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Abs t r ac t .  Serialisation can occur when many simultaneous accesses are 
made to a single node in a distributed shared-memory multiprocessor. 
In this paper we investigate routing read requests via an intermediate 
proxy node (where combining is used to reduce contention) in the pres- 
ence of finite message buffers. We present a reactive approach, which 
invokes proxying only when contention occurs, and does not require the 
programmer or compiler to mark widely-shared data. Simulation results 
show that the hot-spot contention which occurs in pathological exam- 
ples can be dramatically reduced, while performance on well-behaved 
applications is unaffected. 

1 I n t r o d u c t i o n  

Unpredictable performance anomalies have hampered  the acceptance of cache- 
coherent non-uniform memory  access (ccNUMA) architectures. Our a im is to 
improve performance in certain pathological cases, without reducing perfor- 
mance on well-behaved applications, by reducing the bottlenecks associated with 
widely-shared data.  This paper  moves on from our initial work on proxy pro- 
tocols [1], eliminating the need for application programmers  to identify widely- 
shared data.  

Each processor's memory  and cache is managed by a node controller. In 
addition to local memory  references, the controller must  handle requests arriving 
via the network from other nodes. These requests concern cache lines currently 
owned by this node, cache line copies, and lines whose home is this node (i.e. the 
page holding the line was allocated to this node, by the operating system, when 
it was first accessed). In large configurations, unfortunate ownership migrat ion 
or home allocations can lead to concentrations of requests at part icular  nodes. 
This leads to performance being limited by the service rate (occupancy) of an 
individual node controller, as demonstra ted by Holt et al. [6]. 

Our proxy protocol, a technique for alleviating read contention, associates 
one or more proxies with each da ta  block, i.e. nodes which act as intermediaries 
for reads [1]. In the basic scheme, when a processor suffers a read miss, instead 
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Fig. 1. Contention is reduced by routing reads via a proxy 

of directing its read request directly to the location's home node, it sends it 
to one of the location's proxies. If the proxy has the value, it replies. If  not, it 
forwards the request to the home: when the reply arrives it can be forwarded to 
all the pending proxy readers and can be retained in the proxy's  cache. The main  
contribution of this paper is to present a reactive version, which uses proxies only 
when contention occurs, and does not require the application p rogrammer  (or 
compiler) to identify widely-shared data.  

The rest of the paper  is structured as follows: reactive proxies are introduced 
in Section 2. Our simulated architecture and experimental  design are outlined in 
Section 3. In Section 4, we present the results of simulations of a set of s tandard  
benchmark  programs. Related work is discussed in Section 5, and in Section 6 
we summarise  our conclusions and give pointers to further work. 

2 R e a c t i v e  P r o x i e s  

The severity of node controller contention is both application and architecture 
dependent [6]. Controllers can be designed so that  there is mult i - threading of 
requests (e.g. the Sun S3.mp is able to handle two simultaneous transactions [12]) 
which slightly alleviates the occupancy problem but does not eliminate it. Some 
contention is inevitable, and will increase the latency of transactions. The  key 
problem is that  queue lengths at controllers, and hence contention, are non- 
uniformly distributed around the machine. 

One way of reducing the queues is to distribute the workload to other node 
controllers, using them as proxies for read requests, as illustrated in Fig. 1. When 
a processor makes a read request, instead of going directly to the cache line's 
home, it is routed first to another node. If  the proxy node has the line, it replies 
directly. I f  not, it requests the value from the home itself, allocates it in its own 
cache, and replies. Any requests for a particular block which arrive at a proxy 
before it has obtained a copy from the home node, are added to a dis t r ibuted 
chain of pending requests for that  block, and the reply is forwarded down the 
pending chain, as illustrated in Fig. 2. It  should be noted that  write requests are 



1064 

(a) First request to proxy has to be forwarded to the home node: 
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(c) Data is passed to each client on the pending chain: 
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(takeshared) 

6. data supplied to Client 1 
(takeshared) ~ ~ o x y ~  

~ / ~ 5 .  data supplied to the proxy 
(take_shared) 

Fig. 2. Combining of proxy requests 

not affected by the use of proxies, except for the additional invalidations that  
may be needed to remove proxy copies (which will be handled as a mat te r  of 
course by the underlying protocol). 

The choice of proxy node can be at random, or (as shown in Fig. 1) on the 
basis of locality. To describe how a client node decides which node to use as a 
proxy for a read request, we begin with some definitions: 

- 7): the number of processing nodes. 
- 7/(/): the home node of location l. This is determined by the operating 

system's memory management policy. 
- .MPC: the number of proxy clusters, i .e. the number of clusters into which 

the nodes are partit ioned for proxying (e.g. in Fig. 1, H7)C=2).  The choice 
of XT)C depends on the balance between degree of combining and the length 
of the proxy pending chain. A/'7)C=I will give the highest combining rate, 
because all proxy read requests for a particular data  block will be directed 
to the same proxy node. As A/'PC increases, combining will reduce, but the 
number of clients for each proxy will also be reduced, which will lead to 
shorter proxy pending chains. 
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- 7)C$(C): the set of nodes which are in the cluster containing client node 
C. In this paper, 7)C8(C) is one of AfPC disjoint clusters each containing 
P/AfT)C nodes, with the grouping based on node number. 

- 7)H(l, C) the proxy node chosen for a given client node (C) when reading 
location 1. We use a simple hash function to choose the actual proxy from 
the proxy cluster 7)C$(C). If)Off(l,  C) = C, or PAl(l, C) = 7/(/), then client 
C will send a read request directly to 7/(l) 

The choice of proxy node is, therefore, a two stage process. When the system 
is configured, the nodes are partitioned into AfT)C clusters. Then, whenever a 
client wants to issue a proxy read, it will use the hashing function 7)Af(l, C) to 
select one proxy node from PCS(C). This mapping ensures that  requests for a 
given location are routed via a proxy (so that  combining occurs), and that  reads 
for successive data  blocks go to different proxies (as illustrated in Fig. l(c)).  This 
will reduce network contention [15] and balance the load more evenly across all 
the node controllers. 

In the basic form of proxies, the application programmer uses program di- 
rectives to mark data  structures: all other shared data  will be exempt from 
proxying [1]. If the application programmer makes a poor choice, then the over- 
heads incurred by proxies may outweigh any benefits and degrade performance. 
These overheads include the extra work done by the proxy nodes handling the 
messages, proxy node cache pollution, and longer sharing lists. In addition, the 
programmer may fail to mark data structures that  would benefit from proxying. 

Reactive proxies overcome these problems by taking advantage of the finite 
buffering of real machines. When a remote read request reaches a full buffer, 
it will immediately be sent back across the network. With the reactive proxies 
protocol, the arrival of a buffer-bounced read request will trigger a proxy read 
(see Fig. 3). This is quite different to the basic proxies protocol, where the user 
has to decide whether all or selected parts of the shared data  are proxied, and 
proxy reads are always used for data  marked for proxying. Instead, proxies are 
only used when congestion occurs. As soon as the queue length at the destination 
node has reduced to below the limit, read requests will no longer be bounced 
and proxy reads will not be used. 
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The repeated bouncing of read requests which can occur with finite buffers 
leads to the possibility of deadlock: the underlying protocol has to detect the 
continuous re-sending of a remote read request, and eventually send a higher 
priority read request which is guaranteed service. Read requests from proxy 
nodes to home nodes will still be subject to buffer bouncing, but the combining 
and re-routing achieved by proxying reduce the chances of a full input buffer at 
the home node. 

The reactive proxy scheme has the twin virtues of simplicity and low over- 
heads. No information needs to be held about past events, and no decision is 
involved in using a proxy: the protocol state machine is just set up to trigger a 
proxy read request in response to the receipt of a buffer-bounced read request. 

3 S i m u l a t e d  A r c h i t e c t u r e  a n d  E x p e r i m e n t a l  D e s i g n  

In our execution-driven simulations, each node contains a processor with an 
integral first-level cache (FLC), 3~ large second-level cache (SLC), memory  (DRAM), 
and a node controller (see Fig. 4). The node controller receives messages from, 
and sends messages to, both the network and the processor. The SLC, DRAM, and 
the node controller are connected using two decoupled buses. This decoupled bus 
arrangement allows the processor to access the SLC at the same time as the node 
controller accesses the DRAM. Table 1 summarises the architecture. 

We simulate a simplified interconnection network, which follows the the LogP 
model [3]. We have parameterised the network and node controller as follows: 

- L: the latency experienced in each communication event, 10 cycles for long 
messages (which include 64 bytes of data, i.e. one cache line), and 5 cycles 
for all other messages. This represents a fast network, comparable to the 
point-to-point latency used in [11]. 

- o: the occupancy of the node controller. Like Holt et al. [6], we have adapted 
the LogP model to reeognise the importance of the occupancy of a node con- 
troller, rather than just the overhead of sending and receiving messages. The 
processes which cause occupancy are simulated in more detail (see Table 2). 

- g: the gap between successive sends or receives by a processor, 5 cycles. 
- P: the number of processor nodes, 64 processing nodes. 

We limit our message buffers to eight for read requests. There can be more 
messages in an input buffer, but once the queue length has risen above eight, 
all read requests will be bounced back to the sender until the queue length has 
fallen below the limit. This is done because we are interested in the effect of 
finite buffering on read requests rather than all messages, and we wished to be 
certain that  all transactions would complete in our protocol. The queue length 
of V ~  is an arbitrary but reasonable limit. 

Each cache line has a home node (at page level) which: either holds a valid 
copy of the line (in SLC and/or  DRAM), or knows the identity of a node which 
does have a valid copy (i.e. the owner); has guaranteed space in DRAM for the 
line; and holds directory information for the line (head and state of the sharing 
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Fig. 4.  The  architecture of  a node  

T a b l e  1. Detai ls  of  the s imulated  architecture 

CPU 

Instruction cache 
First level da ta  cache 

Second-level cache 

CPI 1.0 
Instruction set based on DEC Alpha 
All instruction accesses assumed primary cache hits 
Capacity 8 Kbytes 
Line size 64 bytes 
Direct mapped, write-through 
Capacity 4 Mbytes 
Line size 64 bytes 
Direct mapped, write-back 

DRAM Capac i ty  Infinite 
Page size 8 Kbytes 

Node controller Non-pipelined 
Service time and occupancy See Table 2 
Cycle time lOns 

Interconnection network Topology full crossbar 

Cache coherence protocol 
Incoming message queues 8 read requests 
Invalidation-based, sequentially-consistent 
ccNUMA, home nodes assigned to first node to refer- 
ence each page (i.e. "first-touch-after-initialisation"). 
Distributed directory, using singly-linked sharing list 
Based on the Stanford Distributed-Directory Protocol, 
described by Thapar  and Delagi [14] 

T a b l e  2 .  L a t e n c i e s  of  t h e  m o s t  i m p o r t a n t  n o d e  a c t i o n s  

operation 
Acquire SLC bus 
Release SLC bus 
SLC lookup 
SLC line access 
Acquire MEM bus 
Release MEM bus 
DRAM lookup 
DRAM line access 
Ini t ia te  message send 

t i m e  (cycles) 
2 
i 
6 
18 
3 
2 
20 
24 
5 
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B arnes  
CFD 
F F T  
FMM 
G E  
Ocean-Con t ig  
Ocean-Non-Con t i  
Wate r -Nsq  

Table 3. Benchmark applications 

p r o b l e m  s i ze  

64 x 64 grid 
64K points  

8K part icles  
512 x 512 m a t r i x  
258 x 258 ocean 
258 x 258 ocean  

512 molecules 

s h a r e d  d a t a  m a r k e d  for  bas ic  p r o x y l n  

all 
all 
all 

f_array (par t  of G_Memory)  
ent i re  m a t r i x  

q_multi and rhs_multi  
fields, fields2, wrk,  and f rcng 

VAR and P F O R C E S  

list). The distributed directory holds the identities of nodes which have cached a 
particular line in a sharing chain, currently implemented as a singly-linked list. 

The directory entry for each data  block provides the basis for maintaining 
the consistency of the shared data. Only one node at a time can remove entries 
from the sharing chain (achieved by locking the head of the sharing chain at 
the home node), and messages which prompt changes to the sharing chain are 
ordered by their arrival at the home node. This mechanism is not affected by 
the protocol additions needed to support proxies. 

Proxy nodes require a small amount of extra store to be added to the node 
controller. Specifically we need to be able to identify which data  lines have out- 
standing transactions (and the tags they refer to), and be able to record the 
identity of the head of the pending proxy chain. In addition, the node controller 
has to handle the new proxy messages and state changes. We envisage imple- 
menting these in software on a programmable node controller, e.g. the MAGIC 
node controller in Stanford's FLASH [9], or the SCLIC in the Sequent NUMA-Q [10]. 

The benchmarks and their parameters are summarised in Table 3. GE is a 
simple Gaussian elimination program, similar to that  used by Bianchini and 
LeBlanc in their study of eager combining [2]. We chose this benchmark because 
it is an example of widely-shared data. CFD is a computat ional  fluid dynam- 
ics application, modelling laminar flow in a square cavity with a lid causing 
friction [13]. We selected six applications from the SPLASH-2 suite, to give a 
cross-section of scientific shared memory applications [16]. We used both Ocean 
benchmark applications, in order to study the effect of proxies on the "tuned 
for data  locality" and "easy to understand" variants. Other work which refers 
to Ocean can be assumed to be using Ocean-Contig. 

4 E x p e r i m e n t a l  R e s u l t s  

In this work, we concentrate on reactive proxies, but compare the results with 
basic proxies (which have already been examined in [1]). The performance results 
for each application are presented in Table 4 in terms of relative speedup with 
no proxying (i.e. the ratio of the execution time for 64 processing nodes to the 
execution time running on 1 processor), and percentage changes in execution 
time when proxies are used. The problem size is kept constant. 

The relative changes results in Fig. 5 show three different metrics: 
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Table 4. Benchmark performance for 64 processing nodes 

a p p l i c a t i o n s  

Barnes 

CFD 

FFT 

FMM 

GE 

Ocean-Contig 

Ocean-Non-Contig 

Water-Nsq 

re la t i ve  I I % c h a n g e  in e x e c u t i o n  t i m e  (--[- is b e t t e r ,  
s p e e d u p  p r o x y  - " = 

n o p r o x * e s  t y p e  ~ % f ~  ---- 1 6 t ~  8 

43.2 basic  0.0 -0.1 0.0 0.0 -0.2 +0 .3  -0.2 -0.1 
reactive +0.3  +0.2  +0 .3  +0.2  +0.1 -0.1 0.0 +0 .3  

30.6 basic  +6.6 +7 .7  +6.4  +8 .3  +6 .7  +5 .8  +6 .0  +10 .2  
reactive +5.6  +5.4  +4 .7  +4.5  +5.6  +4.1 +4.1  +4 .8  

47.4 basic +9 .3  +9.0  +9 .8  +9 .4  +9.2  +8 .8  +8 .9  +8 .9  
reactive +ii,5 +11 +10.8 +10.8 +II.i +ii.6:+11.0 +10.6 

36.1 basic +0.2  +0.2 +0.2  +0.2  +0.2  +0,2 +0.2  +0 .2  
reactive +0.4  +0.3  +0 .3  +0 .4  +0 .3  +0 .4  +0 .3  +0 .3  

I 

22.0 basic  I +28 .7  +28 .7  +28 .7  ~ +28 .7  +28 .7  +28 .8  [ +28 .8  +28 .7  
reactive +23.3 +22.9 +22.3 +21.4 +21.5 +21.4 +21.7 +21.5 

48.9 basic -3.2 +2.6 +0.1 -0.2 -0.8 -2.0 -2.1 -1.8 
reactive -0.2 0.0 -0 . i  -0.3 +0.2  +2  +1 .3  +2.1  

50.5 basic -0.3 +i .6 -i .7 +4.1 +i.0 -0.4 +0.2 +4.2 
reactive +3.1 +1.4 +1.4 +0.8 +5.1 +1.8 +1.2 +5 

55.5 basic -0.7 -0.6 -0.6 -0.5 -0.5 -0.5 -0,7 -0.5 
reactive +0.2  +0.2  +0.2  +0.2  +0.2  +0.2  +0.1  +0 .2  

- m e s s a g e s :  the ratio of  the total number of messages to the total without  
proxies, 

- e x e c u t i o n  t i m e :  the ratio of the execution t ime (excluding startup) to the 
execution time (also excluding startup) without  proxies. 

- q u e u e i n g  de lay :  the ratio of  the total t ime that messages spend waiting for 
service to the total without proxies, and 

The message ratios shown in Fig. 6 are: 

- p r o x y  h i t  ra te:  the ratio of the number of proxy read requests which are ser- 
viced directly by the proxy node, to the total number of proxy read requests 
(in contrast, a proxy miss would require the proxy to request the data from 
the home node),  
r e m o t e  r e a d  de lay :  the ratio of the delay between issuing a read request and 
receiving the data, to the same delay when proxies are not used. 

- b u f f e r  b o u n c e  ra t io :  the ratio of the total number of buffer bounce messages 
to read requests. This gives a measure of how much bouncing there is for an 
application. This ratio can go above one, since only the initial read request 
is counted in that total,  i . e .  the retries are excluded. 

- p r o x y  r e a d  ra t io :  the ratio of  the proxy read messages to read requests - this 
gives a measure of how much proxying is used in an application. 

The first point to note from Table 4 is that there is no overall "winner" 
between basic and reactive proxies, in that neither policy improves the perfor- 
mance of all the applications for all values of proxy clusters. Looking at the 
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Fig. 5. Relative changes for 64 processing nodes with reactive proxies 

results for different values of X~C,  for basic proxies there is no value which has 
a positive effect on the performance of M1 the benchmarks. However, for reactive 
proxies, there are two proxy cluster values that  improve the performance of all 
the benchmarks, i.e. A;PC=5 and 8 achieve a balance between combining, queue 
distribution, and length of the proxy pending chains. Reactive proxies may not 
always deliver the best performance improvement, but  by providing stable points 
for A/'7~C they are of more use to system designers. It should also be noted that ,  
in general, using reactive proxies reduces the number of messages, because they 
break the cycle of re-sending read messages in response to a finite buffer bounce 
(see Fig. 5). 

Looking at the individual benchmarks: 

B a r n e s .  In general, this application benefits from the use of reactive prox- 
ies. However, changing the balance of processing by routing read requests via 
proxy nodes can have more impact than the direct effects of reducing home node 
congestion. Two examples illustrate this: when .MPC=6 for basic proxies, load 
miss delay is the same as with no proxies, store miss delay has increased slightly 
from the no proxy case, yet a reduction of 0.4% in lock and barrier delays results 
in an overall performance improvement of 0.3%. Conversely, for reactive proxies 
when A/'?)C-:6, the load and store miss delays are the same as when proxies are 
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for 64 processing nodes with reactive proxies 

not used, but a slight 0.1% increase in lock delay gives an overall performance 
degradation of -0.1%. 

C F D .  This application benefits from the use of reactive proxies, with perfor- 
mance improvements in the range 4.1% to 5.6%. However, the improvements are 
not as great as those obtained with basic proxies. The difference is attributable 
to the delay in triggering each reactive proxy read: for this application it is bet- 
ter to use proxy reads straight away, rather than waiting for read requests to be 
bounced. It should also be noted that the proxy hit rate oscillates, with peaks 
at Af7~C=2,4,8 (see Fig. 6). This is due to a correspondence between the chosen 
proxy node and ownership of the cache line. 

F F T .  This shows a marked speedup when reactive proxies are used, of be- 
tween 10.6% and 11.6%. The number of messages decreases with proxies because 
the buffer bounce ratio is cut from a severe 0.7 with no proxies. The mean queue- 
ing delay drops down as the number of proxy clusters increases, reflecting the 
benefit of spreading the proxy read requests. However, this is balanced by a slow 
increase in the buffer bounce ratio, because as more nodes act as proxy there 
will be more read requests to the home node, and these read requests will start 
to bounce as the number of messages in the home node's input queue rises to 
v ~  and above. 
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F M M .  There is a marginal speedup compared with no proxies (between 
0.3% and 0.4%). This is as expected given only the f_array (part of G_Memory) 
is known to be widely-shared, which was why it was marked for basic proxies. 
However, the performance improvement is slightly better than that  achieved 
using basic proxies, so the reactive method dynamically detects opportunities 
for read combining which were not found by code inspection and profiling tools. 

G E .  This application, which is known to exhibit a high level of sharing of the 
current pivot row, shows a large speedup in the range 21.4% to 23.2%. However, 
the improvement is not as good as that obtained using basic proxies. This was to 
be expected, because proxying is no longer targeted by marking widely-shared 
data  structures. Instead proxying is triggered when a read is rejected because 
a buffer is full, and so there will be two messages (the read and buffer bounce) 
before a proxy read request is sent by the client. It should also be noted that  
the execution t ime increases as the number of proxy clusters increases. As the 
number of nodes acting as proxy goes up, there will be more read requests (from 
proxies) being sent to the home node, and the read requests are more likely to 
be bounced, as shown by the buffer bounce ratio for GE in Fig. 6. Finally, the 
queueing delay is much higher when proxies are in use. This is because without 
proxies there is a very high level of read messages being bounced (and thus 
not making it into the input queues). With proxies, the proxy read requests are 
allowed into the input queues, which increases the mean queue length. 

O c e a n - C o n t i g .  Reactive proxies can degrade the performance of this appli- 
cation (by up to -0.3% at X~oC=4), but they achieve performance improvements 
for more values of HT)C than the basic proxy scheme. Unlike basic proxies, re- 
active proxies reduce the remote read delay by targeting remote read requests 
that  are bounced because of home node congestion. The performance degrada- 
tion when H;oC=1,3,4 is attributable to increased barrier delays caused by the 
redistribution of messages. 

O c e a n - N o n - C o n t i g .  This has a high level of remote read requests. These 
remote read requests result in a high level of buffer bounces, which in turn invoke 
the reactive proxies protocol. Unfortunately the data  is seldom widely-shared, 
so there is little combining at the proxy nodes, as is illustrated by the low proxy 
hit rates. With N'7)C=4, this results in a concentration of messages at a few 
nodes, overall latency increases, and the execution t ime suffers. For X7)C=5, 
the queueing delay is reduced in comparison to the no proxy case, and this 
has the best execution time. Given these results, we are carrying out further 
investigations into the hashing schemes suitable for the "PN'(I, C) function, and 
the partitioning strategy used to determine PCS(C), to obtain more reliable 
performance for applications such as Ocean-Non-Contig. 

W a t e r - N s q .  Using reactive proxies gives a small speedup compared to no 
proxies (around 0.2%). However, this is better than with basic proxies, where 
performance is always worse (in the range -0.5% to -0.7%, see Table 4). The 
extremely low proxy read ratios shows that  there is very little proxying, but the 
high proxy hit rates indicate that when proxy reads are invoked there is a high 
level of combining. It is encouraging to see that  the proxy read ratio is kept low: 
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this shows that the overheads of proxying (extra messages, cache pollution) are 
only incurred when they are needed by an application. 

To summarise, the results show that for reactive proxies, when the num- 
ber of proxy clusters (N"PC) is set to five or eight, the performance of all the 
benchmarks improves, i.e. they achieve the best balance between combining, 
queue length distribution, and the length of the proxy pending chains in our 
simulated system. This is a very encouraging result, because without mark- 
ing widely-shared data we have obtained sizeable performance improvements for 
three benchmarks (cE, FFT, and CSD), and had no detrimental effect on the other 
well-behaved applications. By selecting a suitable N'7)C for an architecture, the 
system designers can provide a ccNUMA system with more stable performance. 
This is in contrast to basic proxies, where although better performance can 
be obtained for some benchmarks, the strategy relies on judicious marking of 
widely-shared data for each application. 

5 R e l a t e d  W o r k  

A number of measures are available to alleviate the effects of contention for a 
node, such as improving the node controller service rate [11], and combining in 
the interconnection network for fetch-and-update operations [4]. Architectures 
based on clusters of bus-based multiprocessor nodes provide an element of read 
combining since caches in the same cluster snoop their shared bus. Caching extra 
copies of data to speed-up retrieval time for remote reads has been explored for 
hierarchical architectures, including [5]. The proxies approach is different because 
it does not use a fixed hierarchy: instead it allows requests for copies of successive 
data lines to be serviced by different proxies. 

Attempts have been made to identify widely-shared data for combining, in- 
cluding the GLOW extensions to the scI protocol [8, 7]. GLOW intercepts requests 
for widely-shared data by providing agents at selected network switch nodes. 
In their dynamic detection schemes, which avoid the need for programmers to 
identify widely-shared data, agent detection achieves better results than the 
combining of [4] by using a sliding window history of recent read requests, but 
does not improve on the static marking of data. Their best results are with 
program-counter based prediction (which identifies load instructions that suffer 
very large miss latency) although this approach has the drawback of requiring 
customisation of the local node cpus. 

In Bianchini and LeBlanc's "eager combining", the programmer identifies 
specific memory regions for which a small set of server caches are pre-emptively 
updated [2]. Eager combining uses intermediate nodes which act like proxies for 
marked pages, i.e. their choice of server node is based on the page address rather 
than data block address, so their scheme does not spread the load of messages 
around the system in the fine-grained way of proxies. In addition, their scheme 
eagerly updates all proxies whenever a newly-updated value is read, unlike our 
protocol, where data is allocated in proxies on demand. Our less aggressive 
scheme reduces cache pollution at the proxies. 
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6 Conclusions 

This paper has presented the reactive proxy technique, discussed the design and 
implementation of proxying cache coherence protocols, and examined the results 
of simulating eight benchmark applications. We have shown that  proxies benefit 
some applications immensely, as expected, while other benchmarks with no ob- 
vious read contention still showed performance gains under the reactive proxies 
protocol. There is a tradeoff between the flexibility of reactive proxies and the 
precision (when used correctly) of basic proxies. However, reactive proxies have 
the further advantage that a stable value of 3/7)g (number of proxy clusters) 
can be established for a given system configuration. This gives us the desired 
result of improving the performance of some applications, without affecting the 
performance of well-behaved applications. In addition, with reactive proxies, the 
application programmer does not have to worry about the architectural imple- 
mentat ion of the shared-memory programming model. This is in the spirit of the 
shared-memory programming paradigm, as opposed to forcing the programmer 
to restructure algorithms to cater for performance bottlenecks, or marking data  
structures that  are believed to be widely-shared. 

We are currently doing work based on the Ocean-Non-Contig application to 
refine our proxy node selection function (P2((l ,  C)). In addition, we are continu- 
ing our simulation work with different network latency (L) and finite buffer size 
values. We are also evaluating further variants of the proxy scheme: adaptive 
proxies, non-caching proxies, and using a separate proxy cache. 
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