
NAS Integer Sort
on Multi-threaded Shared Memory Machines*

Thomas Griin 1 and Mark A. Hillebrand 1

Computer Science Department, University of the Saarland
Postfach 151150, Geb. 45, 66041 Saarbrfid:en, Germany

(gruen~cs .uni-sb. de, mah~studcs, tmi-sb , de)

Abstract . Multi-threaded shared memory machines, like the commer-
cial Tera MTA or the experimental SB-PRAM, have an extremely good
performance on the Integer Sort benchmark of the NAS Parallel Bench-
mark Suite and are expected to scale. The number of CPU cycles is an
order of magnitude lower than the numbers reported of general purpose
distributed memory or shared memory machines; even vector computers
are slower. The reasons for this behavior are investigated. It turns out
that both machines can take advantage of a fetch-and-add operation
and that due to multi-threading no time is lost waiting for memory ac-
cesses to complete. Except for non-scalable vector computers, the Cray
T3E, which supports fetch-and-add but not multi-threading, is the only
parallel computer that could challenge these machines.

1 I n t r o d u c t i o n

One of the first programs that ran on a node processor of the Tera MTA (mul t i -
threaded architecture) [2,3] was the Integer Sort (IS) from the Parallel Bench-
mark suite [8, 14] of the Numerical Aerospace Simulation Facility (NAS) at
NASA Ames Research Center. According to press releases of Tera Corporat ion
[17], a single node processor of the Tera machine was able to beat a one-processor
Cray T90, which hitherto held the record for one processor machines, by more
than 30 percent. The SB-PRAM [1,9, 12, 15] has many features in common with
the Tern MTA, although it is inspired by a totally different idea, viz realizing
the PRAM model from theoretical computer science [18]. Both machines dif-
fer from most of todays shared memory parallel computers in two aspects: First,
they implement the UMA (uniform memory access) model instead of the NUMA
(non uniform memory access) scheme found in todays scalable shared memory
machines like SGI Origin, Sun Starfire or Sequent Numn-Q. In other words, they
do not employ da ta caches with a cache coherence protocol, but hide memory
latency by means of mult i - threading. Second, they provide special hardware for
fe tch-and-add instructions in the memory system. Commercial microprocessors,
which are employed in most of todays parallel computers do not offer this kind

* This work was partly supported by the German Science Foundation (DFG) under
contract SFB 124, TP D4.

I000

of hardware support for running efficient parallel programs. An exception is the
Cray T3E, which is a UMA machine with fe tch-and-add support but without
multi- threading.

The IS benchmark is part of the NAS (Numerical Aerospace Simulation Fa-
cility) Parallel Benchmark Suite (NPB) [8]. It models the ranking step of a
counting sort (kind of bucket sort) application, which occurs for instance in par-
ticle simulations. The IS benchmark takes a list L of small integers as an input
and computes for every element x E L the rank r(x) as its position in the sorted
list. On this benchmark, the best program on a 4 processor SB-PRAM spends
3.3 cycles per element (CPE) on the average, and the single-node Tera machine
needs 2.4 cycles. Both machines are expected to scale without significant loss of
efficiency. A Cray T90 node approaches 5 CPE and the numbers reported for
the MPI-based IS sample code on various distributed and shared memory com-
puters (including the Cray T3E) are greater than 25 CPE. Besides, scalability is
a problem on these machines. In this article we explain, why this numbers differ
in such a wide range and investigate whether there are better implementations
than the sample code for CC-NUMA machines and the Cray T3E.

The paper is organized as follows. Section 2 discusses the IS benchmark
specification. Section 3 addresses mult i - threaded shared memory machines and
Section 4 discusses a fast algorithm for vector computers. Section 5 presents
qsults of the MPI-based message-passing sample code and Section 6 investigates

CC NUMA machines or the Cray T3E UMA machine could improve on these
,ults. Section 7 concludes.

2 T h e N A S I n t e g e r S o r t B e n c h m a r k

The Integer Sort (IS) program is part of the NAS Numerical Parallel Benchmark
suite [8]. Despite its name it does not sort but rank an array of small integers.
The first revision (NPB 1) was a "paper and pencil" benchmark specification,
so as not to preclude any programming tricks for a particular machine. The
benchmark specifies that an array keys [] of N keys is filled using a fully specified
random number generator that produces Gaussian distributed random integers
in the range [0, B r n a x - - 1]. This key generation and a final verification step, which
checks the results, are excluded from the timing. There are several "classes" of
the benchmark, which define the parameter values N and Brnax. We concentrate
on class A (N = 223, B m a x : 219); the parameters for class B and C are higher
by a factor 4, and 16 respectively. The timed part of the benchmark consists of
10 iterations of (a) a modification of two keys, (b) the actual ranking step, and
(c) a partial verification that tests if the well known rank of 5 keys has been
computed correctly. A typical implementation of the inner loops that perform
the actual ranking is listed in Table 1.

The NPB 2 revision of the benchmark intends to supplement the original
benchmark description with sample implementations that can be used as a start-
ing point for machine-specific optimizations. There is a serial implementat ion
(NPB 2.3-serial) and an implementation based on the message passing standard

Table 1. Inner loops of the NAS IS benchmark

I (1) fo r i = 1 to B: count[i] : 0 / / clear count array
(2) fo r i 1 to N: count[key[i l l++ / / count keys

�9 i - - 1 . [(3) fo r i 1 to B: pos[x] = ~k-O count[x] / / calc start position
[(4) fo r i 1 to tl: rank[i] = pos[key[i]]++ / / ONLY NPB 1

i001

MPI (NPB 2.3b2). Unfortunately, the fourth loop of the benchmark, which was
present in earlier sample implementations of NPB 1, has been omit ted in NPB 2.
However, the fourth loop is identical to the second loop except for storing the
result, and does not require a new programming technique. Therefore, we use
the NPB 2 variant of IS, class A throughout this paper.

Performance measures�9 The original performance measure of NAS IS is the
elapsed time for 10 iterations of the inner loops. The main performance measure
in our investigation is the number of CPU cycles per key element (CPE), because
it emphasizes the architectural aspect rather than technology. We will point out
situations in which CPE is an unfair measure.

3 M u l t i - t h r e a d e d S M M s

First, we sketch the SB-PRAM design and highlight the Tern MTA differences.
Then we describe the result of the best SB-PRAM implementation and indicate
the algorithmic changes in the Tern MTA implementation.

3.1 H a r d w a r e D e s i g n

The SB-PRAM [1,9, 12] is a shared memory computer with up to 128 processors
and an equal number of memory modules, which are connected by a butterfly
network. Processors send their requests to access a memory location via the but-
terfly network to the appropriate memory modules and receive an answer packet
if the request was of type LOAD. There are no caches in the memory system.
Three key concepts are employed to yield a uniform load distribution on the
memory modules and to hide memory latency: (a) synchronous mult i - threading
of 32 virtual processors (VP) with a delayed load; (b) hashing of subsequent log-
ical addresses to physical addresses that are spread over all memory modules; (c)
butterfly network with input buffers and combining of packets. The combining
facility is extended to do parallel prefix computations, which, due to synchronous
execution, look to the programmer as if the VPs executed the operations one
after another in a predefined order (sequential semantics).

The design ensures that the VPs are never stalled in practice, neither by
network congestion on the way to the memory modules nor by answer packets
that arrive too late. Although this issue has been intensively investigated in [7]

1002

and [19] using different and detailed simulators, the main criticism on the SB-
PRAM is that these investigations were based on simulations only. Therefore, a
64 processor machine is being built as a proof of concept. At the t ime of this
writing, the re-design of an earlier 4-processor prototype [4] has been completed.
The 64 processor machine is expected to be running in summer 1998.

In [10] a variant of the SB-PRAM, called High Performance PRAM (HPP),
has been sketched. Due to modest architectural changes and using top 1995
technology, the HPP is expected to achieve the tenfold performance of the SB-
PRAM on average compiler generated programs.

Tera MTA. The design goal of the Tera MTA [2, a, 17] was to build a powerful
mul t i -purpose parallel computer with special emphasis on numerical programs.
In order to meet this goal, it was determined early in the design phase to employ
GaAs technology and liquid cooling. A processor chip runs at _> 294 MHz and
has a power dissipation of 6 KW per processor.

Similar to the SB-PRAM, the Tera MTA hides memory latency by means of
mul t i - threading. Unlike the SB-PRAM, it does not schedule a fixed number of
VPs round robin, but it can support up to 128 threads, all of which can have up
to 8 active memory requests. New threads can be created using a low overhead
mechanism; the penalty for an instruction that a t tempts to use a register that is
waiting for a memory request to arrive is only one cycle. The memory system of
the Tera MTA is completely different from that of the SB-PRAM: the network
topology is a kind of 3-dimensional torus. The messages are processed by a
randomized routing scheme that may detour packets if the output link in the
right direction is either overloaded or out of order. To our knowledge there is no
detailed, technical description or a correctness proof of the network available to
the public. The machine supports f e tch-and-add instructions; the requests are
not combined in the network, but serviced sequentially at the memory modules.
Because the Tera threads may become asynchronous due to race conditions in the
network, the machine does not offer the sequential semantics of the SB-PRAM.

3.2 B e n c h m a r k I m p l e m e n t a t i o n

Due to some limitations of our gcc compiler port for the SB-PRAM, we have
hand-coded the loop bodies in assembly language and manual ly unrolled the
inner loops of the benchmark. For details we refer to [11]. We now present how
many instructions are necessary at least to implement the IS benchmark on the
SB-PRAM. Hence, we hand-code the loop bodies in assembly language and
neglect loop overhead.

As on every other machine, the count array can be cleared with a single
"store with auto increment" instruction, if every VP is assigned a different but
contiguous portion of the count array. The arrays count [] and pos [] are used
one at a t ime and can be coalesced into a single cp [] array, which saves a few
address computat ions. Because there are no da ta dependencies between different
iterations of loop 2, all PROCS virtual processors are mapped round robin onto
the keys and cp arrays and synchronously execute loops 2 and 3. Two successive

(a) e l e m l = M(k_ptr l+=2*PR0CS);
c p @ t r l = e l e m l + cp_base;
syncadd (c p _ p t r l , 1) ;

(b) eleml = M(cp_pt r l+=2*Pg0CS);
e l e m l = mpadd(ranksum, e l e m l) ;
M (c p _ p t r l) = e l e m l ;

Fig. 1. Interleaved loop bodies:

1003

elem2 = M(k_ptr2+=2*PROCS) ; [

cp_ptr2 = elem2 + cp_base;

syncadd(cp_ptr2, I) ;

elem2 = M(cp_ptr2+=2*PROOS) ;

elem2 = mpadd(ranksum, elem2) ;

M(cp_ptr2) = elem2;

(a) Loop 2, and (b) Loop 3.

loop bodies are interleaved in order to fill all load delay slots (see assembly code
in Figure 1.a). The first instruction combines the incrementing of a properly
initialized, private key pointer k_ptr by 2.PROCS with the loading of the next
key. In the second instruction of the loop body, the pointer cp_pt r is computed
as cp[] indexed by key, and the syncadd operation (mpadd without result)
increments this entry. Figure 1.b lists the assembly code for the third loop,
which also employs the interleaving technique. In the first instruction, the pointer
cp_pt r is adjusted and an entry of cp[] is read. Then, the accumulated rank
is computed in the multi-prefix add on ranksum, and the result is written back
to the cp array. This loop relies on synchronous execution, because the order of
rapadd instructions among VPs is crucial.

Loop 2 contributes most instructions to the timed portion of the code, be-
cause it is executed N times whereas loops 1 and 3 are executed only B,~ax = N

times. Thus, CPE(ranking) = ~ + 3 + 3 = 3.25 is optimal for the SB-PRAM.
The benchmark implemented using assembly language macros and 64-fold un-
rolled loop achieves 3.30 CPE. A similar tuned C version is slower by roughly
one cycle, because the compiler does not use "load with auto-add of 2*PROCS"
but generates two separate instructions instead.

We have run the benchmark on our instruction-level simulator as well as
on the real 4 processor machine. The run times differ by less than 0.1%, a fact
that validates our network simulations which predicted that memory stalls are
extremely unlikely. The run time obtained by a 128 processor simulation is only

1 1% slower than m-5-gth of the one processor run time, i.e. speedup is nearly linear.
Because no caches are employed in the SB PRAM, the run times of class B
and C can be simply and accurately predicted; they are higher by a factor of 4,
respectively 16.

The High-Performance-PRAM HPP would gain a factor of 5.6 in absolute
speed, but the CPE value would be worse, because the machine can issue memory
requests at only a third of the instruction rate. For a fairer comparison, the CPU
clock should be replaced by the memory request rate.

Tern M T A . The Tern MTA system has a sophisticated parallelizing compiler,
which processes the sequential source code and automatically generates threads
when needed. The assembler output of loop 2, which is listed in [2], shows a 2
instruction loop body that is 5-fold unrolled. The memory operations are "load
next key" and "fetch & increment count". An integer addition plus the loop

1004

assume: V1 +-- 0..63
(a) 1 :V2 t - k e y [V l + k] (b) 2 .1 :count [V2] +- V1

2 : V3 +-- count[V2] -t- 1 2.2 : V4 e- count[V2] - V1
3: count[V2] +- V3 2.3: if(V4 r 0) check

Fig. 2. Loop 2 vector code: (a) straight forward, (b) correction

overhead are hidden in the non -memory operations of the ten instructions of
the loop body. Note, that the CPU clock and the memory request rate are equal
in the super-scalar Tera MTA design.

Since the Tera MTA lacks synchronous execution, the third loop cannot be
parallelized as on the SB-PRAM. Instead, every processor works on a contiguous
block of the count array, computes the local prefix sums and outputs the global
sum of its elements. In a second step, the prefix sum of the global sums is
computed. Then, each processor adds the appropriate global prefix sum to its
local elements. This procedure requires 3 instructions plus a small logari thmic
term. For the class A benchmark it is less than 4 instructions. The Tera MTA
requires less than 1 + 2 + ~ = 2.3125 CPE. The improvement compared to the
S B - P R A M comes from the ability to execute one memory operat ion and two
other (integer, jump, . . .) operations per instruction.

We do not have access to a Tera MTA ourselves. The performance figures
contained in this section are derived from [2, 5] and personal communicat ion
with P. Briggs (Tera Computer Corporation) and L. Carter (SDSC). The num-
bers reported in [2] are 1.53 seconds and 5.25 < CPE < 5.3125 for NPB 1.
Assuming a CPE value of 5.25, the 294 MHz machine has an overhead of at
least 153294'1~ 1 = 2.14 %, i.e. hiding memory latency works well for the 5.25 ,10 .22a
one processor prototype. The fourth inner loop of the benchmark, which is not
present in NPB 2, accounts for 3 CPE. If we at t r ibute all overhead to the three
loops of IS(NPB 2) and conservatively assume CPE(NPB 2)=2.3125, we end up
with a run t ime of < 0.68 seconds. Carter [5], who ran the NPB 2 benchmark
on a 145 MHz machine, achieved a run t ime of 2.05 seconds, which corresponds
to an overhead of 50 percent. He believes that on the early machine flipped bits
in the network packets induced retransmissions, because the memory overhead
figures for other benchmarks dropped as the hardware became more stable.

4 V e c t o r C o m p u t e r s

In [5], a Tera MTA node is compared to a Cray T90 vector processor node
on the NPB 2-serial sample code of IS. Vector processors have instructions for
computing prefix sums on vector registers. Thus, the third benchmark loop can
be parallelized in the same way as on the Tera MTA. The difficult par t is loop
2, where even a single vector processor encounters problems.

Figure 2.a lists the straightforward, but wrong, implementa t ion of loop 2.
Successive, contiguous stripes of key [] are read into vector register V2. Then,

Table 2. IS (class A) benchmark results

1005

Machine CPU clock
Name [MHz]
SB-PRAM 7
SB-PRAM simulation
Tera MTA 294
Cray T90 440
SB-PRAM (MPI)
IBM SP2 WN
SGI Origin 2000
Cray T3E-900

7
66

195
450

minimum maximum
#procs I time I CPE #procsltime I CPE

1 39.55 3.30 4 9.89 3.30
128 0.31 a.3a

1 0.68 2.32:
1 1 .11 5.82
2 160.8 26.85
2 29.1 27.38 128 0.6 60.42
2 20.5 95.30 32 1.6 119.02
2 12.7 136.26 256 0.4 258.15

V3 is filled by reading the corresponding count [] entries and incrementing them.
Afterwards V3 is written back. If a specific key value v is contained twice in V2
at positions kl and k2, count Iv] is incremented only once, because u which
finally ends up in count [v], contains countold Iv] +1 and not the incremented
V3[kl] value.

The Cray compiler can cure the situation using a patented algori thm [6]
invented by Booth3 Before writing V3 back in line 3, the code listed in Figure
2.b tests whether duplicates occur, and, if necessary, processes them in the scalar
unit. The run t ime of IS(NPB 2), as reported in [5], is 1.11 s, which corresponds
to 5.82 CPE. The NPB 2.3-serial sample code contains an unnecessary store
tha t possibly has not been detected by the compiler�9 Hence, the opt imal CPE
for a single vector computer could be lower by 1 CPE.

The above code for loop 2 can be easily parallelized by maintaining a private
copy count~ [] of the count array on each node computer . When p denotes
the number of part icipating processors, the third loop becomes a parallel prefix

�9 . , - 1 p - 1 computa t ion pos [1] = }--~k=0 ~ t = 0 countt [k]. Memory consumption as well
as the execution t ime of loop 3 scale with p. If p becomes very large, a two pass
radix sort, like described by Zagha [20], can improve performance.

5 Comparison with MPI-based sample code

Table 2 lists the benchmark results discussed so far and compares them with run
t imes of MPI-based sample code. We implemented the necessary MPI l ibrary
functions on the S B - P R A M and optimized the sample code to the extent tha t
an optimizing compiler could also achieve [11]. The times for the other machines
have been taken from benchmark results published by NAS. The IBM SP2 is
a distr ibuted memory machine (DMM) with an extremely fast interconnection
network, the SGI Origin 2000 a cache-coherent NUMA, and the Cray T3E a
UMA shared memory machine (SMM) without cache coherence.

1 Personal Communication with Larry Carter and Max Dechantsreiter.

1006

Sample code implementation. The keys are distributed on all participating p
computers before the timing starts. In a first local step, each computer sorts its
keys using only the b most significant bits into 2 b buckets. Because the keys
are put into a sorted order, this step alone requires more instructions than
IS(NPB 1). Then, a mapping of buckets to processors, which balances the load,
is computed. Afterwards, all local bucket parts are sent to their destinations
in a single, global, al l- to-all communication step. Now, every processor owns a
distinct, contiguous key range and can count its keys locally. The pos [] entries
can be computed from count [] like in the Tera MTA implementation.

The sample code algorithm is guided by the idea of doing one, central a l l - to-
all communication. The price for this procedure is to rearrange the keys locally,
such that keys that are sent to the same destination are stored contiguously
in memory. A plus of the implementation is the good cache efficiency: the key
arrays are accessed sequentially, so that the initial cache miss time is amortized
over the complete cache line, and the count arrays fit into second level cache.

With less than p = 16 processors another strategy with fewer communication
overhead would be possible: every processor could count its keys in a local count
array and pos [] could be computed like on vector processors after transposing
the p • B,~a~ count matrix. I f p < 16, then only p. Brnax < 16" 1~ data elements
had to be sent over the network. However, the sample code is written for a large
number of processors and slow communication networks.

The CPE of the SB-PRAM is 26.85, of which 9 cycles belong to memory
instructions operating on key elements. The SB-PRAM issues one instruction
per cycle and encounters no memory waits. The other machines have super-
scalar processors, but suffer from memory waits. The impact of wait states on
the CPE is the higher, the higher the clock rate of the specific machine is.
Table 2 highlights this fact, which limits the benefit of cache-based architectures
from future technological improvements compared to vector computers or mul t i -
threaded machines.

6 O t h e r A l g o r i t h m s

The MPI-based sample code is tailored for distributed memory machines. We
now investigate, if there are better algorithms for CC-NUMA machines or the
Cray T3E.

CC-NUMA. Cache-coherent non-uniform-memory-access SMMs [13], like the
SGI Origin, have overcome the argument "SMMs do not scale" by other means
than the SB-PRAM or the Tera MTA. While mult i - threading relies on having
enough parallelism available to keep the processors busy, CC-NUMA machines
try to minimize the average memory latency by caching, at the risk of running
idle on cache misses.

We now investigate, if the direct approach of locking the count [] elements
for updating could improve performance so much, that the results of mul t i -
threaded SMMs could be reached. Therefore, we calculate the average memory

1007

latency introduced by accessing c o u n t ['keys [i]] in loop 2. We assume that on
1 of the count [] elements are cached on every processor a p-processor machine

and the miss penalty is 20 cycles (i.e. 100 ns on a 200 MHz computer). Thus,
the average memory latency is

1 p - 1
t = - ' 1 + - - - 2 0

P P
Y

cache hit cache miss

On machines with more than p = 16 processors, t is greater than 181~. In other
words, the exchange of count [] entries between the coherent caches is rather
expensive. If the remaining cycles for the program are taken into account, the
CPE is at least an order of magnitude higher than on mult i - threaded SMMs
with fetch-and-add.

Crag T3E. A Cray T3E node computer consists of a DEC Alpha processor with
up to 2 GByte local RAM. Additionally, the system logic provides a notion of
a logically addressable shared memory through the E-registers [16]. Up to 512
E-registers can be accessed by the user to trigger shared memory accesses. In
addition to load and store, E-registers also support fetch ~z add and an especially
fast fetch ~ increment operation.

Although the machine does not support mult i - threading in hardware, mem-
ory wait conditions can be avoided by using multiple E-registers to simulate
mult i- threading in software. With this technique, alternate key load and count
increment operations can be performed at the maximal network clock of 75 MHz.
The third loop of IS can also be parallelized in the same way as on the Tera MTA.
Thus, less than 3 network cycles per key element are possible.

7 C o n c l u s i o n

We have investigated the performance of the IS benchmark on the SB-PRAM
and the Tera MTA, two scalable SMMs which employ mult i - threading to hide
memory latency instead of caching like most of todays computers. Besides mul t i -
threading, both machines take advantage of a fe tch-and-add instruction to up-
date shared data structures conflict-free, These two properties lead to a perfor-
mance that is an order of magnitude higher compared to published results of
other scalable parallel computers, both DMMs and SMMs.

In particular, the experimental 7 MHz SB-PRAM prototype can compete
with modern parallel computers on this benchmark. The Tera MTA makes use
of expensive top technology, and achieves better performance figures than non-
scalable top vector processors. Although CC-NUMA SMMs could possibly im-
prove performance compared to DMMs, they are still an order of magnitude
slower than mult i - threaded machines. Alone the Cray T3E, which supports and
atomic fetch ~ increment operation could challenge the performance of the Tera
MTA by emulating multi- threading in software.

1008

Acknowledgments. The au thors would like to t h a n k La r ry Car te r , M a x Dechants -
rei ter , and Pres ton Briggs for helpful discussions and all people who c o n t r i b u t e d
to the S B - P R A M pro jec t [15].

References

1. F. Abolhassan, R. Drefenstedt, J. Keller, W. J. Paul, and D. Scheerer. On the
Physical Design of PRAMs. Computer Journal, 36(8):756-762, December 1993.

2. R. Alverson, P. Briggs, S. Coatney, S. Kahan, and R. Korry. Tera Hardware-
Software Cooperation. In Proc. of Supercomputing '97. San Jose, CA, November
1997.

3. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.
The TERA Computer System. In Proc. of Intl. Conf. on Supercomputing, June
1990.

4. P. Bach, M. Braun, A. Formella, J. Friedrieh, T. Gr/in, and C. Lichtenau. Building
the 4 Processor SB-PRAM Prototype. In Proc. of the 30th Hawaii International
Conference on System Sciences, pages 14-23, January 1997.

5. J. Boisseau, L. Carter, K.S. Gatlin, A. Majumdar , and S. Snavely. NAS Bench-
marks on the Tera MTA. In Proc. of Workshop on Multi-Threac'e(Execution,
Architecture ant ~ Compilation (M-TEA C 98), Las Vegas, February 1998.

6. M. Booth. US Patent 5247696. see h t t p : / / w w w . p a t e n t s , ibm.corn, September
1993.

7. C. Engelmann and J. Keller. Simulation-based comparison of hash functions for
emulated shared memory. In Proc. PARLE (Parallel Architectures ant' Languages
Europe), pages 1-11, 1993.

8. D. Bailey et al. The NAS Parallel Benchmarks. RNR Technical Report RNR-94-
007, NASA Ames Research Center, March 1994. see also
ht tp ://sc ience, nas. nasa. gov/Soft ware/NPB.

9. A. Formella, T. Gr/in, and C.W. Kessler. The SB-PRAM: Concept, Design and
Construction. In Draft Proceec~ings o/3re': International Working Conference on
Massively Parallel Programming Moc'els (MPPM-97), November 1997. see also
h t t p : / / www-wjp, cs . u n i - s b , d e / ~ f o r m e l l a / mppm. ps . gz.

10. A. Formella, J. Keller, and T. Walle. HPP: A High-Performance-PRAM. In
Procee~'ings of the 2nC Europar, volume I I of LNCS 1124, pages 425-434. Springer,
August 1996.

11. T. Gr/in and M. A. Hillebrand. NAS Integersort on the SB-PRAM. Manuscript,
available via h t tp : / /www-wjp/~tgr /NASIS, May 1998.

12. T. Gr/in, T. Rauber, and J. RShrig. Support for Efficient Programming on the
SB-PRAM. International Jour~al of Parallel Programming, 26(3):209-240, June
1998.

13. D.E. Lenoski and W.-D. Weber. Scalable Sharec' Memory Multiprocessing. Morgan
Kaufmann Publishers, 1995.

14. NAS Parallel Benchmarks Home Page. h t t p : / /
s c i e n c e , nas . nasa . gov/Software/NPB/.

15. SB-PRAM Home Page. h t t p : / / www-wjp, cs . u n i - s b . d e / s b p r a m .
16. S. L. Scott. Synchronization and Communication in the T3E Multiprocessor. In

Proc. of the VII ASPLOS (Architectural Support for Programming Languages an(!
Operating Systems) Conference, pages 26-36. ACM, October 1996.

17. Tera Computer Corporation Home Page. h t t p ://www. t e r a . com/.

1009

18. J. van Leeuwen, editor. Hanc?book of Theoretical Computer Science, volume A,
pages 869-941. Elsevier, 1990.

19. T. Walle. Das Netzwerk c'er SB-PRAM. PhD thesis, University of the Saarland,
1997. in German.

20. M. Zagha and G.E. Belloch. Radix Sort for Vector Multiprocessors. In Proc. of
Supercomputing '91, pages 712-721, New York, NY, November 1991.

