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A b s t r a c t .  This work presents a new model for multistream speculative 
instruction fetch in superscalar architectures. The performance evalua- 
tion of a superscalar architecture with this feature is presented in order 
to validate the model and to compare its performance with a real su- 
perscalar architecture. This model intends to eliminate the instruction 
fetch latency introduced by branch instructions in superscalar pipelines. 
Finally, some considerations about the model are presented as well as 
suggestions and remarks to future works. 

1 I n t r o d u c t i o n  

Even using accura t ed  branch  p red ic t ion  mechan i sms ,  cur rent  supe r sca la r  archi-  
t ec tures  offer less pe r fo rmance  t h a n  an idea l  a rchi tec ture .  

W h e n  a branch  is encountered ,  the  branch  p red ic to r  can p red ic t  i t  as to  be 
taken  or not  taken.  In  the  first case, con t iguous  ins t ruc t ions  are a l r e a dy  in to  
the  fetch s tage  when the  p red ic t ion  is made ,  and  these ins t ruc t ions  do no t  t ake  
p a r t  of the  p red ic t ed  pa th .  For the  second case, no th ing  occurs  if  the  predic-  
t ion is correct .  But  for bo th  cases, we are a s suming  t h a t  the  b ranch  p red i c t i on  
m e c h a n i s m  is efficient. 

The  p r o b l e m  usua l ly  is t ha t  b ranches  are p red ic t ed  as to be taken  and  each 
t ime  th is  occur  a flow in t e r rup t ion  also occurs.  The  t ime  requiered  to refill the  
fetch buffer and  pu t  the  correct  ins t ruc t ions  in to  the  ins t ruc t ion  queue is g rea te r  
t han  the  necessary t ime  to execute these ins t ruc t ions .  If  there  are m a n y  func- 
t iona l  un i t s  and  flow in te r rup t ions  occur  frequent ly,  i t  should  be expec ted  t h a t  
the  in s t ruc t ion  queue will be e m p t y  for m a n y  cycles. 

Th is  means  t ha t  the  ins t ruc t ion  fetch m e c h a n i s m  mus t  be des igned to  keep 
the  in s t ruc t ion  queue wi th  ins t ruc t ions  t h a t  can be scheduled for execu t ion  on 
free func t iona l  uni ts .  

A supe r sca la r  a rch i tec ture  could not  execute  ins t ruc t ions  fas ter  t h a n  i t  can  
fetch ins t ruc t ions  f rom the ins t ruc t ion  cache. So, des ign an efficient fe tch mech-  
an i sm is more  i m p o r t a n t  t han  increase the  n u m b e r  of  resources,  because  i t  is no t  
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possible to increase the performance only by increasing the number of functional 
units. 

The question is how many instructions could be fetched per cycle? Where 
are these instructions comming from? An alternative approach to branch pre- 
diction is instead of predict whether the branch is taken or not taken, is execute 
speculatively both the taken and not-taken paths and cancel the execution of 
the incorrect path as soon as the branch result is known [3]. 

2 F e t c h i n g  i n s t r u c t i o n s  f r o m  m u l t i p l e  s t r e a m s  

Talcott [9] reffers a technique called Fetch Taken and not-Taken Paths to reduce 
the branch problem. In [1] was presented a new model based on this scheme. In 
this model, both paths of a conditional branch are fetched and put into the fetch 
buffer. 

When the branch prediction stage transfers instructions, from the fetch buffer 
to the instruction queue, and reaches a branch into the fetch buffer, both possible 
paths of this branch and its instructions are already into the fetch buffer. In this 
case, no delay is introduced when the branch is predicted as taken. The transfer 
is redirected to the predicted path whithout delay. 

To enable this operation, the fetch stage must detect the branch instruction 
just when it is fetched. In the next cycle, it must also start to fetch from both 
paths. When the branch is predicted, the instructions transfer to instruction 
queue is not interrupted. 

In the multistreamed superscalar architecture proposed in [6], the fetch stage 
was modified to enable to fetch both paths of a branch instruction. 
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Fig. 1. Fetch Buffer Structure (e.g. fetch depth equal to 4 streams) 

The figure 1 suggests a new buffer structure in the mult istream pipeline. 
The number of stream buffers defines the fetch depth. Each stream has four 
independent elements: Program Counter, Status Bit, Children List and Fetch 
Buffer. 

In the Fetch Buffer are stored the fetched instructions. The PC is used to 
point the instructions that  are in the stream. The status bit indicates whether 
the stream structure is busy and the Children-List stores the identification of 
the children streams. 

The Children-List also stores the branch address and the identifier of its 
children streams allowing the predict stage to start  the transfer of instructions 
of the new stream when a branch is predicted, without any delay. 



1012 

2.1 Mult i s tream Architecture Operation 

The Fetch stage fetches instructions to put them into the fetch buffer. When con- 
ditional branch instruction is detected, a new s t ream is generated and initialized, 
as if there were available resources. 

The s t ream generation consist of Children-List updat ing operation with the 
branch address and the identification of a new stream structure that  will store the 
instructions related to the new stream. For each branch detected there are two 
possible paths. The instructions that  are in the not taken pa th  are fetched and 
stored into the same s t ream structure where is stored the conditional branch. 
But,  the taken pa th  and their instructions will be stored in this new s t ream 
structure. 

The s t ream structure initialization consists of the P C  initialization with the 
target  address and the setting of the status bit, to indicate that  the structure 
was allocated. 

The predict stage transfers instructions, from the fetch buffer to the instruc- 
tion queue (like conventional superscalar architectures) looking for branch in- 
structions. However, when it finds a branch instruction, it also makes a pre- 
diction. When the prediction is to be taken, this stage just  concatenates the 
instructions which are in the children s t ream of this branch, discarding the clos- 
est instructions. 

When the prediction is not taken, the children s t ream is discarded and the 
neightbouring instructions continue to be transfered to the instruction queue. 
When a s t ream is discarded, all children s t reams originated by this s t ream are 
also discarded, through a recursive operation. 

3 E x p e r i m e n t a l  F r a m e w o r k  

For this work, we used 4 benchmarks from the SPECint95 suite (compress, go, 
ijpeg, li). Also~ we used a execution-driven simulator to generate traces. This 
simulators acomplish with the SPARCV7 instruction set and simulates the exe- 
cution in a scalar pipelined fashion. This is the reference machine. 

For the superscalar simulations, we used 2 trace-driven simulators which 
executed the choosed benchmarks based on the traces generated by the first 
simulator.  These 2 simulators are respectively called Real and Mulflux as we will 
describe below: 

- Real Simulator: Simulates the execution of programs using two-level branch 
prediction [4, 5]. 

- Mulflux Simulator: Simulates the execution of programs using the proposed 
speculative instruction fetch mechanism [6]. 

4 P e r f o r m a n c e  A n a l y s i s  

In this section, we analize the performance of the mul t is t reamed model based 
on the da ta  extracted through several simulations. The experiments simulate 
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different configurations of the real machine and the mul t is t reamed machine. 
The tests started with a fetchwidth equal to 2 up to 8 instructions per cycle. 

We can point out that  in all situations the cycles with no dispatch are less 
than for the real machine. The no dispatch decreases with the increase of fetch- 
width in the real machine. The percentage decreases from 40.50%, for fetchwidth 
equal to 2, to 39.30% in configurations with a fetchwidth equal to 8 instructions, 
as showed in the figure 2. 

In the Mulflux machine, this percentage increases join to the increase of fetch- 
width. This occur because the mispredictions and resources conflict increase too. 
Other studies have been developed to research more accurated branch predictors 
and the ideal balancing of the architectures resources to support  a new and more 
powerfull parallelism through the pipeline. The sum of the three components,  
which causes no dispatch in both machines, correspond to in the percentage of 
cycles with no dispatch. 

Fig. 2. No Dispatch in Mulflux with 2 Streams and Real Architecture 

The divergency between the components is impor tan t  in the Real machine. 
The occurency of an empty  queue is the critical component  that  contributed to 
the existency of no dispatch cycles. This is not the case for the Mulflux machine. 
It  is predictable that  when there are more instructions ready to dispatch, the 
number  of functional units becomes the main problem. This is true in the Mulflux 
architecture. 

The occurency of empty  queue in the Real machine decrease from 30.05%, 
with fetchwidth equal to 2 to 21.79%, with fetchwith equal to 8 instructions per 
cycle. In the Mulflux, the results obtained are 7.73% and 7.80% for the same 
configurations perhaps applying multiple streams. 

Fig. 3. Components that Causes Emptying Queue in Mulflux with 2 Streams and Real 
Architecture 
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The figure 3 presents the efficiency of the multistream model to reduce the 
empty queue occurrency. In the Mulflux, the stream interruptions are up to 
5.24%, but in the Real architeeure this percentage reach 27.07%. 

The multistreamed model enables a reduction around 74.24% of empty queue 
occurrency. The effect of stream interruptions were reduced by 80.64% in the 
Mulflux machine. Another important  aspect is that  resource conflict and spec- 
ulation depth must be considered with more attention when the mult is tream 
model is used. 

4.1 Impact Analysis of  Multistream Implementation 

Before the implementation of the multistream model, we must consider the im- 
pact in the close blocks, and also the fetchwidth, resource conflicts and specula- 
tion depth. 

In the previous results we did not consider the instruction cache misses. The 
use of the multistream model could generate more cache misses and the fetch 
latency can be important .  So, the potential of the mechanism can be reduced. 
Then, we performed some experiments using a instruction cache with the same 
delay cycles as those of the Intel Pentium to observe the performance under real 
conditions. In this cache, the miss latency is equal to 3 cycles for the L1 cache, 
and 13 cycles when the miss causes an access to the L2 cache. 

Also, for the last results we consider that  the fetchwidth was multiplied by 
the number of valid stream structures. If the fetchwidth is equal to 8 instructions 
and the number of valid streams (initialized structures) is equal to 4 then the 
total and the real fetchwidth is equal to 32 instructions per cycle. This was made 
in the last experiments. 

To avoid problems with the cache size and its configuration we have proposed 
a new strategy called Dynamic Split Fetch - (DSF) which consists in spliting the 
total fetchwidth between the valid stream structures [6]. In this case, if there are 
4 valid streams and the fetchwidth is equal to 8 instructions per cycle, will be 
fetched 2 instructions for each valid stream and the fetchwidth is kept up to 8 
instructions. 

4.2 O v e r a l l  Performance 

In this section we discusse the overall performance delivered by the multi- 
streamed mechanism and compare it with real architectures performance. Thus, 
we could observe the aspects discussed in the last section. 

Increasing the number of functional units delivers more speed up for the 
multistreamed architecture as show in the figure 4. 

However, we can observe that no dispatch cycles increases even when the 
number of functional units increases. This is due to the speculation depth that  
was kept for all configuration with a single branch unit. The machine considered 
has n generic functional units and only one branch unit that could stall the 
dispatch of instructions when saturated. This is showed in the graphic 5. 
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Fig. 4. Multistream Speed up when the Number of Functional Units Increase 

Fig. 5. Components of No Dispatch when Functional Units Increases 

We made several simulations variating the number  of functional units for the 
mul t i s t reamed architecture. We wanted to show that  the resource conflict is the 
main  factor in the l imitation of the performance in this machine like in an ideal 
machine. 

We performed experiments with 5 machines consisting of: a Mult is t ream with 
perfect icache, a Mult is tream with normal  icache, a Mult is t ream with normal  
icache and DSF (Dynamic Split Fecth), a Real machine with perfect icache and 
a Real machine with normal  icache. 

The results that  will be presented comes from the same configurations for 
each machine [6]. We used 2 streams structures to the mul t i s t ream machines. All 
machines have a fetchwidth equal to 8 instructions per cycle, and a fetch buffer 
and instruction queue with 16 and 32 entries respectively; a dispatchwidth equal 
to 8 instructions; 8 functional units, each one with 8 reservation stations; 1 
branch unit with 8 reservation stations; 8 bus results and reorder buffer with 64 
entries. 

The figure 6 shows the no dispatch cycles expended for each machine. The 
best case is the mul t is t ream machine with perfect icache and using a total  fetch- 
width that  consists in multiplying the fetchwidth by the number  of valid s t ream 
structukes. We could observe that  the Mulflux with normal  icache has a per- 
centage of no dispatch cycles similar to the Mulflux with normal  icache using 
DSF. The division of the fetchwidth by each valid s t ream do not ha rm the per- 
formance of the considered cases. The Real machines expend more cycles with 
no dispatch. 

The figure 7 shows the components that  cause no dispatch cycles in each 
machine. In the mulst is t ream machines, the worst component  is the resource 
conflict (around 45.00% of the no dispatch cycles). In the Real machines the 
emptying queue result around 60% of the occurency of no dispatch. In the second 
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Fig. 6. Percentage of No Dispatch 

figure 7, we could notice the reduction of the stream interruptions in mult is tream 
machines. 

Fig. 7. No Dispatch Components and Emptying Queue Components 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k s  

The superscalar speed up is directly proportional to its IPC (Instructions per Cy- 
cle). It is desirable to obtain a speed up proportional to the number of functional 
units present in the architecture. However, the constant flow interruptions flush 
the instruction queue and decrease the number of ready instructions which could 
be dispatched. Thus, the IPC is reduced drastically because of the instruction 
queue flushing and a desirable speed up could not be achieved. 

The multistreamed model allow a reduction around 74.24% of empty queue 
occurrency. The effect of stream breaks was reduced by 80.64% in the Mulflux 
machine. Another important  aspect is that resource conflict (structural hazards) 
and speculation depth must be considered carefully when the mult is tream model 
is used. 

In our experiments, the instruction cache performed similar performance in 
both cases: multistream and real architectures. The use of Dynamic Split Fetch 
brings a worthwhile strategy that allows to keep the number of icache buses. 

Even if we reduce the occurency of empty instruction queue, we have verified 
that  the decrease of no dispatch cycles do not decrease as we wanted. In the 
Mulflux machine the no dispatch cycles is between 28.99% and 33.11%, while in 
the Real machine it is between 39.30% and 40.50%. The increase of instructions 
flow in the instruction queue generate a major  resource conflict like in the ideal 
architecture. Increasing the number of functional units but keeping the specu- 
lation depth did not allow good results in our experiments. Because of this, we 
are looking for resource balancing and ideal speculation depth in multistreamed 
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architectures. The saturation of branch unit could come late the instructions 
execution. 

Remarks  to the next step could be pointed here. We are looking to intro- 
duce new instruction cache mechanisms in our simulations. Such mechanisms 
have been proposed and we believe that  they will be used in next generations 
of superscalar microprocessors. Also, after to get a good configuration of our 
architecture we plan to compare it with other alternatives like trace proces- 
sors [8], simultaneous multi threading [2], multisealar [7] and other alternatives 
which certainly will be suggested. 

Such comparison is very important  to get an idea about  the potential  of 
such architecture and its complexity of implementat ion.  The fourth generation 
of microprocessors can not be predicted at the momen t  but  many  new schemes 
have been proposed. The question is how to increase the performance of current 
microprocessors and how to obtain more machine parallelism using efficiently 
the increasingly chip density ? 
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