
Gossiping Large Packets on Full-Port Tori

Ulrich Meyer and Jop F. Sibeyn

Max-Planck-Institutffir Informatik
Im Stadtwald, 66123 Saarbrficken, Germany.

umeyer, jopsi@mpi-sb.mpg.de
http://www.mpi-sb.mpg.de/~umeyer, ~jopsi/

Abs t r ac t . Near-optimal gossiping algorithms are given for two- and
higher dimensional tori. It is assumed that the amount of data each PU
is contributing is so large, that start-up time may be neglected. For two-
dimensional tori, an earlier algorithm achieved optimality in an intricate
way, with a time-dependent routing pattern. In our algorithms, in all
steps, the PUs forward the received packets in the same way.

1 I n t r o d u c t i o n

M e s h e s a n d Tor i . One of the most thoroughly investigated interconnection
schemes for parallel computat ion is the n x n mesh, in which n 2 processing
units, PUs, are connected by a two-dimensional grid of communicat ion links. Its
immediate generalizations are d-dimensional n x . . . x n meshes. Despite their
large diameter, meshes are of great importance due to their simple structure and
efficient layout.

Tori are the variant of meshes in which the PUs on the outside are connected
with "wrap-around links" to the corresponding PUs at the other end of the mesh,
thus tori are node symmetric . Furthermore, for tori the bisection width is twice
as large as for meshes, and the diameter is halved. Numerous parallel machines
with two- and three-dimensional mesh and torus topologies have been built.

Gossiping. Gossiping is a fundamental communicat ion problem used as a sub-
routine in parallel sorting with splitters or when solving ordinary differential
equations: Initially each of the P PUs holds one packet, which must be routed
such that finally all PUs have received all packets (this problem is also called
all-to-all broadcast).

E a r l i e r W o r k . Recently Soch and Tvrdfk [5] have analyzed the gossiping
problem under the following conditions: Packets of unit size can be transferred
in one step between adjacent PUs, store-and-forward model. In each step a PU
can exchange packets with all its neighbors, full-port model.

The store-and-forward model gives a good approximat ion of the routing prac-
tice, if the packets are so large that the s tar t -up times may be neglected. If an
algorithm requires k > 1 packets per PU, then this effectively means nothing
more than that the packets have to be divided in k chunks each.

1041

In [5], it was shown that on a two-dimensional nl • n2 torus, the given
problem can be solved in [(nl "n2 -1) /4] steps if nl, n2 >__ 3. This is optimal. The
algorithm is based on time-arc-disjoint broadcast trees: The action of each PU is
time dependent, and thus, for every routing decision, a PU has to perform some
non-trivial computation (alternatively these actions can be precomputed, but for
a d-dimensional torus with P PUs this requires O(P) storage per processor).

N e w R e s u l t s . In this paper, we analyze the same problem as Soch and Tvrdfk.
Clearly, we cannot improve their optimality. Instead, we try to determine the
minimal concessions towards simple time-independent algorithms: In our gossip-
ing algorithms, after some O(d) precomputation on a d-dimensional toms, a PU
knows once and for all, that packets coming h'om direction xi have to be for-
warded in direction xj, 1 < i, j <_ d. Time-independence ensures that the routing
can be performed with minimal delay, for a fixed size network the pat tern might
even be built into the hardware. Also on a system on which the connections must
be somehow switched, this is advantageous.

By routing the packets along d edge disjoint Hamiltonian paths, it is not hard
to achieve the optimal number of steps if each PU initially stores k = d packets.
Here optimal means a routing time of k.P/(2.d) steps on a torus with P PUs. For
d = 2, the schedule presented in Section 2 is particularly simple, and might be
implemented immediately. Our scheme remains applicable for higher dimensions:
the proof that edge-disjoint Hamiltonian cycles exist [3, 2, 1] is constructive, but
these constructions are fairly complicted. Unfortunately, it is not possible to
achieve the optimal number of steps using d fixed edge disjoint Hamiltonian
paths and only one packet per PU which then circulates concurrently along all
d paths. In [4] we show for the two-dimensional case that at least P/40 extra
steps are needed due to multiple receives.

In Section 3, we investigate a second approach that allows an additional o(P)
routing steps. On a d-dimensional torus, it runs in P/(2. d) + o(P) steps, with
only one packet per PU. For d = 2, this is ahnost optimal and time indepen-
dent. Therefore, this algorithm might be preferable over the one from [5]. More
importantly, for higher dimensions, particularly for the practically relevant case
d = 3, this gives the first simple and explicit construction that achieves close
to optimally. In these algorithms, we construct partial Hamiltonian cycles: on
a d-dimensional torus, we construct d cycles, each of which covers P/d + o(P)
PUs. These are such that for every cycle, every PU is adjacent to a PU through
which this cycle runs.

2 O p t i m a l - T i m e A l g o r i t h m s

In this section we describe a simple optimal gossiping algorithm for two-
dimensional nl • n~ tori assuming that initially each PU holds k = 2 packets.

Bas i c Case , The PU with index (i,j) lies in row i and column j , 0 <__ i < nl ,
0 _< j < n2. PU (0,0) is located in the upper-left corner. First PU (i, j)
determines whether j is odd or even and sets its routing rules as follows:

1042

j < n ~ - l , j e v e n :Te+R;B++L.
j < n 2 - 1 , j o d d :T++L;Be+R.

Here T, B, L, R designate the directions "top", "bottom", "left" and "right",
respectively. By T ~ R, we mean that the packets coming from above should be
routed on to the right, and vice-versa. The other ++ symbols are to be interpreted
analogously. Only in the special case j = n 2 - 1 we apply the rule T e+ R; B ++ L.
The resulting routing scheme is illustrated in the left part of Figure 1.

Fig. 1. Left: A Hamiltonian cycle on a 4 • 4 torus, whose complement (drawn with
thin lines) also gives a Hamiltonian cycle. Right: Partial Hamiltonian cycles on a 4 • 5
torus. The PUs in column 3 lie on only one cycle. Such a PU passes the packets on
this cycle that are running forwards to the PU below it, and those that are running
backwards to the PU above it.

O d d ni. Now we consider the case nl even and n2 odd, the remaining cases
can be treated similarly. Here we do not construct complete Hamiltonian cycles,
but cycles that visit most PUs, and pass within distance one from the remaining
PUs. Except for Column n2 - 2, the rules how to pass on the packets are the
same as in the basic case. In Column n2 - 2 we perform L ++ R.

PUs which do not lie on a given cycle, out-of-cycle-PUs, abbreviated OOC-
PUs, are provided with the packets transferred along this cycle by their neigh-
boring on-cycle-PUs, OC-PUs. With respect to different cycles, a PU can be
both out-of-cycle and on-cycle. The packets received by an OOC-PU are not
forwarded. This can be achieved in such a way, that a connection has to transfer
only one packet in every step. The resulting routing scheme is illustrated in the
right part of Figure 1.

C h a n g i n g D i r e c t i o n . Each OOC-PU C receives packets from two different
OC-PUs, A and t3. Let A transfer the packets that are walking forwards, let B
provide the packets in backward direction. If m denotes the cycle length and A
and B are not adjacent on the cycle, then m/2 circulation steps are not enough:
some packets are received from both directions, while others pass by without

1043

notice. We modify the algorithm as follows. Let l be the number of OC-PUs
between A and B, then during the first l steps, A transfers to C the packets tha t
are running forward, and during the last m / 2 - l steps those tha t run backward.
B operates oppositely. In our case 1 = 2 �9 n2 - 1 for all PUs in Column n2 - 2.
Thus, each PU can still compute its routing decisions in constant time.

T h e o r e m 1 I f every P U of an nl • n2 torus holds 2 packets, then gossiping can
be performed in [nl �9 nu/2] steps.

The considered schemes have the advantage that their precomputa t ion can
be performed in constant time. Alternatively, one might use the scheme in [3] for
the construction of two edge-disjoint Hamil tonian cycles on any two-dimensional
torus.

3 One-Packet Algorithms

In this section we give another practical alternative to the approach of [5]: we
present algorithms which require only one packet per PU and are opt imal to
within o(P) steps. The idea is simple: we construct d edge-disjoint cycles of
length P / d + o(P) . Each of the cycles must have the special property, that if a
PU does not lie on such a cycle, this PU must be adjacent to two other PUs
belonging to this cycle. Each of these two PUs will t ransmit the packets f rom
one direction of the cycle to the out-of-cycle-PU.

T w o - D i m e n s i o n a l Tor i . The construction can be viewed as an extension of
the approach described in Section 2. There we interrupted the regular zigzag
pa t te rn for one column in order to cope with an odd value for n2. Now we
discard the zigzag in n2 - 2 consecutive columns, the only two remaining zigzag
columns connect the long stretched row parts to form two partial cycles:

j = O : T e+ R ; B e+ L.

j = I : T e+ L ; B e+ R.

2 < j < n 2 : L + + R .

Binding the out-of-cycle-PUs is done exactly as in the algori thm of Section 2;
the case of odd nl and n2 can be treated by inserting one special row.

Each of the partial cycles consists of nl �9 n2 /2 + nl PUs, so using both
directions in parallel one needs nl �9 n2 /4 + n l / 2 steps to spread all the packets
within the cycle. For every OOC-PU the two supplying OC-PUs are separated
by n2 + 1 other PUs on their cycle, thus we obtain a fully t ime-independent
n l " n2 /4 + 0 (nl + n2) step algorithm. Applying the forward/backward switching
as presented in Section 2 we get

T h e o r e m 2 I f every P U of an nl • n2 torus holds 1 packet, then gossiping can
be performed in n l �9 n2 /4 + n l / 2 + I steps.

1044

,.+t_+++'~176 L ++'~ +t+'~ + + ++! l !

Fig. 2. Three edge-disjoint cycles used in the one-packet algorithm on a three-
dimensional torus.

T h r e e - D i m e n s l o n a l Tor l . For three-dimensional tori, we generalize the pre-
vious routing strategy, showing more abstractly the underlying approach. We
assume that n2 and n3 are divisible by three. The constructed patterns are
similar to the bundle of rods in a nuclear power-plant.

We construct three cycles. These are identical, except that they start in
different positions: Cycle j , 0 < j _< 2, starts in PU (0,j, 0). The cycles for two-
dimensional tori were composed of nl/2 laps: sections of a cycle starting with a
zigzag and ending with the traversal of a wrap-around connection. The zigzags
were needed to bring us two positions further in order to connect to the next lap.
Here, we have three zigzags, bringing us three positions further. The sequence of
directions in the zigzag pattern is given by (2, 1, 2, 1, 2, 1). After these zigzags,
moves in direction 1 are repeated until a wrap-around connection is traversed,
the next lap can begin.

In this way we can fill up one plane (using n2/3 laps), but in order to get to
the next plane, there must be a second zigzag type consisting of the following
direction pattern: (2, 1, 2, 1, 3, 1). This type is applied every n2/3 laps. The total
schedule is illustrated in Figure 2.

If PU P = (x,y,z), x _> 3 belongs to cycle i, then PUs Pr = (x , (y +
1) mod 3, z) and Pd= (x, y, (z + 1) rood 3) belong to cycle (i + 1) rood 3, Pl =

1045

(x, (y - 1) mod 3, z) and Pu = (x, y, (z - 1) mod 3) belong to cycle (i - 1) mod 3.
In this way, P on cycle i can be supplied with packets which are not lying on
its own cycle: it receives packets running forward on cycle (i + 1) mod 3 from
Dr, backward-packets from Pd. Pt provides packets running backward on cycle
(i - 1) rood 3, forward-packets are sent by Pu. Each pair of supporting on-cycle-
PUs is separated by (n l / 3 + 1) .n2 - 1 other PUs.

In the upper part of our reactor, exactly two cycles pass through each PU
P, and the shifts are so, that the connections that are not used by cycle traffic
lead to PUs that lie on the other cycle. At most 2 �9 (n l / 3 + 1). n~ - 1 PUs lie
between two supporting on-cycle-PUs. Multiple receives in the OOC-PUs can
again be eliminated by the forward/backward switching of Section 2. Otherwise
O (n l �9 n2) extra steps are necessary.

T h e o r e m 3 I f every P U of an nl x n2 x n3 torus (n2, na integer mult iples of
three) holds 1 packet, then gossiping can be per formed in nl . n 2 . n a / 6 + n , .n2/2+1
steps.

H i g h e r D i m e n s i o n a l Tori . The idea from the previous section can be gener-
alized without problem for d-dimensional tori. Now, we construct d edge-disjoint
cycles, each of them covering P / d + o(P) PUs.

The cycles are numbered 0 through d - 1. Cycle j starts in position
(0, j, 0 , . . . , 0). As before a cycle is composed of laps, starting with a zigzag and
ending with moves in direction 1. Now there are d - 1 types of zigzags, which are
used in increasingly exceptional cases. The general pattern telling along which
axis a positive) move is made is as follows:

zigzag(2, 1)

zigzag(3, 1)
zigzag(3, 2)

zigzag(i, 1)

zigzag(i, i - 2)
zigzag(i, i - 1)

= (2,1,2,1).

= (2, 1,2, 1,2, 1),
= (2,1,2,1,3,1) .

_ (zigzag(i - 1, 1), 2, 1),

- (zigzag(i - 1, i - 2), 2, 1),
= (2, 1,2, 1,3,1,4, 1,5, 1 , . . . , i - 1, 1,i, 1).

Here zzgzag(d, j) indicates the j- th zigzag pattern for d-dimensional tori. During
lap i, 1 < i < n 2 / d . na nd, the highest numbered zigzag is applied for
which the condition i rood (n2 /d �9 n3 n j) = 0 is true. Namely, after
precisely so many laps, the cycle has filled up the hyperspace spanned by the
first j coordinate vectors.

Using induction over the number of dimension we can prove

T h e o r e m 4 I f every P U of a d-dimensional nl x . . . x nd torus (n2, . . . , nd in-
teger multiples of d) with P PUs holds I packet, then gossiping can be per formed
in Pl(. d) + P/(2 . nl) + 1 steps.

1046

4 C o n c l u s i o n

We have completed the analysis of the gossiping problem on full-port store-and-
forward tori. In [5] only one interesting aspect of this problem was considered.
We have shown that almost equally good performance can be achieved by simpler
time-independent algorithms, and given explicit schemes for higher-dimensional
tori as well.

R e f e r e n c e s

1. Alspach, B., J~C. Bermond, D. Sotteau, 'Decomposition into Cycles h Hamilton
Decompositions,' Proc. Workshop Cycles and Rays, Montreal, 1990.

2. Aubert, J., B. Schneider, 'Decomposition de la Somme Cartesienne d'un Cycle et
de l'Union de Deux Cycles Hamiltoniens en Cycles Hamiltonien,' Discrete Mathe-
matics, 38, pp. 7-16, 1982.

3. Foregger, M.F., 'Hamiltonian Decomposition of Products of Cycles,' Discrete Math-
ematics, 24, pp. 251-260, 1978.

4. Meyer, U., J. F. Sibeyn, 'Time-Independent Gossiping on Full-Port Tori,' Techn.
Rep. MPI-98-1-01~, Max-Planck Inst. f/ir Informatik, Saarbr/icken, Germany, 1998.

5. Soch, M., P. Tvrdfk, 'Optimal Gossip in Store-and-Forward Noncombining 2-D
Tori,' Proc. 3rd International Euro-Par Conference, LNCS 1300, pp. 234-241,
Springer-Verlag, 1997.

