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Abst rac t .  SIMD machines are considered special purpose architectures 
chiefly because of their inability to support control parallelism. This re- 
striction exists because there is a single control unit that is shared at 
the thread level; concurrent control threads must time-share the con- 
trol unit. We present an alternative model for building centralized con- 
trol architectures that better supports control parallelism. This model, 
called shared control, shares the control unit(s) at the instruction level 
- -  in each cycle the control signals for the supported instructions are 
broadcast to the PEs. In turn, a PE receive its control by synchronizing 
with the control unit responsible for its current instruction. There are a 
number of architectural issues that must be resolved. This paper identi- 
fies some of these issues and suggests solutions to them. An integrated 
shared-eontrol/SIMD architecture design (SharC) is presented and used 
to demonstrate the performance relative to a SIMD architecture. 

1 I n t r o d u c t i o n  

Parallel architectures are classified according to their control organization as 
Multiple Instruction streams Multiple Data  streams (MIMD), or Single Instruc- 
tion stream Multiple Data streams (SIMD) machines. MIMD machines have a 
distributed control organization: each Processing Element (PE) has a control unit 
and is able to sequence a control thread (program segment) locally. Conversely, 
SIMD machines have a centralized control organization: the PEs share one con- 
trol unit. A single thread executes on the control unit, broadcasting instructions 
to the PEs for execution. Because the control is shared and the operation is 
synchronous, SIMD PEs are small and inexpensive. 

In a centralized control organization (e.g., SIMD [11], [14] and MSIMD [5], 
[18] machines), an arbitrary number of PEs share a fixed number of control units. 
Traditionally, sharing of control has been implemented at the thread level; the 
PEs following the same thread concurrently share a control unit. The presence 
of application-level control-parallelism causes the performance of this model to 
drop (proportionately to the degree of control parallelism). This drop occurs 
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because the control units are time-shared among the threads, with only the 
set of PEs requiring the currently executing control thread actively engaged in 
computation.  General parallel applications contain control parallelism [3], [7] 
and, therefore, perform poorly on SIMD machines. Accordingly, SIMD machines 
have fallen out of favor as a platform for general-purpose parallel processing [10], 
[15]. 

This paper presents Shared Control: a model for constructing centralized con- 
trol architectures that  better supports control-parallelism. Under shared control, 
the control units are shared at the instruction (or atomic function) level. Each 
PE is assigned a local program and PEs executing the same instruction, but not 
necessarily the same thread, receive their control from the same control unit. 
A control unit is assigned to each instruction, or group of similar instructions, 
in the instruction set and, thus, broadcasts the microinstruction sequences to 
implement that  instruction repeatedly to the PEs. Each PE receives its control 
by synchronizing with the control unit corresponding to its current instruction. 
Thus, all the PEs are able to advance their computation concurrently, regardless 
of the degree of control parallelism present in the application. The similarity of 
the hardware to the SIMD model allows the SIMD mode to be supported at 
little additional cost. With the ability to support control-parallelism efficiently, 
the major  drawback of the SIMD model is overcome. 

Shared control is a unique architectural paradigm; the classic association be- 
tween control units and threads, present in all Von-Neumann based architectures, 
does not exist in this model. Therefore, it introduces several architectural issues 
that  are unique to it. This identifies some of these issues and discusses solutions 
to them. The feasibility of the solutions is demonstrated using a SIMD/shared- 
control architecture design, Sha rC .  Using a detailed simulator of S h a r C ,  the 
performance of the model is studied for some irregular problems. The remainder 
of this paper is organized as follows. Section 2 introduces the shared control 
model. Section 3 presents some architectural issues relating to a general shared 
control implementation. Section 4 presents a case study of a shared-control ar- 
chitecture. In Section 5, the performance of the architecture is studied. Finally, 
Section 6 presents some concluding remarks. 

2 S h a r e d  C o n t r o l  

A shared control architecture is a centralized control architecture where the con- 
trol units are shared at the operation level. PEs executing the same operation, 
but not necessarily the same thread, may share the use of the same control 
unit. An overview of a shared control machine is shown in Figure 1. The con- 
trol program (microprogram) implementing the instruction set for the shared 
control mode is partitioned across a number of tightly coupled control units. 
This partitioning is static; it is carried out at architecture design time. Each 
control unit repeatedly broadcasts the microprogram sequence assigned to it to 
the PEs. A P E  receives its control from the control unit associated with its cur- 
rent instruction. The PE synchronizes with the control unit by selecting the set 
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of control signals broadcast by that control unit. PEs are able to advance their 
computat ion concurrently; thus, MIMD execution is supported. 

We first consider the problem of implementing and optimizing shared control 
using a single control unit; this is a special case that  is needed for the general 
solution. Figure 2 shows the single control unit implementation. The control 
unit must supply control for all the instructions in every cycle. More precisely, 
the control unit sequentially issues all the paths through the microprogram, and 
the PEs conditionally participate in the path corresponding to their current 
instruction. In the remainder of this section, some of the architectural issues 
involved in constructing a single-control unit shared control multiprocessor are 
discussed. 

Managing the Activity Status: Before every instruction execution stage, the ac- 
tivity bits for the PEs that  are interested in this stage must be set (represented 
by the shaded circles in Figure 2). On SIMD machines setting the activity status 
before a conditional region requires the following operations on the PEs: (i) save 
current active set, (ii) evaluate the condition, and (iii) set active bit if condition 
is true. In addition, at the end of the conditional region the active set saved in 
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step (i) is restored. The active bit can be tracked by saving the bit directly to an 
activity bit stack [13], or by using an activity counter that  is incremented to in- 
dicate a deeper context [12]. Both schemes have a significant overhead (register 
space, as well as several execution steps). Implementing activity management  
using the SIMD model adds unacceptable overhead to the shared control cycle 
t ime since it is required several times per cycle in shared control. 

The condition for the activity of a PE for instruction stage (called the imme- 
diate activity) is contained in the opcode field in the instruction register, allowing 
the following optimization to be made. The opcode field is decoded into a k-bit 
vector (as shown in Figure 3). At the beginning of every instruction segment, 
the bit vector is shifted into the immediate activity bit. Thus, instruction i is 
decoded into a bit vector consisting of 1 in the i th  position and 0 elsewhere, 
mirroring the order of the execution regions. Only PEs with a high immediate  
activity bit participate in the current instruction segment. The register shift can 
be performed concurrently with the execution of each region at no additional 
cost; activity management cost is eliminated. 
A compositional instruction set: Examining Figure 2), it can be observed that  
each PE receives the control for all k instructions, but  uses only one. Compo- 
sitional instruction sets relax this restriction by allowing the PEs to use any 
number of the k instruction segments in each cycle [4]. The output  of each exe- 
cution region is deposited in a temporary register that  serves as an input to the 
next one. The output  of the last stage is stored back to the final destination. 
Thus, an instruction is represented by the subset of the instruction segments 
that  compose it. Composition can be easily incorporated into the activity man- 
agement scheme in Figure 3. 

3 G e n e r a l  S h a r e d  C o n t r o l  

A general implementation of the shared control model uses multiple control units 
to implement the microprogram for the instruct ion set. There are a number of 
architecture issues that  are introduced by this model (in addition to the ones 
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present in the single control unit implementation). The discussion in this section 
will cover the range of possible solutions to each issue, rather than consider 
specific solutions in detail. 

Control I/O pins: At first glance, this is the primary concern regarding the 
feasibility of shared control; because the model uses multiple control units, the 
width of the broadcast bus and the number of required pins at the PEs may 
become prohibitive. Fortunately, the increase in the number of pins is not linear 
with the number of control units because: (i) each control unit is responsible 
only for an instruction or a group of instructions; (ii) literal fields and register 
number fields are not broadcast; they are part of the instruction (they have to 
be broadcast in SIMD and MSIMD architectures); and (iii) pins that  carry the 
same values on different control units throughout their lifetime are routed as a 
single physical pin. 

The Control Broadcast Network: The control broadcast network is responsible 
for delivering the control signals from the control units to the PEs. Tradition- 
ally, control broadcast has been a bottleneck on centralized control machines; 
solutions to this problem include pipelining of the broadcast [3], and caching the 
control units closer to the PEs [16]. With advances in fabrication technology, 
there is a trend to move processing to memory [8]. For such systems, the control 
units may be replicated per chip, simplifying the control broadcast problem. 

Control Unit Synchronization and Balance: The control stream required by each 
PE is not supplied on demand as per traditionM computers. Rather, the control 
units have to be synchronized such that  the control streams are available when 
a PE needs them (with minimal waiting time). A possible model to synchronize 
the control units is to force them to share a common cycle length, called funda- 
mental instruction cycle, determined by the slowest control unit. However, the 
instruction cycle t ime may vary widely for the instructions in the instruction 
set, forcing long idle times for PEs with short instructions. Fortunately, there 
are a number of synchronization models that  reduce PE idle time, including: (i) 
issuing the long instructions infrequently; (ii) allowing the short instructions to 
execute multiple times while the long instruction is executing; and (iii) breaking 
long instructions in a series of shorter instructions [2]. 

Support for Communication and I/O: Support of communication, I /O and other 
system functions poses the following problem: the system must provide support  
for both SIMD and MIMD operation at a cost that  can be justified against the 
simple PEs. We focus this discussion on the communication subsystem. There are 
two options for the support communication. The first option restricts the sup- 
port  to the SIMD mode; the more difficult problem of supporting MIMD-mode 
communication is side stepped. Restricting communication to SIMD mode is in- 
efficient because: (i) all the PEs have to synchronize and switch back to SIMD 
if any of them needs to communicate, (ii) because of SIMD semantics, all the 
PEs must wait for the PE with the worst path communication; a bottleneck of 
synchronous operation when irregular communication patterns are required [6]. 
Another alternative is to support MIMD operation using an inexpensive net- 
work [1]. 
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4 A C a s e  S t u d y :  S h a r C  

In this section we present an overview of the architecture of SharC, a proof- 
of-concept shared control architecture [1]. We preface this discussion by noting 
that the SharC architecture was designed for possible fabrication within a very 
small budget (10,000 US dollars for a 64 PE prototype). The PE chip fits within 
the MosIs small chip (a very small chip size with 100 I/O pads); much higher 
integration is possible with more aggressive technology. While SharC does not 
represent a realistic high-performance design using today's technology, it can 
still be used as an impartial model to investigate the shared-control performance 
relative to SIMD performance. 

Fig. 4. System Overview 

Figure 4 presents an overview of the system architecture. The shared control 
subsystem consists of 9 control units. The fundamental cycle for all the con- 
trol units is 11 cycles, with the exception of the load/store control units which 
require 22 cycles. There are 4 PEs per chip sharing a single memory port. Com- 
munication occurs using the same memory port as well: 4 cycles of the ll-cyele 
fundamental cycle are reserved for the exchange of two message with the network 
processor (one each way). Most of the integer operations are mapped to the same 
control unit and implemented using composition. The fundamental cycle is 11 
cycles long, constrained by the access time of the shared memory/communication 
port. If dedicated (non-shared) memory ports are supplied, this length can be 
reduced to 4 cycles for most instructions. 

As was expected, the number of control pins for the shared control mode 
exceeded the number required by SIMD mode. However, the number of pins 
only increased from 112 pins for the SIMD mode to 118 pins for the shared 
control mode; the increase is small because of reasons discussed in Section 3. The 
average number of Clocks Per Instruction (CPI) for the shared control mode is 
higher than the CPI for SIMD mode; most SIMD instructions require less than 
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11 cycles to implement. The reason for the higher CPI is the time required for the 
additional fetch required for each instruction, as well as the idle cycles required 
to synchronize the control units. Thus, for a pure data-parallel applications, a 
SIMD implementation yields better performance than shared control. However, 
as the degree of control parallelism increases, the performance of shared control 
remains constant, while SIMD performance degrades. 

The SHARC communication network is a packet-switched toroidal mesh net- 
work, with a chip (4 PEs) at each node sharing a network processor. The network 
processor is made simple by using an adaptive deflection routing strategy (no 
buffering is necessary) [9]. In many cases, deflection routing results in better per- 
formance than oblivious routing strategies (path taken by packet independent 
of other packets), because excess traffic is deflected away from congested areas; 
creating better network load bMance. 

5 P e r f o r m a n c e  A n a l y s i s  

A detailed simulator of a scalable configuration of the SharC design is used to 
study its performance. The model incorporates a structural description of the 
control subsystem at the microcode level; it also serves to verify the correctness 
of the microcode. The test programs were written using assembly language, and 
assembled using a macro assembler. The assembler supports SIMD/SPMD pro- 
gramming model; an algorithm is written as a SIMD/SPMD application, and 
any region can be executed in either mode (allowing mixed-mode programming). 
A transition from SIMD to MIMD operation is initiated explicitly by the SIMD 
program (using a special c_raimd instruction). A transition from MIMD back to 
SIMD occurs when all the PEs have halted (using a h a l t  instruction); imple- 
menting a full barrier synchronization. 
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Fig. 5. Speedup for the N-Queen Problem 

Our first example is the N-Queen problem: a classic combinatorial problem 
that is easy to express but difficult to solve. The N-Queen problem has recently 
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found applications in optical computing and VLSI routing [17]. We considered 
the exhaustive case (find all solutions, rather than find a solution). The N-Queen 
problem is highly irregular and not suited to SIMD implementation. Figure 5 
shows the performance of the shared control implementation normalized to that  
of the SIMD implementation. The SIMD solution was worse than a sequential 
solution because it failed to extract any parallelism, but  incurred the activity 
management overhead. The speedup leveled because the of parallelism present 
at the small scales of the problem that  were studied is limited. 

The second application is a database search competit ion algorithm; an al- 
gorithm characteristic of massively parallel database operations. Each PE is 
initialized with a segment of a database (sorted by keys), and the PEs search 
for keys in their database segment. As the number of PEs is scaled, the size of 
the database is scaled (the size of the segment at each PE is kept the same). For 
a small number of PEs, there is little control parallelism, and SIMD performs 
better than shared control. As the number of PEs is increased, the paths through 
the database followed by each PE diverge according to their respective data.  The 
performance of the SlMD implementation drops with the increased number of 
PEs while shared control performance remains constant. 

Finally, we consider a parallel case statement with balanced cases (Figure 
7). By varying the number of cases in the case statement,  the degree of control 
parallelism is directly controlled. The instruction mix within the S1MD blocks 
generated randomly, with a typical RISC profile comprised of 30% load/store 
instructions with branches forced to the next address (allowing for the pipelined 
instruction). The blocks are chosen to of balanced lengths (10% variation). The 
program was simulated in three different ways: a SIMD implementation, a shared 
control (SPMD) implementation, and a mixed mode implementation. The mixed 
mode implementation executes the switch statement in the shared control mode, 
but  executes block A and block B in SIMD. 

Figure 8 shows execution times as a function of the number of cases. Not 
surprisingly, the performance of the SIMD mode degrades (linearly) with the 
increased control parallelism injected by increasing the number of cases. Both 



plural p = p_random(1, n); 

[SIMD BLOCK A] 
switch(p) { 

case I: [SIMD BLOCK I]; 

break ; 

case n: [SIMD BLOCK n]; 
} 

[SIMD BLOCK B] 
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Fig. 7. Parameterized Parallel Branching Region 
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the mixed mode and MIMD execution times did not change significantly with 
the added control parallelism. The mixed mode implementation is more efficient 
than the full shared control implementation because of its superior performance 
on the leading and trailing SIMD blocks. 

6 C o n c l u s i o n s  

SIMD machines offer an excellent price to performance alternative for applica- 
tions that  fit their restricted control organization. Commercial SIMD machines 
with superior price to performance ratio continue to be built for specific appli- 
cations. Unfortunately, centralized control architectures (like the SIMD model) 
cannot support control parallelism in applications; the control unit has to sequen- 
tially broadcast the different control sequences required by each of the control 
threads. In this paper, we present a model for building centralized control archi- 
tectures that  is capable of supporting control parallelism efficiently. The shared 
control model is less efficient than the SIMD model on regular code sequences 
(it requires an additional instruction fetch, and memory space to hold the task 
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instructions). When used in conjunction with the SIMD model, irregular regions 
of applications can be executed in shared control, extending the utility of the 
SIMD model to a wider range of applications. 

The shared control model is fundamental ly  different from the SIMD model. 
Therefore, there are a set of architectural and implementa t ion issues tha t  must  
be addressed before an efficient shared control implementat ion can be realized. 
The performance of S h a r C  was studied using a detailed RTL simulator.  Appli- 
cations were implemented in the SIMD mode, and in the shared control mode. 
The performance of the shared control implementat ion was compared to a pure 
SIMD implementat ion for several applications (the highly irregular N-queen, 
and massively parallel database search algorithms were used). Even at the small 
scales of the problems considered, shared control resulted in significant improve- 
ment  in performance over the pure SIMD implementat ion.  Unfortunately,  larger 
applications (or problem sizes of the studied applications) could not be stud- 
ied because: (i) simulating a massively parallel machine on a uniprocessor is 
inefficient: the simulation run t ime for the 1024 PE 8-queen problem was in 
excess of 20 hours on a SunSparc 100 workstation, and (ii) we do not have a 
compiler for the machine; all the examples were writ ten and coordinated in as- 
sembly language. Finally, we used a parameterized conditional region benchmark  
to demonstra ted  tha t  shared control is beneficial for applications where even a 
small degree of control parallelism is present. 
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