
Divide-and-Conquer Algorithms on
Two-Dimensional Meshes*

Miguel Valero-Garcfa, Antonio Gonz~lez, Luis Dfaz de Cerio and Dolors Royo

Dept. d'Arquiteetnra de Computadors - Universitat Politcnica de Cataiunya
c/Jordi Girona 1-3, Campus Nord - D6, E-08034 Barcelona (Spain)

{miguel, antonio, idiaz, dolors}@ac.upc.es

Abs t rac t . The Reflecting and Growing mappings have been proposed
to map parallel divide-and-conquer algorithms onto two - dimensional
meshes. The performance of these mappings has been previously ana-
lyzed under the assumption that the parallel algorithm is initiated al-
ways at the same fixed node of the mesh. In such scenario, the Reflecting
mapping is optimal for meshes with wormhole routing and the Growing
mapping is very close to the optimal for meshes with store-and-forward
routing. In this paper we consider a more general scenario in which the
parallel divide-and-conquer algorithm can be started at an arbitrary node
of the mesh. We propose and approach that is simpler than both the Re-
fleeting and Growing mappings, is optimal for wormhole meshes and
better than the Growing mapping for store-and-forward meshes.

1 I n t r o d u c t i o n

The problem of mapping divide-and-conquer algorithms onto two - dimensional
meshes was addressed in [2]. First, a binomial tree was proposed to represent
divide-and-conquer algorithms. Then, two different mappings (called the Re-
flecting and Growing mappings) were proposed to embed binomial trees onto
two-dimensional meshes. It was shown that the Reflecting mapping is opt imal
for wormhole routing since the required communicat ion can be carried out in
the min imum number of steps (there are not conflicts in the use of links). On
the other hand, the Growing mapping was shown to be very close to the opt imal
for the case of store-and-forward routing.

The communicat ion performance of the Reflecting and the Growing mappings
was analyzed in [2] under the assumption that the divide-and-conquer a lgori thm
is always started at a fixed node of the mesh. In the following, we use the t e rm
fixed-root to refer to this particular scenario. In this paper, we consider a more
general scenario in which a divide-and-conquer algori thm can be s tar ted at any
arbi t rary node of the mesh. The te rm arbi t rary-root will be used to refer to this
scenario. It will be shown that the Reflecting mapping is still opt imal for worm-
hole routing in the arbi trary-root scenario but the performance of the Growing
mapping for store-and-forward routing can be very poor in some common cases.

* This work was supported by the Ministry of Education and Science of Spain (CICYT
TIC-429/95).

1052

An alternative solution for the arbitrary-root scenario is proposed in this pa-
per, which is inspired in a previous work on embedding hypercubes onto meshes
and tori [1]. The proposed scheme, which will be called DC-cube embedding, has
the following properties: a) it can be applied to meshes with either wormhole or
store-and-forward routing, b) it is significantly simpler than the Reflecting and
Growing mappings, c) it is optimal for wormhole routing, and d) it is significantly
faster than the Growing mapping in some common cases, for store-and-forward
routing. A more detailed explanation of the results presented in this paper can
be found in [4].

The rest of this paper is organized as follows. Section 2 reviews the Reflecting
and Growing mappings [2], which are the basis for our proposal. In section 3,
these mappings are extended to the arbitrary-root scenario. Section 4 presents
our proposal. Finally, section 5 presents a performance comparison of the differ-
ent approaches and draws the main conclusions.

2 B a c k g r o u n d

Rajopadhye and Telle [2] propose the use of a binomial tree to represent a divide-
and-conquer algorithm. Every node of the binomial tree represents a process that
performs the following computations:

1. Receive a problem (of size x) from the parent (the host, if the node is the
root of the tree).

2. Solve the problem locally (if 'small enough"), or divide the problem into two
subproblems, each of size ax) , and spawn a child process to solve one of
these parts. In parallel, start solving the other part, by repeating step 2.

3. Get the results from the children and combine them. Repeat until all chil-
dren's results have been combined.

4. Send the results to the parent (the host, if the node is the root).

Step 2 is referred to as the division stage. It has a number of phases cor-
responding to the different repetitions of step 2 (the number of levels of the
binomial tree). The division stage is followed by the combining stage in which
the results of the different subprobems are combined to produce the final result.
For the sake of simplicity, as in [2], only the division stage will be considered from
now on. Two different values for parameter c~ (see step 2) will be considered:
o~ = 1 (the problem is replicated) and a = 1/2 (the problem is halved).

The execution of a binomial tree on a two-dimensional mesh can be specified
in terms of the embedding of the tree onto the mesh. Two different embeddings
were proposed in [2]: the Reflecting mapping and the Growing mapping. It was
shown that the Reflecting mapping is optimal for wormhole routing since the
communications are carried out without conflicts in the use of the mesh links.
On the other hand, the Growing mapping is close to the optimal under store-
and-forward routing. These performance properties were derived assuming a
fixed-root scenario, that is, the root of the tree is always assigned to the same
mesh node.

1053

3 Extending the Reflecting and Growing Mappings
to the Arbitrary-Root Scenario

In the following, we consider the case in which the divide-and-conquer algorithm
can be started at an arbitrary node (a, b) of the mesh (this is called the arbitrary-
root scenario).

We have first considered two straightforward approaches to extend the Re-
flecting and Growing mappings to the arbitrary-root scenario. In approach A
we build a binomial tree which is an isomorphism of the binomial tree used in
[2] for the fixed-root scenario (every label of the new tree is obtained by a fixed
permutat ion of the bits in the old label). The isomorphism is defined so that the
root of the binomial tree is mapped (by the corresponding embedding Reflecting
or Growing) onto node (a, b). In approach B, the whole problem is first moved
from node (a, b) to the starting node according to the original proposal (for the
fixed-root scenario). These approaches will be compared with our proposal, that
is described in the next section.

4 A New Approach for the Arbitrary-Root Scenario

Our approach to perform a divide-and-conquer computat ion on a mesh, under
the arbitrary-root scenario is inspired in the technique proposed in [1] to exe-
cute a certain type of parallel algorithms (which will be referred to as CC-cube
algorithms) onto multidimensional meshes and tori.

A d-dimensional CC-cube algorithm consists in 2 d processes which cooper-
ate to perform a certain computation and communicate using a d-dimensional
hypercube topology (the dimensions of the hypercube will be numbered from 0
to d - 1). The operations performed by every process in the CC-cube can be
expressed as follows:

do i=O, d-1
compute
exchange information with neighbour in dimension i

enddo

The above case corresponds to a CC-cube which uses the dimensions of the
hypercube in increasing order. However, any other ordering in the use of the
dimensions is also allowed in CC-cubes.

A CC-cube can executed in a mesh multicomputer by using an appropriate
embedding. In particular, the standard and xor embeddings were proposed to
map the CC-cube onto a multidimensional meshes and tori respectively. The
properties of both embeddings were extensively analyzed in [1, 3].

A divide-and-conquer algorithm can be regarded as a particular case of CC-
cube algorithm. This particular case will be referred as DC-cube (from Divide-
and-Conquer) and has the following peculiarities with regard to CC-cubes:

- a) In every iteration, only a subset of the processes are active (all the pro-
cesses are active in every iteration of a CC-cube).

1054

8 9

Fig. 1. The four iterations of a 4-dimensional DC-cube starting at process 0 and using
the hypercube dimensions in ascending order.

- b) Communicat ion between neighbour nodes is always unidirectional (in-
stead of the bidirectional exchange used by CC-cubes).

A particular DC-cube is characterized by: (a) a process which is responsible
for start ing the divide-and-conquer algorithm, and (b) a certain ordering of the
hypercube dimensions, which determine the order in which the processes of the
DC-cube are activated. Figure 1 shows an example of a 4-dimensional DC-cube
star t ing at process 0, and using the dimensions in ascending order. In this figure,
the arrows represent the communications that are carried out in every iteration
of the DC-cube. Finally, it can be shown tha t a binomial tree with the root
labelled as l is equivalent to a d-dimensional DC-cube initiated at process l and
using the hypercube dimensions in descending order.

The s tandard embedding has been proposed to map a 2k-dimensional hyper-
cube onto a 2 k • 2 k mesh. The function S which maps a node i (i C [0, 22k - 1])
of the hypercube onto a node (a, b) (a, b E [0, 2 k - 1]) of the mesh is defined as1:

S(i) = ([~'~] , i m ~ 2k) (1)

The properties of the standard embedding that are more relevant to this
paper are: a) It is an embedding with constant distances (this proper ty means
tha t the neighbors in dimension i of the hypercube are found at a constant
distance in the mesh, for any pair of neighbor nodes, and b) It has a minimal
average distance. Property (a) is very at tract ive for the purpose of using the
embedding on the arbi trary-root scenario. Proper ty (b) is a t t ract ive from the
performance point of view.

To start a divide-and-conquer algorithm from an arbi t rary node (a, b) of the
wormhole mesh, we use a DC-cubeinitiated at process S - l ((a , b)) = a . 2 k + b,
and using the dimensions of the hypercube in descending order. It is easy to see
tha t the s tandard embedding of such a DC-cube is conflict free, and therefore
the approach is optimal. The formal proof of this property is very similar to the

1 The standard embedding can be easily extended to the general case of C-dimensional
meshes. This extension is however out of the scope of this paper.

1055

Table 1. Comparision of approaches

[t~ I tr (general c~) [tr (a = 1) I te (c~ = 0.5)
_ 4 " , (2 0 t 2 ~ k - - l - - 1 2k-l-1 2 ~- (2 k -t- 1 - - 2-~_1) GA 2 T M - 2 (~ + ~)2k-1 + (~3 ,_ ~ , , , 3 / 2c~ 2 --1

1 3 Ge 3" 2 k-1 - 1 2 a-1 - 1 -t- c~ -I- c~ 2 -t- (o! 3 -t- c~ 4) (2~ 3 - 2 k - 1 - - 1 2 k-1 -t- g +

S 2 k-l-1 -- 2 (0~--"i- O~2"21r 2-"-ff~l 2k+l -- 2 2-3(1 -- 2 -~-)

proof given in [2] for the case of the Reflecting mapping under the fixed-root
scenario.

To start a divide-and-conquer algori thm from an arbi trary node (a, b) of the
store-and-forward mesh, we use a De-cube initiated at process S - l ((a , b)) =
a �9 2 k -l- b, and using the dimensions of the hypercube in ascending order. In
this way, the distances corresponding to the first i terations of the computa t ion
(involving larger messages) are smaller.

5 C o m p a r i s o n o f A p p r o a c h e s a n d C o n c l u s i o n s

As a general consideration, it can be said that the s tandard embedding is signif-
icantly simpler than both Reflecting and Growing mapping.

When considering the wormhole arbi t rary-root scenario, both the approach
A for Reflecting mapping and the s tandard embedding of DC-cubes are opt imal .

The comparison of approaches for the store-and-forward arbi t rary-root sce-
nario are summarized in table 1, in terms of the average communicat ion cost
(GA for approach A, GB for approach B and S for the s tandard embedding of
DC-cube). The average cost GA is defined as:

] 2k--1 2k--1

a A = c ~ , (2)
a----0 b=0

where G a'b is the cost of the division stage when the computa t ion is initiated at
node (a, b). This cost is defined in terms of the s tar tup cost incurred in every
communicat ion between neighbor nodes (denoted by ts) and the transmission
t ime per message size unit (denoted by te). The average costs GB and S are
defined in a similar way. Two particular cases of the term affecting te are distin-
guished, corresponding to a = 1 and c~ =- 0.5.

The expressions in table 1 can be compared in two different cases. In the
"small volume" case, the communicat ion cost is assumed to be dominated by
the te rm affecting ts (this will happen when ts/te is large and /or the problem
is small). In the "large volume" case, the cost is assumed to be dominated by
the t e rm affecting te (this will happen when ~ / t~ is small and/or the problem
is large).

The conclusions drawn from table 1 are:

- a) In the "small volume" case, approach B is the best, since: GA = S =
(4/3)GB.

1056

- b) In the "large volume" case and c~ = 1, the conclusion is exactly the same
as case (a)

- c) In the "large volume" case and a = 0.5, approach S is significantly bet ter
than the rest, since:

Note that cases (a) and (c) are expected to be the most frequent since a
parallel computer is targeted to solve large problems. Besides, they are also the
most relevant since they may be very t ime consuming.

Note that in ease (c) the improvement of the s tandard embedding of DC-cube
over approaches A and B is proportional to the number of nodes and therefore
it is very high for large systems.

R e f e r e n c e s

1. Gonz~lez, A., VMero-Garcfa, M., Dfaz de Cerio L.: Executing Algorithms with Hy-
percube Topology on Torus Multicomputers. IEEE Transactions on Parallel and
Distributed Systems 8 (1995) 803-814

2. Lo, V., Rajopadhye, S., Telle, J.A.: Parallel Divide and Conquer on Meshes. IEEE
Transactions on Parallel and Distributed Systems 10 (1996) 1049-1057

3. Matic, S.: Emulation of Hypercube Architecture on Nearest-Neighbor Mesh-
Connected Processing Elements. IEEE Transactions on Computers 5 (1990) 698-700

4. Valero-Garcfa, M., Gonzglez, A., Dfaz de Cerio, L., Royo, D.: Divide-and-Conquer
Algorithms on Two-Dimensional Meshes. Research Report UPC-DAC-1997-30,
http ://www. ac .upc. es/recerca/report s/INDEX 1997DAC. html

