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Abstract .  Multi-threaded shared memory machines, like the commer- 
cial Tera MTA or the experimental SB-PRAM, have an extremely good 
performance on the Integer Sort benchmark of the NAS Parallel Bench- 
mark Suite and are expected to scale. The number of CPU cycles is an 
order of magnitude lower than the numbers reported of general purpose 
distributed memory or shared memory machines; even vector computers 
are slower. The reasons for this behavior are investigated. It turns out 
that both machines can take advantage of a fetch-and-add operation 
and that due to multi-threading no time is lost waiting for memory ac- 
cesses to complete. Except for non-scalable vector computers, the Cray 
T3E, which supports fetch-and-add but not multi-threading, is the only 
parallel computer that could challenge these machines. 

1 I n t r o d u c t i o n  

One of the first programs that  ran on a node processor of the Tera MTA (mul t i -  
threaded architecture) [2,3] was the Integer Sort (IS) from the Parallel Bench- 
mark  suite [8, 14] of the Numerical Aerospace Simulation Facility (NAS) at 
NASA Ames Research Center. According to press releases of Tera Corporat ion 
[17], a single node processor of the Tera machine was able to beat  a one-processor 
Cray T90, which hitherto held the record for one processor machines, by more 
than 30 percent. The SB-PRAM [1,9, 12, 15] has many  features in common with 
the Tern MTA, although it is inspired by a totally different idea, viz realizing 
the PRAM model from theoretical computer  science [18]. Both machines dif- 
fer from most  of todays shared memory  parallel computers  in two aspects: First, 
they implement  the UMA (uniform memory  access) model instead of the NUMA 
(non uniform memory  access) scheme found in todays scalable shared memory  
machines like SGI Origin, Sun Starfire or Sequent Numn-Q.  In other words, they 
do not employ da ta  caches with a cache coherence protocol, but  hide memory  
latency by means of mult i - threading.  Second, they provide special hardware for 
fe tch-and-add  instructions in the memory  system. Commercial  microprocessors, 
which are employed in most  of todays parallel computers  do not offer this kind 
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of hardware support for running efficient parallel programs. An exception is the 
Cray T3E, which is a UMA machine with fe tch-and-add support  but without 
multi- threading.  

The IS benchmark is part of the NAS (Numerical Aerospace Simulation Fa- 
cility) Parallel Benchmark Suite (NPB) [8]. It models the ranking step of a 
counting sort (kind of bucket sort) application, which occurs for instance in par- 
ticle simulations. The IS benchmark takes a list L of small integers as an input 
and computes for every element x E L the rank r(x) as its position in the sorted 
list. On this benchmark, the best program on a 4 processor SB-PRAM spends 
3.3 cycles per element (CPE) on the average, and the single-node Tera machine 
needs 2.4 cycles. Both machines are expected to scale without significant loss of 
efficiency. A Cray T90 node approaches 5 CPE and the numbers reported for 
the MPI-based IS sample code on various distributed and shared memory com- 
puters (including the Cray T3E) are greater than 25 CPE. Besides, scalability is 
a problem on these machines. In this article we explain, why this numbers differ 
in such a wide range and investigate whether there are better  implementations 
than the sample code for CC-NUMA machines and the Cray T3E. 

The paper is organized as follows. Section 2 discusses the IS benchmark 
specification. Section 3 addresses mult i - threaded shared memory machines and 
Section 4 discusses a fast algorithm for vector computers. Section 5 presents 
qsults of the MPI-based message-passing sample code and Section 6 investigates 

CC NUMA machines or the Cray T3E UMA machine could improve on these 
,ults. Section 7 concludes. 

2 T h e  N A S  I n t e g e r  S o r t  B e n c h m a r k  

The Integer Sort (IS) program is part of the NAS Numerical Parallel Benchmark 
suite [8]. Despite its name it does not sort but rank an array of small integers. 
The first revision (NPB 1) was a "paper and pencil" benchmark specification, 
so as not to preclude any programming tricks for a particular machine. The 
benchmark specifies that  an array keys  [] of N keys is filled using a fully specified 
random number generator that produces Gaussian distributed random integers 
in the range [0, B r n a x  - -  1]. This key generation and a final verification step, which 
checks the results, are excluded from the timing. There are several "classes" of 
the benchmark, which define the parameter  values N and Brnax. We concentrate 
on class A (N = 223, B m a x  : 219); the parameters for class B and C are higher 
by a factor 4, and 16 respectively. The timed part of the benchmark consists of 
10 iterations of (a) a modification of two keys, (b) the actual ranking step, and 
(c) a partial verification that tests if the well known rank of 5 keys has been 
computed correctly. A typical implementation of the inner loops that  perform 
the actual ranking is listed in Table 1. 

The NPB 2 revision of the benchmark intends to supplement the original 
benchmark description with sample implementations that  can be used as a start- 
ing point for machine-specific optimizations. There is a serial implementat ion 
(NPB 2.3-serial) and an implementation based on the message passing standard 



Table 1. Inner loops of the NAS IS benchmark 

I (1) fo r  i = 1 to B: count[ i]  : 0 / /  clear count array 
(2) fo r  i 1 to N: count[key[i l l++ / /  count keys 

�9 i - - 1  . [(3) fo r  i 1 to B: pos[x] = ~k-O count[x] / /  calc start position 
[(4) fo r  i 1 to tl: rank[i]  = pos[key[i]]++ / /  ONLY NPB 1 
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MPI (NPB 2.3b2). Unfortunately, the fourth loop of the benchmark, which was 
present in earlier sample implementations of NPB 1, has been omit ted in NPB 2. 
However, the fourth loop is identical to the second loop except for storing the 
result, and does not require a new programming technique. Therefore, we use 
the NPB 2 variant of IS, class A throughout this paper. 

Performance measures�9 The original performance measure of NAS IS is the 
elapsed time for 10 iterations of the inner loops. The main performance measure 
in our investigation is the number of CPU cycles per key element (CPE), because 
it emphasizes the architectural aspect rather than technology. We will point out 
situations in which CPE is an unfair measure. 

3 M u l t i - t h r e a d e d  S M M s  

First, we sketch the SB-PRAM design and highlight the Tern MTA differences. 
Then we describe the result of the best SB-PRAM implementation and indicate 
the algorithmic changes in the Tern MTA implementation. 

3.1 H a r d w a r e  D e s i g n  

The SB-PRAM [1,9, 12] is a shared memory computer with up to 128 processors 
and an equal number of memory modules, which are connected by a butterfly 
network. Processors send their requests to access a memory location via the but- 
terfly network to the appropriate memory modules and receive an answer packet 
if the request was of type LOAD. There are no caches in the memory system. 
Three key concepts are employed to yield a uniform load distribution on the 
memory modules and to hide memory latency: (a) synchronous mult i - threading 
of 32 virtual processors (VP) with a delayed load; (b) hashing of subsequent log- 
ical addresses to physical addresses that  are spread over all memory modules; (c) 
butterfly network with input buffers and combining of packets. The combining 
facility is extended to do parallel prefix computations, which, due to synchronous 
execution, look to the programmer as if the VPs executed the operations one 
after another in a predefined order (sequential semantics). 

The  design ensures that  the VPs are never stalled in practice, neither by 
network congestion on the way to the memory modules nor by answer packets 
that arrive too late. Although this issue has been intensively investigated in [7] 
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and [19] using different and detailed simulators, the main criticism on the SB-  
PRAM is that  these investigations were based on simulations only. Therefore, a 
64 processor machine is being built as a proof  of concept. At the t ime of this 
writing, the re-design of an earlier 4-processor prototype [4] has been completed.  
The 64 processor machine is expected to be running in summer  1998. 

In [10] a variant of the SB-PRAM,  called High Performance PRAM (HPP),  
has been sketched. Due to modest  architectural changes and using top 1995 
technology, the HPP  is expected to achieve the tenfold performance of the SB-  
PRAM on average compiler generated programs.  

Tera MTA. The design goal of the Tera  MTA [2, a, 17] was to build a powerful 
mul t i -purpose  parallel computer  with special emphasis on numerical programs.  
In order to meet this goal, it was determined early in the design phase to employ 
GaAs technology and liquid cooling. A processor chip runs at _> 294 MHz and 
has a power dissipation of 6 KW per processor. 

Similar to the SB-PRAM, the Tera MTA hides memory  latency by means of 
mul t i - threading.  Unlike the SB-PRAM,  it does not schedule a fixed number  of 
VPs round robin, but it can support  up to 128 threads, all of which can have up 
to 8 active memory  requests. New threads can be created using a low overhead 
mechanism; the penalty for an instruction that  a t tempts  to use a register that  is 
waiting for a memory  request to arrive is only one cycle. The memory  system of 
the Tera MTA is completely different from that  of the SB-PRAM: the network 
topology is a kind of 3-dimensional torus. The messages are processed by a 
randomized routing scheme that  may  detour packets if the output  link in the 
right direction is either overloaded or out of order. To our knowledge there is no 
detailed, technical description or a correctness proof of the network available to 
the public. The machine supports f e tch-and-add  instructions; the requests are 
not combined in the network, but serviced sequentially at the memory  modules. 
Because the Tera threads may become asynchronous due to race conditions in the 
network, the machine does not offer the sequential semantics of the SB-PRAM.  

3.2 B e n c h m a r k  I m p l e m e n t a t i o n  

Due to some limitations of our gcc compiler port for the SB-PRAM,  we have 
hand-coded the loop bodies in assembly language and manual ly unrolled the 
inner loops of the benchmark. For details we refer to [11]. We now present how 
many  instructions are necessary at least to implement  the IS benchmark  on the 
SB-PRAM.  Hence, we hand-code the loop bodies in assembly language and 
neglect loop overhead. 

As on every other machine, the count array can be cleared with a single 
"store with auto increment" instruction, if every VP is assigned a different but  
contiguous portion of the count array. The arrays count  [] and pos  [] are used 
one at a t ime and can be coalesced into a single cp [] array, which saves a few 
address computat ions.  Because there are no da ta  dependencies between different 
iterations of loop 2, all PROCS virtual processors are mapped  round robin onto 
the keys  and cp arrays and synchronously execute loops 2 and 3. Two successive 



(a) e l e m l  = M( k_ptr l+=2*PR0CS);  
c p @ t r l  = e l e m l  + cp_base;  
syncadd (  c p _ p t r l ,  1) ;  

(b) eleml = M( cp_pt r l+=2*Pg0CS);  
e l e m l  = mpadd( ranksum,  e l e m l ) ;  
M ( c p _ p t r l )  = e l e m l ;  

Fig.  1. Interleaved loop bodies: 
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elem2 = M(k_ptr2+=2*PROCS) ; [ 

cp_ptr2 = elem2 + cp_base; 

syncadd( cp_ptr2, I) ; 

elem2 = M(cp_ptr2+=2*PROOS) ; 

elem2 = mpadd( ranksum, elem2) ; 

M(cp_ptr2) = elem2; 

(a) Loop 2, and (b) Loop 3. 

loop bodies are interleaved in order to fill all load delay slots (see assembly code 
in Figure 1.a). The first instruction combines the incrementing of a properly 
initialized, private key pointer k_ptr  by 2.PROCS with the loading of the next 
key. In the second instruction of the loop body, the pointer cp_pt r  is computed 
as cp[]  indexed by key, and the syncadd operation (mpadd without result) 
increments this entry. Figure 1.b lists the assembly code for the third loop, 
which also employs the interleaving technique. In the first instruction, the pointer 
cp_pt r  is adjusted and an entry of cp[]  is read. Then, the accumulated rank 
is computed in the multi-prefix add on ranksum, and the result is written back 
to the cp array. This loop relies on synchronous execution, because the order of 
rapadd instructions among VPs is crucial. 

Loop 2 contributes most instructions to the timed portion of the code, be- 
cause it is executed N times whereas loops 1 and 3 are executed only B,~ax  = N 

times. Thus, CPE(ranking) = ~ + 3 + 3 = 3.25 is optimal for the SB-PRAM. 
The benchmark implemented using assembly language macros and 64-fold un- 
rolled loop achieves 3.30 CPE. A similar tuned C version is slower by roughly 
one cycle, because the compiler does not use "load with auto-add of 2*PROCS" 
but generates two separate instructions instead. 

We have run the benchmark on our instruction-level simulator as well as 
on the real 4 processor machine. The run times differ by less than 0.1%, a fact 
that  validates our network simulations which predicted that  memory stalls are 
extremely unlikely. The run time obtained by a 128 processor simulation is only 

1 1% slower than m-5-gth of the one processor run time, i.e. speedup is nearly linear. 
Because no caches are employed in the SB PRAM, the run times of class B 
and C can be simply and accurately predicted; they are higher by a factor of 4, 
respectively 16. 

The High-Performance-PRAM HPP  would gain a factor of 5.6 in absolute 
speed, but the CPE value would be worse, because the machine can issue memory 
requests at only a third of the instruction rate. For a fairer comparison, the CPU 
clock should be replaced by the memory request rate. 

Tern  M T A .  The Tern MTA system has a sophisticated parallelizing compiler, 
which processes the sequential source code and automatically generates threads 
when needed. The assembler output  of loop 2, which is listed in [2], shows a 2 
instruction loop body that is 5-fold unrolled. The memory operations are "load 
next key" and "fetch & increment count". An integer addition plus the loop 



1004 

assume: V1 +-- 0..63 
(a) 1 :V2  t - k e y [ V l + k ]  (b) 2 .1 :count [V2]  +- V1 

2 : V3 +-- count[ V2 ] -t- 1 2.2 : V4 e- count[ V2 ] - V1 
3: count[ V2 ] +- V3 2.3: if( V4 r 0 ) check 

Fig.  2. Loop 2 vector code: (a) straight forward, (b) correction 

overhead are hidden in the non -memory  operations of the ten instructions of 
the loop body. Note, that  the CPU clock and the memory  request rate are equal 
in the super-scalar  Tera MTA design. 

Since the Tera MTA lacks synchronous execution, the third loop cannot be 
parallelized as on the SB-PRAM. Instead, every processor works on a contiguous 
block of the count array, computes the local prefix sums and outputs  the global 
sum of its elements. In a second step, the prefix sum of the global sums is 
computed.  Then, each processor adds the appropriate  global prefix sum to its 
local elements. This procedure requires 3 instructions plus a small logari thmic 
term. For the class A benchmark it is less than 4 instructions. The Tera MTA 
requires less than 1 + 2 + ~ = 2.3125 CPE. The improvement  compared  to the 
S B - P R A M  comes from the ability to execute one memory  operat ion and two 
other (integer, jump,  . . .  ) operations per instruction. 

We do not have access to a Tera MTA ourselves. The performance figures 
contained in this section are derived from [2, 5] and personal communicat ion 
with P. Briggs (Tera Computer  Corporation) and L. Carter  (SDSC). The num- 
bers reported in [2] are 1.53 seconds and 5.25 < CPE < 5.3125 for NPB 1. 
Assuming a CPE value of 5.25, the 294 MHz machine has an overhead of at 
least 153294'1~ 1 = 2.14 %, i.e. hiding memory  latency works well for the 5.25 ,10 .22a  
one processor prototype.  The fourth inner loop of the benchmark,  which is not 
present in NPB 2, accounts for 3 CPE. If  we at t r ibute  all overhead to the three 
loops of IS(NPB 2) and conservatively assume CPE(NPB 2)=2.3125, we end up 
with a run t ime of < 0.68 seconds. Carter  [5], who ran the NPB 2 benchmark  
on a 145 MHz machine, achieved a run t ime of 2.05 seconds, which corresponds 
to an overhead of 50 percent. He believes that  on the early machine flipped bits 
in the network packets induced retransmissions, because the memory  overhead 
figures for other benchmarks dropped as the hardware became more stable. 

4 V e c t o r  C o m p u t e r s  

In [5], a Tera MTA node is compared to a Cray T90 vector processor node 
on the NPB 2-serial sample code of IS. Vector processors have instructions for 
computing prefix sums on vector registers. Thus, the third benchmark  loop can 
be parallelized in the same way as on the Tera MTA. The difficult par t  is loop 
2, where even a single vector processor encounters problems. 

Figure 2.a lists the straightforward, but wrong, implementa t ion of loop 2. 
Successive, contiguous stripes of key [] are read into vector register V2. Then,  



Table  2. IS (class A) benchmark results 
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Machine CPU clock 
Name [MHz] 
SB-PRAM 7 
SB-PRAM simulation 
Tera MTA 294 
Cray T90 440 
SB-PRAM (MPI) 
IBM SP2 WN 
SGI Origin 2000 
Cray T3E-900 

7 
66 

195 
450 

minimum maximum 
#procs I time I CPE #procsltime I CPE 

1 39.55 3.30 4 9.89 3.30 
128 0.31 a.3a 

1 0.68 2.32: 
1 1 .11  5.82 
2 160.8 26.85 
2 29.1 27.38 128 0.6 60.42 
2 20.5 95.30 32 1.6 119.02 
2 12.7 136.26 256 0.4 258.15 

V3 is filled by reading the corresponding count  [] entries and incrementing them. 
Afterwards V3 is written back. If  a specific key value v is contained twice in V2 
at positions kl and k2, count  Iv] is incremented only once, because u which 
finally ends up in count  [v],  contains countold Iv] +1 and not the incremented 
V3[kl] value. 

The Cray compiler can cure the situation using a patented algori thm [6] 
invented by Booth3  Before writing V3 back in line 3, the code listed in Figure 
2.b tests whether duplicates occur, and, if necessary, processes them in the scalar 
unit. The run t ime of IS(NPB 2), as reported in [5], is 1.11 s, which corresponds 
to 5.82 CPE. The NPB 2.3-serial sample code contains an unnecessary store 
tha t  possibly has not been detected by the compiler�9 Hence, the opt imal  CPE 
for a single vector computer  could be lower by 1 CPE. 

The above code for loop 2 can be easily parallelized by maintaining a private 
copy count~ [] of the count array on each node computer .  When p denotes 
the number  of part icipating processors, the third loop becomes a parallel prefix 

�9 . , - 1  p - 1  computa t ion  pos [1] = }--~k=0 ~ t = 0  countt  [k].  Memory consumption as well 
as the execution t ime of loop 3 scale with p. If p becomes very large, a two pass 
radix sort, like described by Zagha [20], can improve performance. 

5 Comparison with MPI-based sample code 

Table 2 lists the benchmark results discussed so far and compares them with run 
t imes of MPI-based  sample code. We implemented the necessary MPI  l ibrary 
functions on the S B - P R A M  and optimized the sample code to the extent tha t  
an optimizing compiler could also achieve [11]. The times for the other machines 
have been taken from benchmark results published by NAS. The IBM SP2 is 
a distr ibuted memory  machine (DMM) with an extremely fast interconnection 
network, the SGI Origin 2000 a cache-coherent NUMA, and the Cray T3E a 
UMA shared memory  machine (SMM) without cache coherence. 

1 Personal Communication with Larry Carter and Max Dechantsreiter. 
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Sample code implementation. The keys are distributed on all participating p 
computers before the timing starts. In a first local step, each computer sorts its 
keys using only the b most significant bits into 2 b buckets. Because the keys 
are put  into a sorted order, this step alone requires more instructions than 
IS(NPB 1). Then, a mapping of buckets to processors, which balances the load, 
is computed. Afterwards, all local bucket parts are sent to their destinations 
in a single, global, al l- to-all  communication step. Now, every processor owns a 
distinct, contiguous key range and can count its keys locally. The pos [] entries 
can be computed from count  [] like in the Tera MTA implementation. 

The sample code algorithm is guided by the idea of doing one, central a l l - to-  
all communication. The price for this procedure is to rearrange the keys locally, 
such that  keys that  are sent to the same destination are stored contiguously 
in memory. A plus of the implementation is the good cache efficiency: the key 
arrays are accessed sequentially, so that  the initial cache miss time is amortized 
over the complete cache line, and the count arrays fit into second level cache. 

With less than p = 16 processors another strategy with fewer communication 
overhead would be possible: every processor could count its keys in a local count 
array and pos [] could be computed like on vector processors after transposing 
the p • B,~a~ count matrix. I f p  < 16, then only p. Brnax < 16" 1~ data  elements 
had to be sent over the network. However, the sample code is written for a large 
number of processors and slow communication networks. 

The CPE of the SB-PRAM is 26.85, of which 9 cycles belong to memory 
instructions operating on key elements. The SB-PRAM issues one instruction 
per cycle and encounters no memory waits. The other machines have super-  
scalar processors, but suffer from memory waits. The impact of wait states on 
the CPE is the higher, the higher the clock rate of the specific machine is. 
Table 2 highlights this fact, which limits the benefit of cache-based architectures 
from future technological improvements compared to vector computers or mul t i -  
threaded machines. 

6 O t h e r  A l g o r i t h m s  

The MPI-based sample code is tailored for distributed memory machines. We 
now investigate, if there are better algorithms for CC-NUMA machines or the 
Cray T3E. 

CC-NUMA. Cache-coherent non-uniform-memory-access  SMMs [13], like the 
SGI Origin, have overcome the argument "SMMs do not scale" by other means 
than the SB-PRAM or the Tera MTA. While mult i - threading relies on having 
enough parallelism available to keep the processors busy, CC-NUMA machines 
try to minimize the average memory latency by caching, at the risk of running 
idle on cache misses. 

We now investigate, if the direct approach of locking the count  [] elements 
for updating could improve performance so much, that  the results of mul t i -  
threaded SMMs could be reached. Therefore, we calculate the average memory 
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latency introduced by accessing c o u n t  ['keys [ i ]  ] in loop 2. We assume that  on 
1 of the count  [] elements are cached on every processor a p-processor machine 

and the miss penalty is 20 cycles (i.e. 100 ns on a 200 MHz computer).  Thus, 
the average memory latency is 

1 p - 1  
t =  - ' 1  + - - - 2 0  

P P 
Y 

cache hit cache miss 

On machines with more than p = 16 processors, t is greater than 181~. In other 
words, the exchange of count  [] entries between the coherent caches is rather 
expensive. If the remaining cycles for the program are taken into account, the 
CPE is at least an order of magnitude higher than on mult i - threaded SMMs 
with fetch-and-add.  

Crag T3E. A Cray T3E node computer consists of a DEC Alpha processor with 
up to 2 GByte local RAM. Additionally, the system logic provides a notion of 
a logically addressable shared memory through the E-registers [16]. Up to 512 
E-registers can be accessed by the user to trigger shared memory accesses. In 
addition to load and store, E-registers also support fetch ~z add and an especially 
fast fetch ~ increment operation. 

Although the machine does not support  mult i - threading in hardware, mem- 
ory wait conditions can be avoided by using multiple E-registers to simulate 
mult i- threading in software. With this technique, alternate key load and count 
increment operations can be performed at the maximal network clock of 75 MHz. 
The third loop of IS can also be parallelized in the same way as on the Tera MTA. 
Thus, less than 3 network cycles per key element are possible. 

7 C o n c l u s i o n  

We have investigated the performance of the IS benchmark on the SB-PRAM 
and the Tera MTA, two scalable SMMs which employ mult i - threading to hide 
memory latency instead of caching like most of todays computers. Besides mul t i -  
threading, both machines take advantage of a fe tch-and-add instruction to up- 
date shared data  structures conflict-free, These two properties lead to a perfor- 
mance that is an order of magnitude higher compared to published results of 
other scalable parallel computers, both DMMs and SMMs. 

In particular, the experimental 7 MHz SB-PRAM prototype can compete 
with modern parallel computers on this benchmark. The Tera MTA makes use 
of expensive top technology, and achieves better performance figures than non-  
scalable top vector processors. Although CC-NUMA SMMs could possibly im- 
prove performance compared to DMMs, they are still an order of magnitude 
slower than mult i - threaded machines. Alone the Cray T3E, which supports and 
atomic fetch ~ increment operation could challenge the performance of the Tera 
MTA by emulating multi- threading in software. 
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