
Efficient Construction
of Comprehensible Hierarchical Clusterings

Luis Talavera and Javier BSjar

Departament de Llenguatges i Sistemes Informktics
Universitat Polit~cnica de Catalunya

Campus Nord, Mbdul C6, Jordi Girona 1-3
08034 Barcelona, Catalonia, Spain

{talavera,bej ar } @lsi.upc.es

Abstract. Clustering is an important data mining task which helps in
finding useful patterns to summarize the data. In the KDD context, data
mining is often used for description purposes rather than for prediction.
However, it turns out difficult to find clustering systems that help to
ease the interpretation task to the user in both, statistics and Machine
Learning fields. In this paper we present ISAAC, a hierarchical cluster-
ing system which employs traditional clustering ideas combined with a
feature selection mechanism and heuristics in order to provide compre-
hensible results. At the same time, it allows to efficiently deal with large
datasets by means of a preprocessing step. Results suggest that these
aims are achieved and encourage further research.

1 I n t r o d u c t i o n

Clustering is one of the pr imary data mining tasks aiming to the goal of finding
a useful set of categories or clusters to summarize the data. As in other inductive
tasks, clustering results may serve for two different purposes, namely, prediction
and description. As pointed out in [2], in the context of Knowledge Discovery
on Databases (KDD), description tends to be a more important task, since the
main focus in this discipline is on finding interpretable patterns. Traditionally,
when applying clustering algorithms, the interpretation step is usually left to
users. So, they have to evaluate the results and change the appropriate settings
of the clustering system if the results does not suit their needs. However, the
settings of a clustering system may be difficult to interpret for an average user
who has not deep knowledge about metrics or control strategies.

Therefore, it may be desirable to have clustering methods which not only
perform a parti t ion of the data, but also facilitate the interpretation task. The
weaknesses of tradit ional statistical clustering methods to cope with this re-
quirement, gave raise to the development of conceptual clustering methods in
the Machine Learning (ML) community [3, 5, 6, 8]. These methods are intended
to combine the clustering and interpretation tasks thus making easy the later to
the external user.

94

Furthermore, data mining poses additional problems for the inductive tasks
such as database size, high dimensionality or the need for user interaction, which
make the process even harder. We present the ISAAC system, an approach that
combines traditional clustering concepts with some heuristic procedures in order
to provide comprehensible results and, at the same time, efficiently deal with
large amounts of data. It also allows the user to decide the structure of the
cluster hierarchy with regard to the number of levels and their generality.

2 I s a a c

ISAAC is a conceptual clustering system that accepts vectors of nominal attribute-
value pairs and summarizes these objects in probabilistic concept hierarchies. A
probabilistic concept is represented by a summary description that lists at tr ibute
values and its associate probabilities. For each concept Ck, a prototype stores
P(Ai = Vij I Ck), the conditional probability that a value Y/j for a feature Ai
will occur in an object of the cluster CK. Probabilistic descriptions are not tradi-
tionally used in statistical clustering approaches, but they are more common in
conceptual clustering systems [3, 5]. This sort of representation allows gradual
updating of clusters descriptions and should be more robust than logic-based
representations in the face of noise or graded concepts.

ISAAC is intended to allow users to model the construction of the cluster
hierarchy which better suits their needs. Typically, hierarchical clusterings are
arranged in a binary tree or dendrogram. From this tree, the user has to extract
a useful partition, or apply some automatic procedure to select the best level
or levels. In our approach, the system allows the user to specify the number of
levels of the hierarchy and their generality. This is done via the NG parameter
which is in the [0,1] range. As the NG value increases, the system creates more
general partitions with few concepts. Lower NG values instruct the system to
build more specific partitions. A complete hierarchy is built by specifying a set
of increasing NG values to indicate the desired levels. The user can interact with
the system experimenting with different sets of values for this parameter. Since
the effect of modifying the NG values is semantically clear to the user, it should
be relatively easy to deal with this parameter.

The ISAAC clustering process, which is depicted in Fig. 1, consists of three
stages: Preprocessing, Reflection and Refinement which will be detailed in the
following sections.

2.1 P r e p r o c e s s i n g

Typically, complexity of hierarchical clustering algorithms is O(n 2) where n is
the number of objects in the dataset. This complexity may be acceptable if one
desires just a 'one-shot' clustering. However, for large datasets, it may result in
a relatively slow processing, particularly if the user needs to interact with the
clustering system by changing some setting in order to obtain interesting results.

95

Preprocessing

t i - - -

training NG ~
data set values

ent I wei thed
hypothesis I I feature

probabilistic
concept
hierarchy

Fig. 1. Stages of the ISAAC system

The Preprocessing stage is intended to cope with this problem. We can see
this stage as similar to the typically used feature selection steps which reduce
the set of features used in the learning process. The difference here lies in that ,
instead of selecting objects, the Preprocessing step transforms the initial da ta
vectors into new vectors summarizing compact groups of objects. Particularly,
we exploit incremental clustering algorithms, which can efficiently deal with
large datasets. An incremental clustering algorithm can construct a flat part i t ion
in a O(nk) time, where k is the number of clusters created. Note that this
complexity is equivalent tO O(n 2) only if k ~ n. The problem with incremental
algorithms is that they are sensitive to ordering effects. To cope with this problem
while maintaining the efficiency of incremental processing, we are working on a
buffering strategy which has shown to be fairly robust under bad object orderings
and it is detailed in [10].

We chose a nearest neighbor algorithm with uses a similarity measure and an
c~ threshold to form clusters. For each instance the similarity with every existing
cluster is computed. If the maximum similarity found is greater than a then the
instance is incorporated into the cluster. Otherwise, a new cluster is created.
With this preliminary step, the size of the database can be compressed in a
variable amount dependent on the value of a. Intuitively, similarity is obtained
by computing the intersection between the cluster prototypes for each feature.
Specifically, similarity for two clusters Cm and Cn with respect to a feature i is
computed by the expression:

Sim(Cm,C,~, i) = ~ -~min{P(A i = Vii [C , O , P (A i = Vii [Cn)} (1)
J

The total similarity between two clusters is the average similarity computed for
each feature, normalized by dividing for the total number of features considered.

This procedure helps to detect very similar -or even identical- objects in a
fast manner. It is worth to notice that although very low c~ values will result in

96

a greater compression of the dataset, it also will produce very general clusters,
letting little room for improvements to the next stages. The user may explore a
suitable trade-off between these two aspects by using different a values.

2.2 R e f l e c t i o n

This stage is intended to extract useful information about the clustering process
in order to guide the following steps. It actuates at every step of the agglomera-
tive clustering procedure which will be explained below. It takes the current set
of clusters as the basis for computing the relevance of each feature. For this pur-
pose the distance measure [7], a relevance measure used for a t t r ibute selection
in decision tree induction, is used. Note that by using this sort of measure we
are assuming that the more relevant features are those which bet ter discriminate
among the clusters of a given partition. As a result of the process, an ordered
set of features is obtained and those which do not score high enough are dis-
carded. A heuristic procedure is used to determine this subset of useful features.
The rationale behind this procedure is the assumption tha t the set of a t t r ibutes
which can discriminate among the clusters of a given part i t ion is smaller for
more general levels than for specific ones. The level of generality of the level
which is being built is indicated by the NG value specified by the user, so it can
be used to heuristically define the set of useful features U as follows:

/ / / = { a e A I Rel(a) > m . NG} (2)

where A is the initial set of features, Rel(a) is the relevance of feature a and
m is the maximum computed relevance for features in .4. This procedure does
not guarantee in any case that the selected subset is neither the best nor the
minimal for any particular task. We are just using a relatively naive approach
to make a conservative selection in an unknown domain allowing the system to
dynamically discard features which are very likely to be irrelevant.

2.3 R e f i n e m e n t

This stage consists of an agglomerative procedure which iteratively selects the
best two candidates to merge and creates a new cluster. However, a number of
differences with traditional clustering procedures exist. First, the start ing point
for this procedure is not the original dataset, but the clusters obtained in the Pre-
processing stage or in the previous generalization if a set of N G values is given.
Secondly, the procedure ends when the level of generality indicated by current
NG value is achieved and the resulting level does not store all the intermediate
pairs of mergings. Therefore, the system does not necessarily produces binary
trees. And finally, at each merging step, the current set of clusters is passed to
the Reflection step to obtain a weighted subset of useful features which is used
in the following computations.

To be able of determining when a given level of generality is reached, we need
a measure to characterize cluster generality. ISAAC measures the generality of

97

a cluster using probabilistic analogs of logical sufficiency and necessity. These
measures are interpreted as degrees of sufficiency and necessity of the probabilis-
tic descriptions used by the system. From this point of view, they represent a
continuous valuation over the sufficiency and necessity properties analogous to
the binary one of classical logic, but allowing a greater flexibility. These measures
are called continuous sufficiency (CS), and continuous necessity (C N), and are
defined, for a cluster Ck as follows:

CS(Ck) = ~ ~ P(Ck I Ai = Y~j) 2 (3)
i j

CN(Ck) = E E P(di = Vii I Ck) 2 (4)
i j

i indexes the features of the objects, and j indexes the values of each feature.
Both measures can be easily generalized to partitions by simply averaging the
results for the set of clusters. These two measures evaluate the average degree
of sufficiency or necessity for the features contained in the prototypes of the
clusters of a given partition.

Each of the measures is biasing the selection of partit ions in a different di-
rection as regards the generality of a partition. Favoring CS over CN tends to
reward parti t ions with more general concepts and favoring CN over CS tends
to reward partit ions with more specific concepts. This property allows the user
to bias the process towards the type of parti t ion required, linking the bias to the
NG parameter by means of the formula:

Gen(P, NG) = (1 - NG) • CS(P) - NG x CN(P) (5)

This measure indicates whether a given level of generality defined by a given
NG value has been achieved and measured is used to allow merging until a
certain level of both CN and CS measures is reached. The initial parti t ion
usually will have a negative Gen value due to the high score of CN and, as
the generalization progresses, the generality of the parti t ion will tend to zero
according to the evolution of the CS and CN measures.

The control s tructure for the Refinement stage is shown in Table 1. As men-
tioned before, it follows a typical agglomerative schema which merges pairs of
clusters until the desired NG level is reached. However, unlike most of its statis-
tical counterparts, our algorithm does not construct a similarity matr ix to decide
which pair of clusters should merge. Instead, the algorithm takes advantage of
the generality measure defined above and always chooses as the first cluster to
merge the one who has the lower generality score. The similarity of this cluster
with the rest of the clusters in the parti t ion is then computed, by means of the
similarity measure previously defined, to find the most similar one and perform
the merging operation. All of this computat ions (similarity and generality) are
done in the context provided by U, the subset of useful features obtained in the
Reflection stage. This means that only features included in U are considered
when computing both measures, which also use the available weights.

98

Let P be a p a r t i t i o n
Le t NG be the level of g e n e r a l i t y des i red
Le t U be the w e i g h t e d s u b s e t of useful f e a t u r e s

F u n c t i o n R e f i n e m e n t (P , N G)
U : R e f l e c t i o n (P , NG)
w h i l e G e n e r a l i t y (P , N G , L/) • 0 d o

Le t C be t h e leas t gene ra l c lu s t e r in P
C o m p u t e t h e s imi l a r i t y be tween C a n d the res t of c lus te rs in P us ing Lr
Merge C wi th t h e m o s t s imi la r c o n c e p t in P
Lr = R e f l e c t i o n (P , NG)

e n d w h i l e

Table 1. Algorithm for the Refinement stage of ISAAC

The reason for using the generality measure as a heuristic to decide one
candidate to merge is twofold. If we use a similarity matrix, since we want to
dynamically adjust similarity computat ions with feature weights, we are forced
to update the whole matr ix at each step of the process. These computat ions will
result in a cubic complexity for the algorithm with respect to the number of
clusters initially considered. The heuristic used, allows to maintain a quadratic
complexity for the algorithm. On the other hand, the heuristic should bias the
algorithm to reach levels in which each cluster approximately corresponds to
the same level of abstraction, and hence improve the understandabil i ty of the
obtained clusters.

3 E m p i r i c a l e v a l u a t i o n

The framework outlined in this paper may suggest several lines for evaluation,
but in our experiments we focused on two aspects, the effect of the Preprocess-
ing stage, and the effect of the feature selection mechanism. Particularly, we
want to check the degree of compression tha t can be achieved in the first stage
of the process and if this compression can decrease the quality of the final re-
sults. Also, we are interested in analyzing the results from the point of view of
comprehensibility of the results to confirm the utility of feature selection.

The experiments were carried out using the mushroom dataset from the UCI
repository. The mushroom dataset consists of 8124 mushroom descriptions rep-
resented by 22 nominal features belonging to two classes, edible and poisonous.
ISAAC was run with a set of NG consecutive values with an 0.1 increment until
achieving a two-class top level partition. Depending of the initial part i t ion con-
sidered, the number of levels ranged between 7 and 9 in order to get the desired
number of clusters.

To evaluate the quality of the discovered hierarchies, we measured the degree
of fit of the resulting clusters in the top level with the original mushroom division
into edible and poisonous. We measured cluster purity by using the measure
suggested in [4].

99

Oz

0.75
0.77
0.80
0.82
0.85
0.87
:0.90
0.92
0.95

~: clusters time feat./node Purity Pur~0.85
29.18 • 1.10 5.66 • 0.17 4.94 • 0.43 0.78 • 0.10 40 %
33.82 • 1.14 6.81 • 0.15 4.50 • 0.39 0.79 • 0.10 46 %
54.10 • 1.96 10.42 • 0.24 4.08 • 0.26 0.77 • 0.09 26 %
82.50 • 2.18 15.30 • 0.29 3.85 • 0.23 0.81 • 0.10 58 %
157.54 • 3.98 27.25 • 0.51 3.64 • 0.22 0.81 • 0.09 58 %
263.04 • 4.70 43.09 • 0.80 3.45 • 0.16 0.76 • 0.11 36 %
610.28 • 7.92 99.58 • 1.80 3.10 • 0.09 0.75 • 0.11 26 %

1072.18 • 12.89 202.60 • 2.57 2.83 • 0.05 0.74 • 0.13 36 %
2327.36 • 14.81 512.84 • 4.65 2.15 • 0.03 0.84 • 0.09 66 %

Table 2. ISAAC results for different (~ values.

Table 2 shows the results for 50 ISAAC runs on the mushroom dataset using
different a values. Some data from the table is graphically depicted in figure 2,
showing that a great amount of compression may be achieved by just using a
values around 0.85, which are relatively high. As expected, decreasing the c~ value
allows for greater data compression. Obviously, the amount of data compression
is directly correlated with the running times of the system. Figure 2 also shows
the average purity scores and stardard deviations achieved by the system for each
different c~ value. Clearly, there is no relationship between these two factors since
results appear to be somewhat variable. In fact, we cannot expect to find such a
relationship because different initial partitions may bias the subsequent feature
selection steps in a different and not easily predictable manner. Actually, the
interest here was in demonstrating that the system is able to reach high scores
with some of the compressed datasets. The impact of the compression in the
final results may vary between different datasets and users should experiment
with different c~ values until obtaining a suitable partition.

For comparison purposes, we also run the well-known AUTOCLASS program
[I], obtaining a purity score of 0.90. Since ISAAC results do not appear to follow
a very homogeneous distribution, table 2 shows an additional column with the
percentage of 'good clusterings' obtained with each c~ value, considering as good
clnsterings those with a purity score over 0.85. It is not possible to establish a
direct comparison between the two systems, since ISAAC generates hierarchical
clusterings as opposed to the fiat clusterings of AUTOCLASS. However, the Au-
TOCLAsS score indicates that, despite the variability of its results, our approach
may achieve good quality clusterings with a reasonable amount of compression.

Table 2 also give us a picture of the capabilities of the feature selection
mechanism. In average, the system only uses between a 10-20 % of features from
the initial feature set in order to discriminate between the different hierarchy
nodes. This demonstrates the ability of ISAAC to bias the clusterings towards
simplicity and, hence, provides results which should be easier to interpret.

100

9000

6000

7000

6000

5000

4000

3000

2000

1000

~.75 '
i

0,8 0.85 0.9 0.95
alpha alpha

0,6

0.4

0.2

.74 0,76 0.78 0,8 082 0.84 0.86 0.88 0.9 0.92 0.94 0.96

Fig. 2. Data compression (left) and purity of top level partitions (right) as a function
of a.

4 C o n c l u d i n g r e m a r k s

We have presented ISAAC, a conceptual clustering system which combines sta-
tistical procedures with symbolic learning oriented heuristics. The system par-
titions the clustering process into three stages. The first one, accomplishes two
goals, namely, to achieve a compression of the dataset, and to provide an initial
set of hypotheses for the rest of the process. The following stages are performed
in a collaborative manner. One of them is responsible of obtaining a weighted
subset of features from the actual cluster structure. The second, uses this infor-
mation to generalize the current parti t ion and generates new cluster structures,
from which new weights may be computed.

One novel feature in our approach is the definition of a cluster generality
measure. This measure allows to parameterize the system in order to allow the
user to bias the resulting structures towards the desired level of generality. We
think tha t this sort of parameters are more meaningful to users than those in
traditional statistical clustering. Users should be more comfortable interacting
with systems which have parameters with a semantically clear interpretat ion [9].

Our preliminary experiments suggest that this approach achieves two inter-
esting goals from the standpoint of data mining tasks. First, the system should
efficiently deal with large datasets by means of the initial Preprocessing step.
Second, the resulting hierarchical clusterings should be easy to understand since
the system provides descriptions with an important reduction in the number of
features used.

On the other hand, results seem to show a large variability with respect to
the original labeling in the used dataset. However, we cannot assume the original
labeling to be the only interesting underlying structure present in the dataset.
Also, variability may be due to the global interaction between the different bi-
ases provided by the preprocessing and the feature selection mechanisms. This
suggests a future research to explore the isolate and joint influences of all these
biases.

101

Some aspects of the system deserve further research such as the similarity
metrics used, the feature weighting measure or the feature selection strategy.
Currently, some of these components are chosen largely based on intuitions and
empirical results. Probably, a more accurate study of the properties of the dif-
ferent measures used can lead to a bet ter understanding of the behavior of the
system.

The modular design of ISAAC easily allows to extend the system. We plan
to explore different feature selection measures and their impact in performance
tasks like prediction. Also, a set of discretization procedures will be added to
the Preprocessing stage to provide the system with the ability to deal with
numerical valued features. Finally, we are working on extending the Reflection
stage in order to constraint the Refinement process using declarative knowledge
provided by the user.

A c k n o w l e d g m e n t s . This work has been supported by the Spanish Research
Council (CICyT) project TIC96-0878.

References

1. P. Cheeseman and J. Stutz. Bayesian classification (autoclass): theory and results.
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in knowledge discovery and data mining, pages 153-180. AAAI Press,
Menlo Park, CA, 1996.

2. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge
discovery: An overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
1-34. AAAI Press, Cambridge, Massachusetts, 1996.

3. D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning, (2):139 172, 1987.

4. D.F. Gordon, P. M. Tag, and R. L. Bankert. Unsupervised classification procedures
applied to satellite cloud data. Technical Report AIC95-005, Navy Center for
Applied Research in Artificial Intelligence, 1995.

5. S. J. Hanson and M. Bauer. Conceptual clustering, categorization and polymorphy.
Machine Learning, (3):343-372, 1989.

6. M. Lebowitz. Experiments with incremental concept formation: UNIMEM. Ma-
chine Learning, (2):103 138, 1987.

7. R. L6pez de Ms A distance based attribute selection measure for decision
tree induction. Machine Learning, (6):81-92, 1991.

8. R. S. Michalski and R. E. Stepp. Learning from observation: Conceptual clustering.
In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning:
An Artificial intelligence approach, pages 331-363. Morgan Kauffmann, 1983.

9. L. Talavera and U. Cortds. Exploiting bias shift in knowledge acquisition. In
lOth European Workshop on Knowledge Acquisition, Modeling, and Management,
Lecture Notes in Artificial Intelligence, Sant Feliu de Guixols, Barcelona, Spain,
1997. Springer.

10. L. Talavera and J. Roure. A buffering strategy to avoid ordering effects in clus-
tering. In Proceedings of the Tenth European Conference on Machine Learning,
volume 1398 of Lecture Notes in Artificial Intelligence, Chemnitz, Germany, 1998.
Springer.

