
BSP, LogP, and Oblivious Programs

J6rn Eisenbiegler Welf L6we Wolf Z immermann

Institut f/Jr Programmstrukturen und Datenorganisation, Universits Karlsruhe,
76128 Karlsruhe, Germany,

{eisenlloewelzimmer}@ipd. inIo. un i -kar l s ruhe .de

A b s t r a c t . We compare the BSP and the LogP model from a practi-
cal point of view. Using compilation instead of interpretation improves
the (best known) simulations of BSP programs on LogP machines by
a factor of O(log P) for oblivious programs. We show that the runtime
decreases for classes of oblivious BSP programs if they are compiled into
LogP programs instead of executed directly using a BSP runtime library.
Measurements support the statements above.

1 I n t r o d u c t i o n

Parallel programming suffers from the lack of a uniform and commonly accepted
machine model providing abstract programming of parallel machines and de-
scribing their costs adequately. Two candidates, the BSP model (Valiant [9])
and the LogP model (Culler et al. [4]), have been considered in an increasing
number of papers. The comparison of the two models in [2] determines the de-
lays for a simulation of LogP programs on the BSP machine and vice versa.
For our observations we make two additional assumptions: we only consider
oblivious programs and message passing architectures. A program is oblivious if
source and destination processors of communicat ions are statically determined 1.
The target machines are processor-memory-nodes connected by a communica-
tion network. We explicitly exclude shared memory machines. Virtual shared
memory architectures are covered since they implicitly require communicat ion
via the interconnection network for remote memory operations. We only mention
send and receive communications and deliberately ignore remote store and load
operations.

The first part of our paper shows that oblivious BSP programs can be com-
piled to the LogP machine. We further show, that compilat ion reduces the delay
of the simulation of oblivious BSP programs on the LogP machine by a factor of
O(log(P)) compared to the result in [2], i.e., there is asymptot ical ly no delay for
the compiled LogP program compared to the BSP program. Even better, it turns
out that the compiled LogP program could outperform a direct execution of the
BSP program on the same architecture. To sharpen this observation, we consider
three classes of oblivious programs: first we s tudy Mult iple-Program-Mult iple-
Data (MPMD) solutions. Those programs are in general hard to part i t ion into

1 Many algorithms, especially those in scientific computing are oblivious, e.g. Matrix
Multiplication, Discrete Simulation, Fast Fourier Transform, etc.

866

supersteps, i.e. in global phases of receive-, compute-, and send-operations. As
an example, we discuss the opt imal broadcast problem. The second s third
classes of problems allow Single-Program-Mult iple-Data (SPMD) solutions and
there is a natural part i t ion into supersteps. They differ in the da ta dependencies
between the phases: in the second class there are sparse dependencies between
the phases in third class these dependencies are dense. We call a da ta depen-
dency sparse iff the BSP communicat ion of each superstep last longer than the
corresponding communicat ion in the compiled LogP program. As representa-
tives of the second class of problems, we discuss a numeric wave simulation. The
fast Fourier t ransform is a representative of the third class. Measurement of the
parameters and run t ime results for an opt imal broadcast, the simulation and
the F F T support our theoretical results.

2 T h e M a c h i n e M o d e l s

This section describes the two machine models a little more in detail. In order
to distinguish between the parameters of both models, we use capital letters for
the parameters of the LogP model and small letters for the parameters of the
BSP model.

2.1 T h e L o g P M o d e l

The LogP model assumes a finite number P of processors with local memory,
which are connected by a da ta network. It abstracts from the network topology,
presuming tha t the position of the processor in the network has no effect on
communicat ion costs. Each processor has its own clock, synchronization and
communicat ion is done via message passing. All send and receive operations
are initiated by the processor which sends or receives, respectively. From the
programmers point of view, the network has no direct connection to the local
memory. All communicat ion is done via the processor.

In the LogP model, communicat ion costs are determined by the parameters
L, O, and G. Sending a message costs t ime O (overhead) on the processor. The
t ime the network connection of this processor is busy with sending the message
into the network is bound by G (gap). A processor can not send or receive two
messages within t ime G, but if a processor returns from a send or receive routine,
the difference between gap and overhead can be used for computat ion. The t ime
between the end of sending a message and the s tar t of receiving this message is
defined as latency L. There are most [L/G] messages in transit f rom any or to
any processor at any time, otherwise, the communicat ion stalls. We only consider
programs satisfying this capacity constraint. If the sending processor is still busy
with sending the last bytes of a message while the receiving processor is already
busy with receiving, the send and the receive overhead for this message overlap.
In this case the latency is negative. This happens on many systems especially for
long messages or if the communicat ion protocol is too complicated. L, O, and
G have been determined for quite a number of machines; all works confirmed

867

runt ime predictions based on the parameters by measurements. In contrast to [1]
and [5], we assume the LogP parameters to be constants (as proposed in the early
LogP works [4]). This assumption is admissible if the message size does not vary
in a single program.

2.2 T h e B S P M o d e l

The BSP (bulk synchronous parallel) machine was defined by Valiant [9]. We
refer to its modification by McColl in [8,6]. Like the LogP model, the BSP
model assumes a finite number of processors P with local memory, local clock,
and a network connection to an arbi t rary network. It also abstracts from the
network topology. In contrast to the LogP model, the BSP machine can explicitly
(barrier) synchronize all processors. The synchronization barriers subdivides the
calculation into supers teps . All send operations in a superstep i are guaranteed
to be completed before superstep i + 1. In the BSP model as invented by Valiant,
processor communicate via remote memory access. For oblivions programs we
may focus on a message based communication: Consider the remote memory
accesses at one superstep. If processor rri reads f rom processor rrj, then rri should
send a request to rrj and rrj sends its answer for the general case. However, for
oblivious algorithms, it is already known that rri reads f rom the memory of rcj.
Thus, the request can be saved in the case of oblivious algorithms: it is sufficient
to send the result of the read request from 7rj to rri. A write of processor rri to
the memory of processor rrj, is equivalent to sending a message from processor
rri to rrj containing the memory address and the value to be written.

The cost model uses two parameters: the t ime for the barrier synchronization
l, and the reciprocal of the network bandwidth g. With theses parameters , the
t ime for one superstep is bounded by l + 2h �9 g + w, where h is the maximal
number of messages sent or received by one processors and w is the maximal
computa t ion t ime needed by one processor in this superstep. A BSP machine
is able to route a [l /g] - re la t ion in a superstep which is a capacity constraint
analogous to the LogP model. The total computa t ion t ime is the sum of the
t ime for all supersteps. Like for the LogP model, we assume the parameters to
be constant.

3 B S P v s . L o g P f o r O b l i v i o u s A l g o r i t h m s

In this section, we discuss the compilation of oblivious BSP programs to the
LogP machine. First, we discuss how the communicat ion between subsequent
supersteps can be mapped onto the LogP machine without exceeding the LogP
capacity constraints. Second, we define the actual compilation and prove exe-
cution t ime bounds for the compiled LogP programs. Third, we compare the
direct execution of a BSP program on a target machine with the execution of
the (compiled) LogP program. Therefore, we conclude this section by determin-
ing lower bounds for the BSP and LogP parameters , respectively, for the same
target machine.

868

3.1 C o m m u n i c a t i o n o f a S u p e r s t e p on t h e L o g P M a c h i n e

For simplicity, we assume that a h-relation is implemented, i.e. each processor
sends and receives exactly h messages. It is well known that a "pipelined" com-
munication can be computed using edge coloring on a bipartite graph (U, V, E)
where U and V are the set of processors and (u, v) E E, iff u communicates
with v. Each color, represented by an integer j E { 0 , . . . , k - 1) where k is the
number of required colors, defines set of non-conflicting communications that
can be started simultaneously. A send(v) on processor u is scheduled at t ime
j - m a x (O , G) and recv(u) on processor v at t ime L d- O + j . max(O, G).

Since we consider oblivious BSP algorithms, the edge coloring of the commu-
nication graph for each superstep (and therefore the communication phase itself)
can be computed prior to execution of the BSP algorithm. Thus, the t ime for
edge coloring (O(]E I log(IV I +]U]) due to [3]) can be ignored when considering
the execution time of the BSP algorithm.

It is easy to see that the schedule obtained from the above algorithm does
not violate the capacity LogP constraints if L > (h - 1) - max(O, G). If follows

L e m m a 1. I f L > (h - 1) max(O, G), then every fixed h-relation can be im-
plemented on the LogP machine such that its execution time is L + 2 0 + (h -
1) max(O, G).

If L < (h - 1) max(O, G) the scheduling algorithm must be modified to avoid
stalling. First we discuss the simplified model where each channel is allowed to
contain an arbitrary number of messages. In this case, the first receive operation
is performed after the last send operation. The same approach as above then
yields execution time 2 0 + 2 (h - 1) max(O, G) since the first receive operation can
be performed at time O + (h - 1) m a x (O , G) instead o f O + L < (h - l) max(O, G).
If the number of messages is bounded, the message is received greedily, i.e. as
soon as possible after a send operation on the processor is finished at the time
when the message arrives. This does not increase the overall execution t ime of
a communication phase since no new gaps are introduced. Thus, the following
lemma holds:

L e m m a 2. I f L < (h - 1)max(O, G), then every fixed h-relation can be im-
plemented on the LogP machine such that its execution time is 2 0 + 2(h -
1) max(O, G).

3.2 E x e c u t i o n T i m e B o u n d s for t h e C o m p i l e d L o g P P r o g r a m s

The actual compilation of an oblivious BSP algorithms to the LogP machine is
now straightforward: Each BSP processor corresponds one to one to a LogP pro-
cessor. Beginning with the first superstep we map the tasks of BSP processor to
a corresponding LogP processor in the same order. Communication is mapped as
described in the previous subsection. Since a processor can proceed its execution
when it received all its messages of the preceding superstep, there is no need for
a barrier synchronization. Together with Lemmas 1 and 2, this observation leads
to the

869

T h e o r e m 1 (S i m u l a t i o n o f B S P o n LogP). Every superstep of an obliv-
ious B S P algorithm with work w and h remote memory accesses can be imple-
mented on the LogP Machine in time w + 20 + (h - 1) m ~x(O , G) + max(L, (h -

m a x (O , c)) .

I f we choose g = max(O, G) and 1 = m a x (L , (h -)max(O, a)) + 2 0 -
max(G - O, 0) then, the execution time of a BSP algorithm in the BSP model
and the compiled BSP algorithms in the LogP model is the same. Especially,
the bound for the simulation in [2] is improved by a factor of log P for oblivious
BSP programs.

3.3 I n t e r p r e t a t i o n vs . C o m p i l a t i o n

For the comparision of a direct execution of a BSP program with the com-
piled LogP program, the parameters for the BSP machine and LogP machine,
respectively, cannot be chosen arbitrarily. They are determined by the target
architecture, for comparable runtime predictions we must choose the smallest
admissible values for the respective model.

A superstep implementing a h-relation costs in the BSP-model w + l + h �9 g.
According to Theorem 1, it can be executed in time w + 20 + (h-1) max(O, G)+
max(L, (h - 1)max(O,G)) on the LogP machine. The speedup is the ratio of
these two numbers. Easy calculations prove the following

Corol la ry 1 (In te rp re t ing vs. Compil ing) . Let M be a parallel computer
with BSP parameters l ,g, and P and LogP parameters L , O , G , and P. Let .A
an oblivious BSP algorithm where each superstep executes at most h remote
memory accesses. If 1 > 0 + max(L, (h - 1) max(O, C)) and g > max(O, G)
then the execution time of the compiled BSP algorithm on the LogP model is
not slower than the execution time of the BSP algorithm on the BSP model. If
one of these inequalities is strict, then the execution time of the compiled B S P
algorithm is faster.

3.4 L o w e r B o u n d s for t h e P a r a m e t e r s

Let g* and l* (resp. max*(O,G) and L*) be the smallest values of the BSP
parameters (resp. LogP parameters) admissible on a certain architecture. Our
simulation implies that g* = C9(max*(O, G)) and l* = O(L*). Together with
the simulation result of [2] that proves a constant delay in simulation of LogP
algorithms on the BSP machine, we obtain

T h e o r e m 2 (BSP and LogP paramete r s) . For the smallest values of the
BSP parameters g* and l* (resp. LogP parameters max* (0 , G) and L*) achiev-
able on any given topology, it holds that

g* = O(max(O*,a*)) and l* = O(L*),

provided that both machines run oblivious programs.

870

So far we only considered the worst case behavior of the two models. They
are equivalent for oblivious programs in the sense that bi-simulations are pos-
sible with constant delay. We now consider the t ime for implementing a barrier
synchronization and a packed router on topology networks.

T h e o r e m 3. Let d be the diameter of a point-to-point network with P proces-
sors. Let d 9 be the degree of the processors of the network. Each processor may
route up to d9 messages in a single time step but it receives and sends only one
message at each time step 2. On any topology, the time l* of its B S P model is

l* = / 2 (m a x (d (P) , log P)) .

Proof. A lower bound for synchronization is broadcasting. Hence, d(P) is obvi-
ously a lower bound for l*. Assume an opt imal broadcast tree [7] could be em-
bedded optimally on the given topology. Its depth for P processors is O(logP) ,
a message could be broadcasted in t ime O(logP) . Hence, synchronization takes
at least t ime X2(log P) .

Remark 1. Actually a'2(P l/a) is a physical lower bound for l* and L* under the
assumption that the processors must be layouted (in 3-dimensions) and signals
have a run duration. Then the minimal average distance is X?(P1/3). Due to the
small constant factors of this bound, we may abstract from the layout and model
signal delay by discrete hops from one processor to its neighbors.

For many packet routing problems (specific h-relations) and topologies, the
latency is considerable smaller than l* which could lead to a speed up of the LogP
programs compared to oblivious BSP programs. This hypothesis is addressed by
the next section.

4 S u b c l a s s e s o f O b l i v i o u s P r o g r a m s

In general, there is a higher effort in designing LogP programs instead of BSP
programs. E.g., the proof that the BSP capacity constraints are guaranteed
reduces to simply counting the number of messages sent in a superstep. Due to
the asynchronous execution model, the same guarantee is not easy to prove for
the LogP machine. BSP programs cannot deadlock, LogP programs can. Hence,
for all considered classes, we will have to evaluate whether:

- the additional effort in programming directly a LogP program pays out in
efficiency, or

- compilat ion of BSP programs to LogP programs speeds up the p rogram ' s
execution, or

- such a compilation cannot guarantee a speedup.

For our practical runtime comparisons, we determine the parameters of the two
machine models for the IBM RS6000/SP with 16 processors 3.

2 This behavior lead to the LogP model where only receiving and sending a message
takes processor time while routing is done by the communication network.

3 The IBM RS6000/SP is a IBM SP, but uses other processors. Therefore, we compiled
the BSP tools without processor specific optimizations.

871

Table 1, LogP vs. BSP parameters (IBM RS6000/SP), message size <: 16 Bytes.

IBSP iLogP

= 502ps IL = 17.1ps
- - I0 = 9.0ps
g = 30.1ps G = 9.8ps

4,1 T h e P a r a m e t e r s

We use the native message passing library for the LogP model and the Oxford
BSP tools 4 for the BSP model. The results are shown in Table 1. For all mea-
surements in this and the following sections we used compiler option -O3 -qstrict
and for the BSP library option -flibrary-level 2.

4 . 2 M P M D - P r o g r a m s

If an efficient parallel solution for a problem is hard to part i t ion in supersteps,
the BSP model is not appropriate. For those programs the LogP model seems
preferable. Due to its asynchronous execution model, it avoids unnecessary de-
pendencies of processors by synchronization. However, if the problem is low
level, as our example broadcast is, the solution may be hidden in a library. It
is not hard to extend the BSP model by a set of such l ibrary functions. Their
implementat ion could be tuned using the LogP model.
O p t i m a l B r o a d c a s t : A basic algorithm on distributed memory machines is
the opt imal broadcast of data from one processor to all others, which is used in
many applications. For the LogP model, an opt imal solution is given by Karp at
M. in [7]. Each processor that received the i tem immediate ly initiates a repeated
sending to processors which have not received the i tem until there is no such
processors. We achieve the opt imal BSP broadcast for our machine if the first
processor sends messages to all others in one superstep. After synchronization the
other processors receive their message. This is opt imal for our target machine,
since all other implementat ions would need at least two synchronization steps,
which alone cost more than the algori thm given above. The measured runt ime
of broadcast for LogP and BSP on our machine can be seen in Table 2.

R e m a r k 2. In the measurements for the BSP parameters , we used raged mes-
sages where the tag identifies the sender. For an opt imal broadcast , this iden-
tification of the sender is not necessary. This explains the difference between
est imation and measurements. In contrast to the LogP model, it is not possible
on the IBM RS6000/SP to receive a message and send a it immediate ly without
a gap. The LogP est imation ignore this property and are therefore too small.

However, even if we assume m a x (O , G) = g, L = I then the opt imal LogP
broadcast is a lower bound for the opt imal BSP broadcast. The lat ter requires

4 see http://www.BSP-worldwide.org

872

Table 2. Predictions vs. runtimes of broadcast, wave simulation, and FFT.

broadcast
simulation (n=l,000)
simulation (n=100,000)
FFT (n=1024)
IFFT (n=16384)

BSP
measurement l estimation

822 ps 980 ps
6.84 s 6.35 s
20.6 s 19.4 s

3.16 ms 3.51 ms
34.8 ms 35.6 ms

LogP
measurement I estimation

101 ps 99.6 ps
1.50 s 1.56 s
14.9 s 14.24 s

2.65 Ins 2.67 Ins
39.3 ms 35.2 ms

global synchronization barriers between subsequent send and receive operations.
These synchronizations lead to delays on other processors if the LogP broadcast
tree is not balanced by chance. For each send and receive pair all processors
have to be synchronized instead of two.

4.3 SPMD-Programs with Sparse Dependencies

Assume tha t a BSP process sends at most h messages to the subsequent super-
steps. The dependencies in the BSP program are sparse for M if the for LogP
and BSP parameters for M it holds that

+ 2h .g > 2 0 + (h - 1) max(O, G) + max(L, (h - 1) max(O, G)) (1)

If a BSP programs communicates at most an h-relation f rom one superstep to
the next, these communication costs are bounded by the right hand side of
inequation (1) in the compiled LogP program (due to Theorem 1). Then we
expect a speed up if the BSP program is compiled instead of directly executed.

However, if the problem size n is large compared to P, computa t ion costs
could dominate communication costs. Hence, if the problem scales arbitrarily,
the speed-up gained by compilation could approach zero for increasing n.
W a v e S i i n u l a t i o n : For simulating a one-dimensional wave, a new value for
every simulated point is recalculated in every t ime step according to the current
value of this point(y0), its two neighbors (Y-I,Y+I), and the value of this point
one t ime step before (y~). This update is performed by the function

2
= 2 . yo - V'o + A,/A . 2 �9 - 2 �9 y o + > 1) .

Since recalculation of one node needs the values of direct neighbors only, it is
optimM to distribute the da ta balanced and block by block on the processors.
Figure 1 sketches two successive computat ional steps and the required commu-
nication. The two programs for the LogP and BSP model only differ in the
communicat ion phase of each computat ion step. In both models, the processes
communicate with their neighbors, i.e, the communicat ion phase must route a 2-
relation. The BSP additionally performs a synchronization of all processors. For
our target machine, the data dependencies are sparse i.e., each communicat ions
phase is faster on the LogP machine than on the BSP, cf Table 2.

873

Fig. 1. h communication phase of the Wave Simulation.

4.4 SPMD-Programs with Dense Dependencies

We call da ta dependencies of a BSP program dense for a target machine if they
are not sparse. Obviously for those programs compilat ion does not pay as the
following example show.
Fas t F o u r i e r T r a n s f o r m : We consider an one-dimensional parallel F F T and
assume the input vector v to be of size n = 2 k, k E N. Furthermore, let n ___
2 x P. Then the following algorithm requires only one communicat ion phase:
v is initially distribute block-by-block and we may perform the first log(n/P)
operations locally. Then v is redistributed in a cyclic way, which requires an
all-to-all communication. The remaining operations can be executed also locally.
The computa t ion is balanced and a barrier synchronization is done implicitly
on the LogP machine with the communication. Hence, we expect no noteworthy
differences in the runtimes. The measurements in Table 2 confirm this hypothesis.

Remark 3. For the redistribution of data from block-wise to cyclic, we used a
LogP- l ibrary routine, which gathers da ta by memcopy calls with variable da ta
length. For the BSP, such a routine does not exist and was therefore implemented
by hand. This implementat ion allowed the compiler to use more efficient copying
routines and explains the difference of the LogP runt ime to its est imation and
to the BSP runtime.

5 C o n c l u s i o n s

We show how to compile of oblivious BSP algorithms to LogP machines. This
approach improves the best known simulation delay of BSP programs on the
LogP machine [2] by a factor of O(log(P)) . It turns out, that the both models
are asymptot ical ly equivalent for oblivious programs. We identified a subclass
of oblivious programs that are potentially more efficient if directly designed for
the LogP machine. Due to a more comfortable programming, other programs
are preferably designed for the BSP machine. However, among those we could
identify another subclass that are more efficient if compiled to the LogP machine

874

instead of executed directly. Others are not. Our measurements determine the
parameters for a LogP and a BSP abstraction of a IBM RS6000/SP with 16
processors. They compare broadcast, wave simulation, and FFT programs as
representative of the described subclasses of oblivious programs. Predictions and
measurements of the programs in both models confirm our observations.

Further work could combine the best parts of both worlds. We could use the
same classification to identify parts of BSP programs that are executed directly,
namely the non-oblivious parts and those which do not profit from compilation,
and compile the other parts. Low level programs from the first class, like the
broadcast, could be designed and tuned for the LogP machine and inserted to
BSP programs as black boxes.

R e f e r e n c e s

1. Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.
LogGP: Incorporating long messages into the LogP model. In 7th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 95-105, 1995.

2. Gianfranco Bilardi, Kieran T. Herley, Andrea Pietracaprina, Geppino Pucci, and
Paul Spirakis. Bsp vs logp. In SPAA '96: 8th Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 25-32. ACM, acre press, June 1996.

3. R. Cole and J. Hopcroft. On edge coloring bipartite graphs. SIAM Journal on
Computing, 11(3):540-546, 1982.

4. D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. LogP: Towards a realistic model of parallel computation.
In ~th A CM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPOPP 93), pages 235-261, 1993.

5. Jgrn Eisenbiegler, Welf Lgwe, and Andreas Wehrenpfennig. On the optimization
by redundancy using an extended LogP model. In International Conference on
Advances in Parallel and Distributed Computing (APDC'97), pages 149-155. IEEE
Computer Society Press, March 1997.

6. Jonathan M. D. Hill, Paul I. Crumpton, and David A. Burgess. Theory, practice,
and a tool for BSP performance prediction. In Luc Boug~, Pierre Fraigniaud, Anne
Mignotte, and Yves Robert, editors, Euro-Par~96 Parallel Processing, number 1123
in Lecture Notes in Computer Science, pages 697-705. Springer, August 1996.

7. R.M. Karp, A. Sahay, E.E. Santos, and K.E. Schauser. Optimal broadcast and
summation in the logp model. A CM-Symposium on Parallel Algorithms and Archi-
tectures, 1993.

8. W. F. McColl. Scalable computing. In Jan van Leeuwen, editor, Computer Science
Today, number 1000 in Lecture Notes in Computer Science, pages 46-61. Springer,
1995.

9. Leslie G. Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8), August 1990.

