
Shared Control - Supporting Control
Parallel ism Using a SIMD-like Architecture

Nael B. Abu-Ghazaleh I and Philip A. Wilsey 2

1 Computer Science Dept.,
State University of New York
Binghamton, NY 13902-6000

2 Department of ECECS, PO Box 210030
University of Cincinnati,

Cincinnati, Ohio 45221-0030

Abst rac t . SIMD machines are considered special purpose architectures
chiefly because of their inability to support control parallelism. This re-
striction exists because there is a single control unit that is shared at
the thread level; concurrent control threads must time-share the con-
trol unit. We present an alternative model for building centralized con-
trol architectures that better supports control parallelism. This model,
called shared control, shares the control unit(s) at the instruction level
- - in each cycle the control signals for the supported instructions are
broadcast to the PEs. In turn, a PE receive its control by synchronizing
with the control unit responsible for its current instruction. There are a
number of architectural issues that must be resolved. This paper identi-
fies some of these issues and suggests solutions to them. An integrated
shared-eontrol/SIMD architecture design (SharC) is presented and used
to demonstrate the performance relative to a SIMD architecture.

1 I n t r o d u c t i o n

Parallel architectures are classified according to their control organization as
Multiple Instruction streams Multiple Data streams (MIMD), or Single Instruc-
tion stream Multiple Data streams (SIMD) machines. MIMD machines have a
distributed control organization: each Processing Element (PE) has a control unit
and is able to sequence a control thread (program segment) locally. Conversely,
SIMD machines have a centralized control organization: the PEs share one con-
trol unit. A single thread executes on the control unit, broadcasting instructions
to the PEs for execution. Because the control is shared and the operation is
synchronous, SIMD PEs are small and inexpensive.

In a centralized control organization (e.g., SIMD [11], [14] and MSIMD [5],
[18] machines), an arbitrary number of PEs share a fixed number of control units.
Traditionally, sharing of control has been implemented at the thread level; the
PEs following the same thread concurrently share a control unit. The presence
of application-level control-parallelism causes the performance of this model to
drop (proportionately to the degree of control parallelism). This drop occurs

1090

because the control units are time-shared among the threads, with only the
set of PEs requiring the currently executing control thread actively engaged in
computation. General parallel applications contain control parallelism [3], [7]
and, therefore, perform poorly on SIMD machines. Accordingly, SIMD machines
have fallen out of favor as a platform for general-purpose parallel processing [10],
[15].

This paper presents Shared Control: a model for constructing centralized con-
trol architectures that better supports control-parallelism. Under shared control,
the control units are shared at the instruction (or atomic function) level. Each
PE is assigned a local program and PEs executing the same instruction, but not
necessarily the same thread, receive their control from the same control unit.
A control unit is assigned to each instruction, or group of similar instructions,
in the instruction set and, thus, broadcasts the microinstruction sequences to
implement that instruction repeatedly to the PEs. Each PE receives its control
by synchronizing with the control unit corresponding to its current instruction.
Thus, all the PEs are able to advance their computation concurrently, regardless
of the degree of control parallelism present in the application. The similarity of
the hardware to the SIMD model allows the SIMD mode to be supported at
little additional cost. With the ability to support control-parallelism efficiently,
the major drawback of the SIMD model is overcome.

Shared control is a unique architectural paradigm; the classic association be-
tween control units and threads, present in all Von-Neumann based architectures,
does not exist in this model. Therefore, it introduces several architectural issues
that are unique to it. This identifies some of these issues and discusses solutions
to them. The feasibility of the solutions is demonstrated using a SIMD/shared-
control architecture design, Sha rC . Using a detailed simulator of S h a r C , the
performance of the model is studied for some irregular problems. The remainder
of this paper is organized as follows. Section 2 introduces the shared control
model. Section 3 presents some architectural issues relating to a general shared
control implementation. Section 4 presents a case study of a shared-control ar-
chitecture. In Section 5, the performance of the architecture is studied. Finally,
Section 6 presents some concluding remarks.

2 S h a r e d C o n t r o l

A shared control architecture is a centralized control architecture where the con-
trol units are shared at the operation level. PEs executing the same operation,
but not necessarily the same thread, may share the use of the same control
unit. An overview of a shared control machine is shown in Figure 1. The con-
trol program (microprogram) implementing the instruction set for the shared
control mode is partitioned across a number of tightly coupled control units.
This partitioning is static; it is carried out at architecture design time. Each
control unit repeatedly broadcasts the microprogram sequence assigned to it to
the PEs. A P E receives its control from the control unit associated with its cur-
rent instruction. The PE synchronizes with the control unit by selecting the set

ntrcl)~ unit \ I t /

{Control

I

' !
(Controq.~l

--~'~/ rA-~ - ~ q Instruction --~pE~.,, A register

I I" l

@~/ ~mEo~ ~ Instruction - - register

Fig. 1. Overview of a Shared Control Organization

(!etch '~ ~ _ _ / e x - e c . ~
J ~~,~ ~inst. J

--- -~ back to fetch
. ~ /exec.~
~ - - \ i nst" J

represents setting active sets

Fig. 2. Implementation of Several Instructions on a Single Control Unit

1091

of control signals broadcast by that control unit. PEs are able to advance their
computat ion concurrently; thus, MIMD execution is supported.

We first consider the problem of implementing and optimizing shared control
using a single control unit; this is a special case that is needed for the general
solution. Figure 2 shows the single control unit implementation. The control
unit must supply control for all the instructions in every cycle. More precisely,
the control unit sequentially issues all the paths through the microprogram, and
the PEs conditionally participate in the path corresponding to their current
instruction. In the remainder of this section, some of the architectural issues
involved in constructing a single-control unit shared control multiprocessor are
discussed.

Managing the Activity Status: Before every instruction execution stage, the ac-
tivity bits for the PEs that are interested in this stage must be set (represented
by the shaded circles in Figure 2). On SIMD machines setting the activity status
before a conditional region requires the following operations on the PEs: (i) save
current active set, (ii) evaluate the condition, and (iii) set active bit if condition
is true. In addition, at the end of the conditional region the active set saved in

1092

Instruction Register

I Opcode I I

~ Global Activity bit

k-bit immediate activity vector

ooio . . . oooJ

Fig. 3. Activity Set Management

step (i) is restored. The active bit can be tracked by saving the bit directly to an
activity bit stack [13], or by using an activity counter that is incremented to in-
dicate a deeper context [12]. Both schemes have a significant overhead (register
space, as well as several execution steps). Implementing activity management
using the SIMD model adds unacceptable overhead to the shared control cycle
t ime since it is required several times per cycle in shared control.

The condition for the activity of a PE for instruction stage (called the imme-
diate activity) is contained in the opcode field in the instruction register, allowing
the following optimization to be made. The opcode field is decoded into a k-bit
vector (as shown in Figure 3). At the beginning of every instruction segment,
the bit vector is shifted into the immediate activity bit. Thus, instruction i is
decoded into a bit vector consisting of 1 in the i th position and 0 elsewhere,
mirroring the order of the execution regions. Only PEs with a high immediate
activity bit participate in the current instruction segment. The register shift can
be performed concurrently with the execution of each region at no additional
cost; activity management cost is eliminated.
A compositional instruction set: Examining Figure 2), it can be observed that
each PE receives the control for all k instructions, but uses only one. Compo-
sitional instruction sets relax this restriction by allowing the PEs to use any
number of the k instruction segments in each cycle [4]. The output of each exe-
cution region is deposited in a temporary register that serves as an input to the
next one. The output of the last stage is stored back to the final destination.
Thus, an instruction is represented by the subset of the instruction segments
that compose it. Composition can be easily incorporated into the activity man-
agement scheme in Figure 3.

3 G e n e r a l S h a r e d C o n t r o l

A general implementation of the shared control model uses multiple control units
to implement the microprogram for the instruct ion set. There are a number of
architecture issues that are introduced by this model (in addition to the ones

1093

present in the single control unit implementation). The discussion in this section
will cover the range of possible solutions to each issue, rather than consider
specific solutions in detail.

Control I/O pins: At first glance, this is the primary concern regarding the
feasibility of shared control; because the model uses multiple control units, the
width of the broadcast bus and the number of required pins at the PEs may
become prohibitive. Fortunately, the increase in the number of pins is not linear
with the number of control units because: (i) each control unit is responsible
only for an instruction or a group of instructions; (ii) literal fields and register
number fields are not broadcast; they are part of the instruction (they have to
be broadcast in SIMD and MSIMD architectures); and (iii) pins that carry the
same values on different control units throughout their lifetime are routed as a
single physical pin.

The Control Broadcast Network: The control broadcast network is responsible
for delivering the control signals from the control units to the PEs. Tradition-
ally, control broadcast has been a bottleneck on centralized control machines;
solutions to this problem include pipelining of the broadcast [3], and caching the
control units closer to the PEs [16]. With advances in fabrication technology,
there is a trend to move processing to memory [8]. For such systems, the control
units may be replicated per chip, simplifying the control broadcast problem.

Control Unit Synchronization and Balance: The control stream required by each
PE is not supplied on demand as per traditionM computers. Rather, the control
units have to be synchronized such that the control streams are available when
a PE needs them (with minimal waiting time). A possible model to synchronize
the control units is to force them to share a common cycle length, called funda-
mental instruction cycle, determined by the slowest control unit. However, the
instruction cycle t ime may vary widely for the instructions in the instruction
set, forcing long idle times for PEs with short instructions. Fortunately, there
are a number of synchronization models that reduce PE idle time, including: (i)
issuing the long instructions infrequently; (ii) allowing the short instructions to
execute multiple times while the long instruction is executing; and (iii) breaking
long instructions in a series of shorter instructions [2].

Support for Communication and I/O: Support of communication, I /O and other
system functions poses the following problem: the system must provide support
for both SIMD and MIMD operation at a cost that can be justified against the
simple PEs. We focus this discussion on the communication subsystem. There are
two options for the support communication. The first option restricts the sup-
port to the SIMD mode; the more difficult problem of supporting MIMD-mode
communication is side stepped. Restricting communication to SIMD mode is in-
efficient because: (i) all the PEs have to synchronize and switch back to SIMD
if any of them needs to communicate, (ii) because of SIMD semantics, all the
PEs must wait for the PE with the worst path communication; a bottleneck of
synchronous operation when irregular communication patterns are required [6].
Another alternative is to support MIMD operation using an inexpensive net-
work [1].

1094

4 A C a s e S t u d y : S h a r C

In this section we present an overview of the architecture of SharC, a proof-
of-concept shared control architecture [1]. We preface this discussion by noting
that the SharC architecture was designed for possible fabrication within a very
small budget (10,000 US dollars for a 64 PE prototype). The PE chip fits within
the MosIs small chip (a very small chip size with 100 I/O pads); much higher
integration is possible with more aggressive technology. While SharC does not
represent a realistic high-performance design using today's technology, it can
still be used as an impartial model to investigate the shared-control performance
relative to SIMD performance.

Fig. 4. System Overview

Figure 4 presents an overview of the system architecture. The shared control
subsystem consists of 9 control units. The fundamental cycle for all the con-
trol units is 11 cycles, with the exception of the load/store control units which
require 22 cycles. There are 4 PEs per chip sharing a single memory port. Com-
munication occurs using the same memory port as well: 4 cycles of the ll-cyele
fundamental cycle are reserved for the exchange of two message with the network
processor (one each way). Most of the integer operations are mapped to the same
control unit and implemented using composition. The fundamental cycle is 11
cycles long, constrained by the access time of the shared memory/communication
port. If dedicated (non-shared) memory ports are supplied, this length can be
reduced to 4 cycles for most instructions.

As was expected, the number of control pins for the shared control mode
exceeded the number required by SIMD mode. However, the number of pins
only increased from 112 pins for the SIMD mode to 118 pins for the shared
control mode; the increase is small because of reasons discussed in Section 3. The
average number of Clocks Per Instruction (CPI) for the shared control mode is
higher than the CPI for SIMD mode; most SIMD instructions require less than

1095

11 cycles to implement. The reason for the higher CPI is the time required for the
additional fetch required for each instruction, as well as the idle cycles required
to synchronize the control units. Thus, for a pure data-parallel applications, a
SIMD implementation yields better performance than shared control. However,
as the degree of control parallelism increases, the performance of shared control
remains constant, while SIMD performance degrades.

The SHARC communication network is a packet-switched toroidal mesh net-
work, with a chip (4 PEs) at each node sharing a network processor. The network
processor is made simple by using an adaptive deflection routing strategy (no
buffering is necessary) [9]. In many cases, deflection routing results in better per-
formance than oblivious routing strategies (path taken by packet independent
of other packets), because excess traffic is deflected away from congested areas;
creating better network load bMance.

5 P e r f o r m a n c e A n a l y s i s

A detailed simulator of a scalable configuration of the SharC design is used to
study its performance. The model incorporates a structural description of the
control subsystem at the microcode level; it also serves to verify the correctness
of the microcode. The test programs were written using assembly language, and
assembled using a macro assembler. The assembler supports SIMD/SPMD pro-
gramming model; an algorithm is written as a SIMD/SPMD application, and
any region can be executed in either mode (allowing mixed-mode programming).
A transition from SIMD to MIMD operation is initiated explicitly by the SIMD
program (using a special c_raimd instruction). A transition from MIMD back to
SIMD occurs when all the PEs have halted (using a h a l t instruction); imple-
menting a full barrier synchronization.

~eedup Ior 1he 8 e s l C ~

7 - C ~ e e . - - ~ - -
8 - ~Jee. - - - - -

a l , ~ a I . .

~ j . J J ~

. j J

4 le e4 2S6 1024
N u m b e r ol p . ~ c o ~ o m

Fig. 5. Speedup for the N-Queen Problem

Our first example is the N-Queen problem: a classic combinatorial problem
that is easy to express but difficult to solve. The N-Queen problem has recently

1096

SIMD Mode
SPMD Mode - ~ -

1 2 4 Nomber8 of pEs 16 33 64

Fig. 6. Search Competition Algorithm Performance

found applications in optical computing and VLSI routing [17]. We considered
the exhaustive case (find all solutions, rather than find a solution). The N-Queen
problem is highly irregular and not suited to SIMD implementation. Figure 5
shows the performance of the shared control implementation normalized to that
of the SIMD implementation. The SIMD solution was worse than a sequential
solution because it failed to extract any parallelism, but incurred the activity
management overhead. The speedup leveled because the of parallelism present
at the small scales of the problem that were studied is limited.

The second application is a database search competit ion algorithm; an al-
gorithm characteristic of massively parallel database operations. Each PE is
initialized with a segment of a database (sorted by keys), and the PEs search
for keys in their database segment. As the number of PEs is scaled, the size of
the database is scaled (the size of the segment at each PE is kept the same). For
a small number of PEs, there is little control parallelism, and SIMD performs
better than shared control. As the number of PEs is increased, the paths through
the database followed by each PE diverge according to their respective data. The
performance of the SlMD implementation drops with the increased number of
PEs while shared control performance remains constant.

Finally, we consider a parallel case statement with balanced cases (Figure
7). By varying the number of cases in the case statement, the degree of control
parallelism is directly controlled. The instruction mix within the S1MD blocks
generated randomly, with a typical RISC profile comprised of 30% load/store
instructions with branches forced to the next address (allowing for the pipelined
instruction). The blocks are chosen to of balanced lengths (10% variation). The
program was simulated in three different ways: a SIMD implementation, a shared
control (SPMD) implementation, and a mixed mode implementation. The mixed
mode implementation executes the switch statement in the shared control mode,
but executes block A and block B in SIMD.

Figure 8 shows execution times as a function of the number of cases. Not
surprisingly, the performance of the SIMD mode degrades (linearly) with the
increased control parallelism injected by increasing the number of cases. Both

plural p = p_random(1, n);

[SIMD BLOCK A]
switch(p) {

case I: [SIMD BLOCK I];

break ;

case n: [SIMD BLOCK n];
}

[SIMD BLOCK B]

1097

Fig. 7. Parameterized Parallel Branching Region

250O

2OOO

15o0 ~

Exscu~ l imes with Incr~sod Control Parallelism

r

r

r

D ~ D

SIMD Mode i
SPMD Mode
Mixed Mode

Fig. 8. Simulation results for the architecture on a parameterized branching region

the mixed mode and MIMD execution times did not change significantly with
the added control parallelism. The mixed mode implementation is more efficient
than the full shared control implementation because of its superior performance
on the leading and trailing SIMD blocks.

6 C o n c l u s i o n s

SIMD machines offer an excellent price to performance alternative for applica-
tions that fit their restricted control organization. Commercial SIMD machines
with superior price to performance ratio continue to be built for specific appli-
cations. Unfortunately, centralized control architectures (like the SIMD model)
cannot support control parallelism in applications; the control unit has to sequen-
tially broadcast the different control sequences required by each of the control
threads. In this paper, we present a model for building centralized control archi-
tectures that is capable of supporting control parallelism efficiently. The shared
control model is less efficient than the SIMD model on regular code sequences
(it requires an additional instruction fetch, and memory space to hold the task

1098

instructions). When used in conjunction with the SIMD model, irregular regions
of applications can be executed in shared control, extending the utility of the
SIMD model to a wider range of applications.

The shared control model is fundamental ly different from the SIMD model.
Therefore, there are a set of architectural and implementa t ion issues tha t must
be addressed before an efficient shared control implementat ion can be realized.
The performance of S h a r C was studied using a detailed RTL simulator. Appli-
cations were implemented in the SIMD mode, and in the shared control mode.
The performance of the shared control implementat ion was compared to a pure
SIMD implementat ion for several applications (the highly irregular N-queen,
and massively parallel database search algorithms were used). Even at the small
scales of the problems considered, shared control resulted in significant improve-
ment in performance over the pure SIMD implementat ion. Unfortunately, larger
applications (or problem sizes of the studied applications) could not be stud-
ied because: (i) simulating a massively parallel machine on a uniprocessor is
inefficient: the simulation run t ime for the 1024 PE 8-queen problem was in
excess of 20 hours on a SunSparc 100 workstation, and (ii) we do not have a
compiler for the machine; all the examples were writ ten and coordinated in as-
sembly language. Finally, we used a parameterized conditional region benchmark
to demonstra ted tha t shared control is beneficial for applications where even a
small degree of control parallelism is present.

R e f e r e n c e s

1. Abu-Ghazaleh, N. B. Shared Control: A Paradigm for Supporting Control Paral-
lelism on SIMD-like Architectures. PhD thesis, University of Cincinnati, July 1997.
(in press).

2. Abu-Ghazaleh, N. B., and Wilsey, P. A. Models for the synchronization of control
units on shared control architectures. Journal of Parallel and Distributed Comput-
ing (1998). (in press).

3. Allen, J. D., and Schimmel, D. E. The impact of pipelining on SIMD architectures.
In Proc. of the 9th International Parallel Processing Syrup. (April 1995), IEEE
Computer Society Press, pp. 380-387.

4. Bagley, R. A., Wilsey, P. A., and Abu-Ghazaleh, N. B. Composing functional unit
blocks for efficient interpretation of MIMD code sequences on SIMD processors. In
Parallel Processing: CONPAR 94 - VAPP VI (September 1994), B. Buchberger
and J. Volkert, Eds., vol. 854 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 616-627.

5. Bridges, T. The GPA machine: A generally partitionable MSIMD architecture.
In Proceedings of the 3rd Symposium on the Frontiers of Massively Parallel Ar-
chiteeutres (1990), pp. 196--203.

6. Felderman, R., and Kleinrock, L. An upper bound on the improvement of asyn-
chronous versus synchronous distributed processing. In Proceedings of the SCS
Multiconference on Distributed Simulation (January 1990), vol. 22, pp. 131-136.

7. Fox, G. What have we learnt from using real parallel machines to solve real prob-
lems? Tech. Rep. C3P-522, Caltech Concurrent Computation Program, California
Institute of Technology, Pasadena, CA 91125, March 1988.

1099

8. Gokhale, M., Holmes, B., and Iobst, I(. Processing in memory: The Terasys mas-
sively parallel PIM array. IEEE Computer (April 1995), 23 31.

9. Greenberg, A., and Goodman, J. Sharp approximate models of deflection routing
in mesh networks. IEEE Transactions on Communications 41 (3ml. 1993).

10. Hennesy, J. L., and Patterson, D. A. Computer Architecture a Quantitavc Ap-
proach, Second Edition. Morgan Kaufman Publishers Inc., San Mateo, CA, 1995.

11. Hillis, W. D. The Connection Machine. The MIT Press, Cambridge, MA, 1985.
12. Keryell, R., and Paris, N. Activity counter: New optimization for the dynamic

scheduling of SIMD control flow. In 1993 International Conference on Parallel
Processing (Aug. 1993), vol. 2, pp. 184-187.

13. MasPar Computer Corporation. MasPar Assembly Language (MPAS) Reference
Manual. Sunnyvale CA, July 1991.

14. Nickolls, J. The design of the MasPar MP-1. In Proceedings of the 35th IEEE
Computer Society International Conference (1990), pp. 25-28.

15. Parhami, B. SIMD machines: Do they have a significant future? Computer Archi-
tecture News (September 1995), 19-22.

16. Rockoff, T. SIMD instruction caches. In Proceedings of the Symposium on Parallel
Architectures and Algorithms '94 (May 1994), pp. 67-75.

17. Sosic, R., and Gu, J. Fast search algorithms for the N-queens problem. IEEE
Transactions on Systems, Man, and Cybernatics (Nov. 1991), 1572-1576.

18. Weems, C., Riseman, E., and Hanson, A. Image understanding architecture: Ex-
ploiting potential parallelism in machine vision. Computer (Feb 1992), 65-68.

