-levd faults are assumed [6] in algorithm-based fault tolerance. A module
is allowed to produce arbitrary logical errors under physical failure mechanism.
This assumption is quite general since it does not assume any technology-depen-
dent fault model. Without loss of generality, a single module error is assumed in
this paper. Communication links are supposed to be fault-free.

In the W C S method [6], redundancy is encoded at the matr ix level by aug-
menting the original matr ix with weighted checksums. Since the checksum prop-
erty is preserved for various matr ix operations, these checksums are able to
detect and correct errors in the resultant matrix. The complexity of correction
process is much smaller than that of the original computation. For example, a
W C S encoded data vector a with the Hamming distance equal to three (which
can correct a single error) is expressed as

a T = [a l a2 . . . aN P U S QCS] (1)

P C S = p T [a, a2 . . . aN], Q C S = q T [al a2 . . . aN] (2)

Possible choices for encoder vectors p, q are, for example, [10] :

p =[2 0 21 . . . q =[1 2 . . . X] (3)

For the floating-point implementation, numerical properties of single-error cor-
rection codes based on different encoder vectors were considered in Refs. [7,
11].

Based on an encoder vector, a matr ix A can be encoded as either a row
encoded matr ix An, a column encoded matr ix A c , or a full encoded matr ix
A~qc [11]. For example, for the matr ix multiplication A B = D, the column
encoded matr ix A c is exploited [6]. Then choosing the linear weighted vector
(3), the equation A c * B = D c is computed. To have the possibility of verifying
computations and correcting a single error, syndromes $1 and $2 for the j - th
column of D-matr ix should be calculated, where

M M

< = - p c s j , & = i , - Q C S j (4)
i=1 /=1

3 Design of the ABFT QR-Decomposition Algorithm
The complexity of the Givens algorithm [2] is determined by 4N3/3 multipli-
cations and 2N3/3 additions, for a real N • N matr ix A. Based on equivalent
matr ix transformations, this algorithm preserves the Euclidean norm for columns
of A during computations. This property is important for error detection and
enable us to save computations.

800

In the course of the Givens algorithm, an M x N input mat r ix A = A 1 ----

{aij} is recursively modified in K steps to obtain the upper t r iangular mat r ix
R = A K+I, where K = M - l f o r M _< N, and K = N for M > N. The i-th step
consists in eliminating e l e m e n t s a}i in the i-th column of A i by multiplications on
rotat ion matrices Pji, j = i+ 1 , . . . , M, which correspond to rotat ion coefficients

= j -1 j-1 = a j i l ~ / (a i i) _t_(a}i)2 cjl aii /v / (ai i)2-t-(a}i)2, sji i j--1 2

Each step of the algorithm includes two phases. The first phase consists in
recomputing M - i times the first element aii of the pivot (i.e. i-th) row, and
computing the rotat ion coefficients. The second phase includes computa t ion of
ai+l and resulting elements rik in the i-th row of R. This phase includes also j k ,
recomputing M - i t imes the rest of elements in the pivot row.

J is wrongly Consequently, if during the i-th step, i = 1 , . . . , K , an element aii
calculated, then errors firstly appear in coefficients ejl and 8ji , j = i+ 1 , . . . , M ,
and then in all the elements of i I + 1 . Moreover, if at the i-th step, any coefficient
eji or sji is wrongly calculated, then errors firstly appear in all the elements of
the pivot row, and then in all the elements of A i+1. All these errors can not be
located and corrected by the original W C S method. To remove these drawbacks,
the following lemmas are proved. It is assumed that a single transient error may
appear at each row or column of A i at any step of the algorithm.

^i+1 k) is wrongly calcu- L e m m a 1. I f at the i-th step, an element ajk (i < j, i <

lated, then errors will not appear among other elements of A i + 1 .

However, if a}k is erroneous, then error appears while comput ing either the

element _j+l in the pivot row at the j - th step of the algorithm, for j < k, or ttjk

values ofa~k , ejk and sjk (j = i + 1 , . . . , M) at the k-th step, for j > k. Hence in
these cases, we should check and possibly correct elements of the i-th and j - t h
rows of A i, each t ime after their recomputing.

L e m m a 2. Let an element a~k of the pivot row (j = i+ l , . . . , M , " k = 1 , . . . , N)
~ i+1 or an element ~ja of a non-pivot row (k = i + 1 , . . . , N) was wrongly calculated

when executing phase 2 of the i-th step of the Givens algorithm. Then it is
possible to correct its value while executing this phase, using the W C S method
for the row encoded matrix An, where

A R = [A A p Aq] = [A P C S QCS] (5)

pCS~+I _i+1 _i+1 _i+1 i .. i : u j , i+l "JI-tLj,i+2-]-' ' ' (~j,N = (- - s j i a i , i + l -1- e j~aj , i+l) at- . . .
�9 " " i . . i i + (-ss a ,N = + a ,N) + + a ,N) (6)

So before executing phase 2 of the i-th step we should be certain tha t cji,
J sji and aii were calculated correctly at phase 1 of this step (we assume tha t the

remaining elements were checked and corrected at the previous step). For this
aim, the following properties of the Givens algorithm may be used:

- = 1 (7)

- preserving the Euclidean norm for column of A during computa t ion

~/ i 2 i 2 a M M (a~,i)2 -t- (a i+l , i) -] - . . . + (aM,i) = ~,~ (where aii = rii) (8)

801

The triple t ime redundancy (TTR) method [4] may also be used for its modest
t ime overhead. In this case, values of cji, sji or /and a~i are calculated three times.

Hence, for cji and sji, the procedure of error detection and correction consists
in computing the left part of expression (7), and its recomputing if equality (7)
is not fulfilled, taking into account a given tolerance r [6]. For elements a~i ,
i = 1 , K, this procedure consists in computing the both parts of expression
(8), and their recomputing if they are not equal. The correctness of this procedure
is based on the assumption that only one transient error may appear at each row
or column of A i at any step. Moreover, instead of using the correction procedure
based on formulae (4), we recompute all elements in the row with an erroneous
element detected.

The resulting ABFT Givens algorithm is as follows:

1. The original mat r ix A = {aja} is represented as the row encoded mat r ix
* = P C S) , f o r j = l , . , M ; k = l , ,N . A n = {alk} with a~k = ajk, aj,N+ ,

2. For i = 1, 2 , . . . , K , stages 3-9 are repeated.
~/ (a i./12 3. The values o f a~i = (a{ i -1)2 -}-~ 3~/ ' a r e calculated, j = i + 1 , . . . , M.

4. The norm { ai [for the i-th column of A is calculated. This stage needs
approximately M - i multiply-add operations. The value of I ai I is compared
with the value of aiiM. If ai iM 7k] al [, then stages 3,4 are repeated.

5. The coefficients cji and sji are computed, and correctness of equation (7) is
checked, for j = i + 1 , . . . , M. In case of non-equality, stage 5 is repeated.

6. For j = i + 1 , . . . , M , stages 7-10 are repeated.
J of the i-th row of A i+* are computed, k = 1 N + 1. 7. The elements aik , . . . ,

8. The value of PCS~ is calculated according to (6). This stage needs approxi-

mate ly N - i additions. The obtained value is compared with tha t of j ai,N+ 1 �9
In case of the negative answer, stages 7,8 are performed again.

9. The elements a i+l in the j - th row of A i+1 a r e calculated, k = i+1, ,N+I . jk "'"
10. The value of PCS} +t is computed according to expression (6). This stage

also needs approximately N - i additions. The computed value is compared
ai+l with that of j,N+I" In case of the negative ease, stages 9,10 are repeated.

The procedures of error detection and correction increase the complexity
of the Givens algorithm on N2/2 + O(N) multiply-add operations and N 2 +
O(N) additions, for M = N. Due to increased sizes of the input matr ix , the
additional overhead of the proposed algori thm is 2N 2 + O(N) multiplications
and N u + O(N) additions (M = N). As a result, the complexity of the whole
algori thm is increased approximately on 2.5N 2 + O(N) multiply-add operations
and 2N 2 + O(N) additions. At this cost, the proposed algori thm enables us to
correct one single transient error oceured in each row or column of A at any
among K steps of computations. Consequently, for M = N, it is possible to
correct up to N u single errors when solving the whole problem.

4 Parallel Implementation

The dependence graph G1 of the proposed algorithm is shown in Fig.1 for M = 4,
N = 3. Nodes of G1 are located in vertices of the integer lattice Q = {K =

802

d 1 �9

l d4 Al~" F'~

a~l o ~ , , a42a X,~rl2 a~,
a4T ~" 11 -~"

Fig, 1. Graph of the algorithm

d 2

1"23

13

(i , j , k) : 1 < i < K; i + 1 < j < M; i < k < N} . There are two kind of
nodes in GI . Note that non-locM arcs marked with broken lines, and given by
vectors d5 -= (0, i + 1 - M, 0), d6 = (0, 0, i - N) are result of introducing A B F T
properties into the original algorithm.

To run the algorithm in parallel on a processor array with local links, all the
vectors d5 are excluded using the T T R technique for computing values of j aii,
eji and sji. This needs to execute additionally 6N 2 + O(N) multiplications and
additions. Then all the non-local vectors d6 are eliminated by projecting G1
along k-axis. As a result, a 2-D graph G2 is derived (see Fig.2).

To run G2 on a linear array with a fixed number n of processors, (32 should
be decomposed into a set of s =IN~n[subgraphs with the "same" topology
and without bidirectional data dependencies. Such a decomposition is done by
cutting (32 by a set of straight lines parallel to j-axis. These subgraphs are then
mapped into an array with n processors by projecting each subgraph onto i-
axis [12]. The resulting architecture, which is provided with an external RAM
module, features a simple scheme of local communicat ions and a small number
of I / O channels. The proposed ABFT Givens algori thm is executed on this array
in s

T = Z [(N + 3 - n (i - 1)) + (M - n (i - 1))]
i = 1

t ime steps. For M = N, we have

T = N3 /n - (N - n)N2/2 + (2 N - n) N 2 / (6 n)

The processor utilization is En = W / (T * n), where W is the computa t iona l
complexity of the proposed algorithm.

Using these formulae, for example, in case of s = 10, we obtain

E~ = 0.86

Note that with increasing in parameter s the value of En also increases.

803

n I

al a2 a3 a4 a5 a6 a7 A

Fig. 2. Fixed-sized linear array

R e f e r e n c e s

1. G.H. Golub, C.F. Van Loan, Matrix computations, John Hopkins Univ. Press,
Baltimore, Maryland, 1996.

2. A. Bj6rck, Numerical methods for least squares problems, SIAM, Philadelphia,
1996.

3. S.Y. Kung, VLSI array processors, Prentice-Hall, Englewood Cliffs, N.J., 1988.
4. S.E. Butner, Triple time redundancy, fault-masking in byte-sliced systems.

Teeh.Rep. CSL TR-211, Dept. of Elec.Eng., Stanford Univ., CA, 1981.
5. K.H. Huang, J.A. Abraham, Algorithm-based fault tolerance for matrix operations.

IEEE Trans. Comput., C-35 (1984) 518-528.
6. V.S. Nair, J.A. Abraham, Real-number codes for fault-tolerant matrix operations

on processor arrays. IEEE Trans. Comp., C-39 (1990) 426-435.
7. J.-Y. Han, D.C. Krishna, Linear arithmetic code and its application in fault

tolerant systolic arrays, in Proc. IEEE Southeastcon, 1989, 1015-1020.
8. J.S. Kaniewski, O.V. Maslennikow, R. Wyrzykowski, Algorithm-based fault

tolerant matrix triangularization on VLSI processor arrays, in Proc. Int. Work-
shop "Parallel Numerics'95", Sorrento, Italy, 1995, 281-295.

9. J.S. Kaniewski, O.V. Maslennikow, R. Wyrzykowski, Algorithm-based fault
tolerant solution of linear systems on processor arrays, in Proc. 7-th Int. Workshop
"PARCELLA '96", Berlin, Germany, 1996, 165 - 173.

10. D.E. Schimmel, F.T. Luk, A practical real-time SVD machine with multi-level fault
tolerance. Proe. SPIE, 698 (1986) 142-148.

11. F.T. Luk, H. Park, An analysis of algorithm-based fault tolerance techniques. Proc.
SPIE, 696 (1986) 222-227.

12. R. Wyrzykowski, a. Kanevski, O. Maslennikov, Mapping recursive algorithms into
processor arrays, in Proc. Int. Workshop Parallel Numerics'94, M. Vajtersic and
P. Zinterhof eds., Bratislava, 1994, 169-191.

