
Scheduling Fork Graphs under LogP
wi th an U n b o u n d e d N u m b e r of Processors

Iskander Kort and Denis Trys t ram

LMC-IMAG
BP53 Domaine Universitaire

38041 Grenoble Cedex 9, France
{kort , trystram}{} imag. f r

A b s t r a c t This paper deals with the problem of scheduling a specific
precedence task graph , namely the Fork graph, under the LogP model.
LogP is a computational model more sophisticated than the usual ones
which was introduced to be closer to actual machines.
We present a scheduling algorithm for this kind of graphs. Our algorithm
is optimal under some assumptions especially when the messages have
the same size and when the gap is equal to the overhead.

1 M o t i v a t i o n

The last decade was characterized by the huge development of many kinds of
parallel computing systems. It is well-known today that a universal computa-
tional model can not unify all these varieties. PRAM is probably the most im-
por tant theoretical computat ional model. I t was introduced for shared-memory
parallel computers. The main drawback of PRAM is that it does not allow to
take into account the communicat ions through an interconnection network in a
d is t r ibuted-memory machine. Practical PRAM implementat ions have often bad
performances. Many a t tempts to define s tandard computa t ional models have
been proposed. More realistic models such as BSP and LogP [3] appeared re-
cently. They incorporate some critical parameters related to communicat ions.

The LogP model is getting more and more popular. A LogP machine is
described by four parameters L,o,g and P. Parameter L is the interconnec-
tion network latency. Parameter o is the overhead on processors due to local
management of communications. Parameter g represents the min imum durat ion
between two consecutive communicat ion events of the same type. Pa ramete r P
corresponds to the number of processors. Moreover, the model assumes tha t at
most [~] messages from (resp. to) a processor may be in transit at any time.

We present in this paper an opt imal scheduling algori thm under the LogP
model for a specific task graph, namely the Fork graph. We assume tha t the
number of processors is unbounded.

In the remainder of this section we give some definitions and notat ions con-
cerning Fork graphs, then we briefly describe some related work. In Sect. 2, the
scheduling algorithm is presented.

941

1.1 A b o u t t h e F o r k G r a p h

A Fork graph is a tree of height one. It consists of a root task denoted by To
preceeding n leaf tasks T1 , . . . , T~. The root sends, after its completion, a message
to each leaf task. In the remainder of this paper, symbol F will refer to a Fork
graph with n leaves. In addition, we denote by wi the execution t ime of task
2~, i 6 { 0 , . . . , n}. The processors are denoted by Pi, i = 0, 1 , We assume,
without loss of generality, that task To is always scheduled on processor P0. Let
S be a schedule of F, then dfi(S) denotes the completion t ime of processor Pi in
S where i 6 {0, 1 , . . .} . Furthermore, dr(S) denotes the makespan (length of S)
and dr* the length of an opt imal schedule of F.

The contents of the messages sent by To must be considered when dealing
with scheduling under LogP. Indeed, assume that To sends the same da ta to some
tasks Ti and Tj. Then assigning these tasks to the same processor (say Pi, i # 0)
saves a communication. Two extreme situations are generally considered. In the
first one, it is assumed that To sends the same da ta to all the leaves. This is called
a common data semantics. In the second situation, the messages sent by To are
assumed to be pairwise different. This is called an independent data semantics
[4].

1.2 R e l a t e d W o r k

The problem of scheduling tree structures with communicat ion delays and an
unbounded number of processors has received much interest recently. The major
part of the available results focused on the extended Rayward-Smith model.
Chr@tienne has proposed a polynomial- t ime algori thm for scheduling Fork graphs
with arbi t rary communicat ion and computa t ion delays [1]. He has also showed
that finding an opt imal schedule for a tree with a height of at least two is NP-
Hard [2]. More recently, some results about scheduling trees under LogP have
been presented. In [6], Verriet has proved that finding opt imal Fork schedules is
NP-Hard when a common data semantics is considered. In [5], the authors have
presented a polynomial- t ime algorithm that determines opt imal linear schedules
for inverse trees under some assumptions.

2 An Optimal Scheduling Algorithm

We present in this section an opt imal scheduling algorithm of F when the number
of processors is unbounded (P > n). Furthermore , we assume that:

- The messages sent by the root have the same size.
- The gap is equal to the overhead: 9 = o. This is the case for systems where

the communicat ion software is a bottleneck.
- An independent da ta semantics is considered.
- wi>wi+1, V/6 {l ,n-l}.

We star t by presenting some dominant properties related to Fork schedules.

942

L e m m a 1. Each of the following properties is dominant:

~rl Each leaf task Ti such that wi <<_ 0 is assigned to Po.
~r2 Processor Po executes To at first, then it sends the messages to tasks T~ which

are assigned to other processors. These messages are sent according to de-
creasing values of w~. Finally, Po executes the tasks that were assigned to it
in an arbitrary order.

~v3 Each processor Pi(i 7s O) executes at most one task, as early as possible (just
after receiving its message).

Every schedule that satisfies properties ~'1-~r3 will be called a dominant schedule.
Such schedules are completely determined when the subset A* of the leaves tha t
should be assigned to Po is known. We propose in the sequel an algori thm (called
CLUSTERFORK) that computes this subset. Initially, each task is assigned
to a distinct processor. The algorithm manages two variables b and B which
are a lower bound and an upper bound on dr* respectively. More specifically,
at any t ime we have b <_ dr* < B. These bounds are refined as the a lgori thm
proceeds. C L U S T E R F O R K explores the tasks f rom T] to Tn. For each task
7~,i E { 1 , . . . , n } , one of the following situations may be encountered. I f the
completion t ime of Ti in the current schedule is not less than B then T/ is
assigned to Po. If dfi is not greater than b, then the algorithm does not assign
this task to Po. Finally, if dfi is in the range]b, B[, then the algori thm checks
whether there is a schedule 5: of F such that df(S) < df~. If such a schedule
exists, then T/ is assigned to Po and B is set to dfi, otherwise T/ is not assigned
to Po and b is set to d]).

T h e o r e m 1. Let A* be a subset produced by CLUSTERFORK, then any dora-
inant schedule S* associated with A* is optimal.

Finally, it is easy to see that C L U S T E R F O R K has a computa t ional complexi ty
of O(n2).

3 C o n c l u d i n g R e m a r k s

In this paper we presented an opt imal polynomial t ime scheduling algori thm for
Fork graphs under the LogP model and using an unbounded number of proces-
sors. This problem was solved under some assumptions which hold for a current
parallel machine namely the IBM-SP. We remark tha t a slight modification in
the problem parameters (for instance when the messages are the same) leads to
an NP-hardness result. Indeed, in this lat ter case, scheduling at most one task
on each processor Pi, i # 0 is no more a dominant property and gathering some
tasks on the same processor may lead to bet ter schedules.

R e f e r e n c e s

1. P. Chrfitienne. Task Scheduling over Distributed Memory Machines. In North
Holland, editor, International Workshop on Parallel and Distributed Algorithms,
1989.

943

A l g o r i t h m 1 C L U S T E R F O R K

Begin
{Initially: df, = wo + (i + 1) �9 o + L + wi, V1 < i < n}
b := 0;{lower bound on dr*}
B := M A X V A L ; {upper bound on dr*}
for (i := 1 to n) d o

i f (df~ > B) t h e n
xi := 1; {7) is assigned to p0}
U P D A T E _ D F (i) ;

else i f (dfl > b) t h e n
{Look for a schedule such that df < dfi}
j : = i ; k : = 0 ; v : = d f 0 ;
w h i l e (j ~ n) d o

i f (dfj - k �9 o > dfi) t h e n
{The assignment of Tj to p0 is necessary)
i f (v + wj - o > dfi) t h e n

j := n + 1;
e l se

v : = v + w j - o ; k : = k + l ;
j : = j + l ;

i f (j = n + 2) t h e n
{The looked for schedule does not exist)
xi := 0; b :-- dfi;

else {dr* < dr,)
xi := 1; B := df~;
U P D A T E _ D F (i) ; {Update processors completion t imes)

e lse {dfi < b}
xi := O;

End CLUSTERFORK

2. P. Chr~tienne. Complexity of Tree-scheduling with Interprocessor Communication
Delays. Technical Report 90.5, MASI , Pierre and Marie Curie University, Paris,
1990.

3. D. E. Culler et al. LogP: A practical model of parallel computation. Communications
of the ACM, 39(11):78-85, November 1996.

4. L. Finta and Z. Liu. Complexity of Task Graph Scheduling with Fixed Communica-
tion Capacity. International Journal of Foundations of Computer Science, 8(1):43-
66, 1997.

5. W. LSwe, M. Middendorf, and W. Zimmermann. Scheduling Inverse Trees under
the Communication Model of the LogP-Machine. Theoretical Computer Science,
1997. to appear.

6. J. Verriet. Scheduling Tree-structured Programs in the Logp Model. Technical
Report UU-CS-1997-18, Department of Computer Science, Utrecht University, 1997.

