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A b s t r a c t .  We show how prior domain knowledge can be used in a sys- 
tem for mining databases of biological data. Our system performs au- 
tomated discovery of diagnostic patterns from a database of protein se- 
quences. Such patterns are used for classification of new sequences, and 
identification of biologically interesting positions in the proteins. The 
patterns have a simple syntax and can be translated into regular expres- 
sions, which can be used for rapid scanning of databases. Current pattern 
libraries are built semi-manually, since the correctness of the pattern de- 
pends on the incorporation of domain knowledge. Due to the dramatic 
growth of the databases it is desirable to automate this process. Our 
results show that  the patterns derived by our fully automated system 
compete well with the semi-manually constructed patterns. 

1 I n t r o d u c t i o n  

In the past few years, there has been a dramatic increase in the amount of 
biological sequence data in public-domain databases. Since 1987, the number of 
protein sequences in the SWISSPROT database [2] has doubled every year, and 
the November 1997 release contains 68,830 entries. The December 1997 release of 
the EMBL database [7] of RNA and DNA sequences contains 1,917,868 sequence 
entries, and this database also doubles in size every year. This explosive growth 
of the amount of available sequence data will continue well into the 21st century. 
The Human Genome Project alone will contribute another estimated 60,000 to 
80,000 protein sequences before the target date of completion in 2005. It can 
also be noted that the August 1995 release of the GenBank database [4] of DNA 
sequences, although containing 492,483 sequence records, only had sequences 
from 15,511 species [II]. Since the estimates of the number of extant species 
range from 5 to 50 million [8], the GenBank database only had sequences from 
at most 0.3~ of the species. An average of i0 new species are added per day. 

The fields of molecular biology and bioinformatics, although undergoing rapid 
development, still have problems in keeping up with the new data. An example is 
the problem of determining the 3D structure of proteins. The structure is known 
for less than 3% of all sequenced proteins [12], and the gap between the number 
of known sequences and solved structures is rapidly increasing [12] [13]. 

This paper addresses the construction and maintenance of a library of pat- 
terns for classification of protein sequences. Current pattern libraries, such as 
PROSITE [3], are built using semi-manual approaches, making it time-consuming 
to construct the initial patterns. Also, since new sequences are continuously 
added to the database, the patterns degrade over time. To maintain the discrim- 
inatory power of the patterns, they must frequently be inspected and updated. 

Our work aims at a system for automatic discovery of biologically significant 
patterns, and automatic updates of the pattern library as new sequences are 
added to the database. Our method for pattern construction is based on infor- 
mation theory, but also makes extensive use of biological information to guide 
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the construction process. Thus, we show an example of how knowledge discovery 
techniques can be amended by incorporating domain knowledge - in this case 
knowledge of typical amino acid frequencies found in protein sequence data. 

The next chapter is a brief introduction to protein sequence analysis, and can 
be skipped by readers familiar with the area. The third chapter is an overview of 
our system, while chapter four discusses algorithms for constructing diagnostic 
patterns and shows how we extend and improve on current algorithms by using 
prior knowledge. The fifth chapter presents our results and conclusions. 

2 P r o t e i n  S e q u e n c e s  a n d  S e q u e n c e  A n a l y s i s  

Genes are blueprints for the myriad of proteins which perform the important  
tasks within organisms. Through many generations, proteins have evolved which 
perform an impressive variety of tasks: acting as enzymes in biochemical reac- 
tions, performing transportat ion of nutrients, being sensors for taste and smell, 
being detectors of invading viruses in the immune system, and acting as switches 
turning genes on or off. Understanding the details of how proteins perform their 
function is one of the most important  issues in molecular biology. 

The building blocks of proteins are 20 different types of amino acids. The 
basic chemical structure of an amino acid is to contain a carboxyl group and an 
amino group, both attached to a central carbon atom. In addition, each type 
of amino acid has a unique side chain, which determines the specifics of its 
chemical properties. A protein is made up of a sequence of amino acids, joined 
together by peptide bonds. When an amino acid occurs in the sequence, it is 
called a residue. Many proteins consist of several hundred residues, and in some 
cases several thousand. The residue sequence is termed the primary structure 
of the protein. Before the protein becomes biologically functional in the cell, it 
undergoes a folding process, where the primary structure folds into a specific 
three-dimensional, tert iary structure (an example is shown in figure 4. 

The central tenet in protein sequence analysis is that  the amino acid sequence 
determines the tertiary structure, and that  the tertiary structure determines the 
function of the protein [12]. Mutations are changes at sequence level, which may 
or may not have any significant effect on the folded conformation. Proteins with 
similar sequences are evolutionary related and have similar folds [6], whereas un- 
related sequences generally produce different folds. Computational approaches in 
bioinformaties address many difficult problems by analysing the sequence, which 
can easily be handled by computer algorithms. One example of such a problem 
is to derive phylogenetic trees, showing the evolutionary relationships between 
proteins. Another problem is the one addressed in this paper: to derive patterns 
which can be used to classify new sequences according to family membership. 

One of the most important  basic techniques in sequence analysis is to derive 
alignments. As a very simple example of a sequence alignment, consider the 
following alignment of four variants of the word "sequence": 

S E - Q U E N C E  
S E - Q - E N C E  
S E a Q U E N C E  
S E - Q U E N S E  

The types of changes occurring in the example also occur in protein se- 
quences, i.e. deletion (U in SEQENCE), insertion (A in SEAQUENCE),  and re- 
placement (S in SEQUENSE). The alignment highlights the changes, and clearly 
shows the positions which are preserved. Algorithms for constructing alignments 
seek to minimize the mutational distance between the sequences. In the analysis 
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of a protein family, a multiple sequence alignment can be used to discover the 
residue positions which are evolutionarily conserved in the family. Such positions 
often correspond to important  biological functionality of the protein. 

Sequence analysis algorithms rely on public-domain databases, such as SWIS- 
SPROT [2], which contains sequences and extensive documentation for over 
70,000 proteins. PROSITE [3] is a database of patterns for 997 protein families. 
The patterns can be seen as signatures, distinguishing family from non-family 
sequences. The Pfam database [17] contains 527 protein families. Among other 
things, Pfam contains an alignment of a subset of the sequences for each family. 

3 O v e r v i e w  of  M e t h o d  

We aim to achieve an automated system for discovering and maintaining diag- 
nostic protein sequence patterns. We are currently building a library of patterns 
derived through a system which interfaces three public-domain databases. Fig- 
ure 1 shows an overview of our method. Every step of the method can be fully 
automated,  making it possible to achieve large scale updates, so that  the patterns 
can be continuously refined to take new sequences into account. 

~ X C ~ D U ~ D S Q  

~.~D~.~. ,~ .  ~ Count nr of false hits 

aun~x~D~A~wsR ~ W 6 ~ H ~ Q  

Selected sequences 

Seed alignment Select most general pattern 

> minimizing number of false positives 

C-V-x(0,2)-B-C-x(2,4)-H C-V-x(1,3)-C 

C-REX C-V-x( 1,3)-C-x(2,4)-H 

> C-V-x(0,2)-B-C-x(2,4)-H G-REX 

C-V-x(0,2)-B-C-x( 1,3)-A-H 
Ena'opy profile G-x(2,3)-C-V-x(0,2)-B-C-x(1,3)-A-H Generalize 

Candidate patterns 

Fig. 1. Overview of the method. 

When generating a pat tern for a family, the system uses a multiple align- 
ment from the Pfam database [18], aligning a subset of the sequences belonging 
to the family. The alignment is analysed by AMA (Analysis of Multiple Align- 
ments [10]), which generates an entropy profile. The profile can be used to detect 
positions which are likely to be conserved in the family, and therefore good candi- 
dates as pat tern elements. In estimating the entropy of columns, AMA takes into 
account biological domain knowledge by using a Dirichlet mixture. It was shown 
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in [9] and [16] that  use of this prior information improves the degree of gener- 
alisation in statistical models of small samples of protein sequence data. This is 
important  since many Pfam alignments contain only a handful of sequences. 

Using the entropy profile, C-REX (Creating REgular eXpressions) creates 
initial patterns by adding the most conserved columns, separated by wild-cards. 
More elements are added in the order of increasing entropy, and the gradually 
more specific patterns are tested by searching SWISSPROT. Since initial pat- 
terns match many false positives, C-REX adds elements until all false positives 
are excluded. In some cases, the pattern at this stage matches every family 
member, but in most cases it is too specific, and excludes some family members. 
Figure 2 illustrates the algorithm for extracting initial patterns. Low entropy 
columns correspond to promising pattern elements, and are used first. Column 
12 is a conserved T-column with estimated entropy -p~ -~ 0.16, and column 16 is 
a conserved A-column, having the second lowest estimated entropy (-~ ~ 0.18). 

FLAV_ANAS p 3 22 
FLAV_SYNP7 2 21 
FLAV_SYNY3 3 22 
FLAV_SYNP 2 2 21 
FLAV_ECOLI 2 21 
FLAW_ECOLI 2 21 
FLAV_AZOCH 2 21 
FLAV_ENTAG 3 22 
FLAVKLEPN 2 21 
FLAV_CHOCR 1 20 
FLAV_CLOBE 1 19 
FLAV_MEGEL 1 20 
FLAV_DESDE 3 22 
FLAVDESGI 3 22 
FLAW DESGI 3 22 
FLAVDESSA 3 22 
FLAVDESVH 3 22 
FLAV_CLOAB 2 21 
FLAW_RHOCA 1 19 2 ,I 6 8 Coumnl 10 12 14 16 1B 20 

0.16 T 

0.34 T-x(3)-A 

0.97 [TY]-x(2)-T-x(3)-A 

1.93 [TY]- [ACG]-x(2)-T-x(3)-A 

3.07 [TY]- [ACG]-x(2)-T-x(3)-A-x(2)-[ILV] 

Fig. 2. Upper left: Small portion of multiple alignment. Upper right: The corresponding 
entropy profile. Lower: Subset of corresponding patterns, and for each pattern, the total 
entropy of the corresponding alignment columns. 

G-REX (Generalising REgular eXpressions) generalises the pattern,  but only 
allows generalisations which still exclude all false positives. The result is a more 
sensitive pattern,  with the specificity of the original pat tern being preserved. We 
define sensitivity and specificity as 

Truepos 
Truepo~ Spec = Truepos + Falsepos (1) Sens  = Truepo~ + Falsenca 

where Truepos is the number of family sequences matched by the pattern,  and 
Falsenea the number of family sequences not matched by the pattern,  whereas 
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Falsepo8 is the number of non-family sequences matched by the pattern. This 
sensitivity measure is equal to the fraction of the known family sequences which 
are matched by the pattern, whereas specificity equals the probability that  a 
sequence which is matched by the pat tern really belongs to the family. 

4 C o n s t r u c t i o n  o f  S e q u e n c e  P a t t e r n s  

An overview of algorithms for the construction of patterns is given in [5]. Briefly, 
the algorithms can be divided into two groups: those using "bottom-up" and 
"top-down" approaches. The essence of the bottom-up approach is to enumer- 
ate candidate patterns and count the number of occurrences of the candidate 
patterns that  can be found in the sequences. The obvious limitation of this ap- 
proach is that  the size of the search space is exponential in the length of the 
patterns. In contrast, top-down approaches look for local similarities between 
sequences, and extract  candidate patterns based on these similarities. This can 
be done in several ways, for example by searching for sufficiently long common 
substrings, or by first aligning the sequences to minimize the mismatches, and 
extract  pat terns from the alignment. Both the problem of finding the longest 
common substring, and that  of finding the optimal alignment are NP-complete, 
and top-down algorithms therefore incorporate the use of heuristics. 

Our algorithm is a top-down approach, and uses an alignment as starting 
point. Currently, we use Pfam's so called 'seed alignments' [18], which are hand- 
designed or automatically generated alignments of a subset of the family. Our 
algorithm makes no assumptions regarding the origin of the alignment, so that  
later versions of the system may include construction of the alignment. 

4.1 Der iv ing  an Entropy Profile Us ing  Prior Knowledge  

Central to our approach is the use of both information theory and Dirichlet 
mixture priors [16] in the alignment analysis. The entropy of each column of 
the alignment is estimated, and low-entropy columns used for building initial 
candidate patterns. The assumption is that  low-entropy columns generally cor- 
respond to conserved positions in the protein, and that  a pattern built from 
these columns will represent the most characteristic properties of the family. To 
estimate the entropy of columns we use the method developed in [10], based on 
the concept of entropy from Shannon's classical work [14]. The entropy of an 
alignment column can be estimated by 

ent( ) = - Z P i  log pi (2) 
i 

where Pi is the estimated probability of observing symbol i in the column, 
so that  a "fiat" distribution over the symbol alphabet gives maximum entropy. 
The simplest way of estimating Pi is to use the observed frequency, but  such a 
naive approach does not take into account the number of observations. This is a 
serious problem, since for small samples, there is a high risk that  the observed 
frequencies do not correspond to the true distribution [16]. This problem is 
relevant in our case, since the input to our system is often an alignment of only 
10 sequences or less, and we therefore use Dirichlet mixtures in the estimation of 
Pi. Dirichlet mixtures were shown in [9] to be close to the theoretical optimum 
for a prior, and have previously been used in other biosequence applications, 
such as hidden Markov models of protein families [1] and phylogenetic trees [15]. 
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A Dirichlet mixture contains a number of components, representing typical 
amino acid distributions. The observed amino acid frequencies are combined 
with all components,  using a weighting scheme where the the component  which 
best matches the frequencies is given highest weight. This is done using pseudo- 
counts, which gradually shifts the emphasis from the mixture to the observed 
frequencies when more observations are added. 

Given the count vector n -~ of observations of the amino acids in a column, 
the est imated (posterior) probabili ty of observing amino acid i in the column is 

I 

Pi = E Prob(aj I T~ ', (9) • ((ni + aj , i) /(I  n-->] + I cuI)) (3) 
j ~ l  

and is a sum over the components oLj of some Dirichlet mixture (9. In the 
product,  the first te rm implements the weighting scheme over the mixture com- 
ponents ~i~, where the component which best matches the observed counts re- 
turns the highest weight. The second term of the product adds the pseudo-counts 
to the observed counts and normalises the sum. In our work we have used the 
nine-component Dirichlet mixture from [16]. 

4.2 U s i n g  a n  E n t r o p y  P ro f i l e  t o  B u i l d  a P a t t e r n  

Given a multiple alignment of sequences from a protein family, AMA creates 
a profile of estimated entropy values. Each value is determined by equation 2, 
with Pi est imated according to equation 3. To build pat terns  from the profile, the 
low entropy columns are chosen, and corresponding pat tern  elements generated. 
The individual elements are combined into a complete pat tern,  which is meant  
to reflect the conserved positions in the sequences. 

A pattern is a description of common syntactic features of a set of sequences 
[5]. A sequence is matched by the pat tern  if it contains the features described by 
the pattern.  A pat tern  is diagnostic for a family if it matches every sequence in 
the family, and no other known sequences [5]. Many of the pat terns  in P R O S I T E  
are diagnostic, but the majori ty  gives some false positives or negatives. It  is 
potentially possible to improve on their diagnostic power by using an au tomated  
algorithm for their construction, since such an algorithm may be able to explore 
a much larger set of candidate patterns.  

Pat terns  in the P R OS ITE  syntax can be expressed on the form 

E 1  - x ( i l , j l )  - E 2  - x ( i 2 , j 2 )  - . . .  - E n  

where each Ek is an element, and each x(ik,jk) is a wild-card. An element 
specifies a single amino acid (e.g. L) or a set of amino acids (such as [LIV]). A 
wild-card specifies an arbi t rary stretch of amino acids, the length of which must 
be at least ik and at most jk. For ik = jk the shorter notation is x(ik), and x(1) 
can be written x. Example pat terns  are shown in figure 4. 

C-REX incrementally creates pat terns of increasing complexity by adding el- 
ements from the alignment, in order of increasing entropy. An individual element 
is created simply by enumerating the observed symbols from the corresponding 
alignment column. To create a complete pat tern  from n elements, n - 1 wild- 
cards must  be added to connect the elements. For a wild-card x(i, j), the values 
of i and j are determined by counting the minimum and max imum number  of 
residues occurring between the two columns in the alignment. 

By testing the pat terns  generated by C-REX against SWISSPROT,  we find 
the most  general pa t tern  with maximum specificity. Testing starts  with the most  
general pat tern,  and stops if a pat tern  excludes all false positives. If no such 
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pat tern is found, the most general pat tern among those with the minimal number 
of false positives is used during the subsequent generalisation phase. 

4.3 G e n e r a l i s i n g  a P a t t e r n  

A pat tern minimizing the number of false positives is often too specific to match 
all family members. This because C-REX builds patterns using an alignment in 
which only a subset of the family is represented. Therefore, the generalisation 
program G-REX is used to find a more general pattern, matching all members of 
the family. G-REX currently uses three classes of operations for generalisation, 
where two operate on elements and one on wild-cards: 

- An element can be generalised by adding one new symbol. 
- An element can be excluded from the pattern. 
- A wild-card region can be expanded by decreasing the lower bound on the 

length (or increasing the upper bound). 

The generalisation phase currently involves only testing of randomly applied 
generalisations. A generalisation is tested by updating the pat tern and testing the 
specificity and sensitivity. Unless both measures improve or stay the same, the 
generalisation is undone. This is repeated for a given number of trials, resulting in 
a gradually more general pattern. The current version, in other words, performs 
a crude form of search in the space of possible generalisations. 

For each pat tern there is in fact a very large number of possible generalisa- 
tions. Consider a pat tern of n elements, El , . . ,  E~. Let Sk denote the number of 
symbols in the element Ek. Since the cardinality of the alphabet is 20, there are 
22~ possible generalisations of Ek. In addition, every wild-card x ( i k , j k )  has 
ik + (jmax - - jk)  possible generalisations, where j,~ax denotes an arbitrary upper 
bound on the j-values. For a pat tern of n elements, there are 

n n - - 1  

2 2~ * ~ ik * (j,~a= - jk)  (4) 
k = l  k = l  

possible generalisations. Our restricted operators for generalisation (e.g. only 
adding one symbol at a time) impose a partial ordering, and thus constrains the 
search. Also, since G-REX keeps any generalisation which does not degrade 
the results, the algorithm is a simple hill-climber. Although G-REX often finds 
patterns with improved sensitivity, it is clear from our results that  the search 
performed by G-REX in the space of possible generalisations is sub-optimal, and 
that  there is potential for improvement of the generalisation phase. 

5 R e s u l t s  a n d  C o n c l u s i o n s  

We tested our method on 439 families represented in both Pfam and PROSITE. 
For each family, we derived one pat tern using our method, and compared it with 
the corresponding PROSITE pattern.  For families where PROSITE reports more 
than one pattern,  we chose only the 'best' pattern.  Figure 3 shows a comparison 
between our patterns and those in PROSITE.  For 87% of families our pat tern 
had equal or bet ter  specificity than the PROSITE pattern,  which is certainly 
a satisfactory result. However, our patterns had equal or better  sensitivity for 
only 25% of the families. Further work is therefore needed to improve our re- 
sults on the sensitivity measure. In analysing the worst-performing patterns, we 
have discovered some errors in the PROSITE documentation, resulting in family 
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Fig. 3. Comparison of sensitivity and selectivity between our patterns and those in 
PROSITE, for 439 protein families. Positive values denote that our pattern was better 
than the PROSITE pattern. 

members  being treated as false positives by our system. However, no definitive 
conclusions can be drawn about  the effect of the errors on the sensitivity. 

Given the size of the search space, the current algorithm for searching gen- 
eralisations is clearly inadequate. Currently, the sensitivity only improves from 
0.883 to 0.906 (the average sensitivity of the Prosite pat terns  is 0.957). The 
hill-climbing done by G-REX will easily get t rapped in local optima. We are 
currently investigating improved search algorithms for this purpose. 

..... ~ ,i "~:~,,( ;~::: :: " i!~.~ ~ 

[LIV]-[LIVFYI-[FY]-x-[ST]-x(2)-IAGC] x-T-x(3)-A-x(2)-[LIV] [TY]- [ACG]-x-T-x(3 )-A-x(33,40)-G- x(2)- [AT]-x(22,31 )-[DG]-x(5 )- [FY ]-[AGS ]-x(20,26)-G 

Fig. 4. 3D structure of FLAV_ANASP, and comparison of the location of the residues 
corresponding to the PROSITE pattern (left) and our pattern. Although our pattern 
spans a longer subsequence, the residues matched by the pattern are located closely in 
3D space, in the region involved in phosphate binding. 

In examining our patterns,  we noted that  they are typically longer than  those 
in P R O S I T E  - modeling conserved alignment columns distributed over a larger 
par t  of the alignment (an example is shown in figure 4). By examining example 
3D conformations from the PDB database, we hypothesise that  our pat terns  
include more of the structural constraints of the conformation. This is a possible 
reason tha t  some of our pat terns  discriminate bet ter  than P R O S I T E  patterns.  
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While local properties of an active site, modeled by PROSITE,  may occur in 
an unrelated protein with another principal function, these properties would 
occur within another conformational context in the unrelated protein. Thus, our 
pat terns  model local details as well as global, conformational constraints. 

As par t  of our future work, we aim to do a detailed analysis of pat terns  for a 
small number  of families, to determine the exact differences between our pat terns  
and PROSITE ' s .  Such an analysis may provide further insight into what  prop- 
erties of the sequences our pat terns model, which may result in improvements of 
the algorithm for pa t tern  discovery and refinement. In addition, it may provide 
biologically interesting insight into the functionality of the proteins. It  is conceiv- 
able tha t  the pat terns  discovered by our system correspond to new discoveries 
of the proteins'  functionality. This par t  of the analysis, may require laboratory 
experiments as a complement to statistical and computat ional  modeling. 

References  

1. Krogh A., Brown B., Mian I.S., SjSlander K., and Haussler D. Hidden markov 
models in computational biology: Applications to protein modeling. Journal of 
Molecular Biology, 235:1501-31, 1994. 

2. A. Bairoch and R. Apweiler. The SWISS-PROT protein sequence data bank and 
its supplement TI~EMBL. Nucleic Acids Research, 25:31-6, 1997. 

3. A. Bairoch, P. Bucher, and K. Hofmann. The PROSITE database, its status in 
1997. Nucleic Acids Research, 25:217~221, 1997. 

4. D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell, and B. Ouellette. GenBank. 
Nucleic Acids Research, 26(1):1-7, 1998. 

5. A. Br~zma, I. Jonassen, I. Eidhammer, and D. Gilbert. Approaches to the au- 
tomatic discovery of patterns in biosequences. Technical Report 113, Dept. of 
Informatics, Univ. of Bergen, 1993. 

6. T.E. Creighton. Protein folding. In R.A. Meyers, editor, Molecular Biology and 
Biotechnology: A Comprehensive Desk Reference. VCH Publishers, 1995. 

7. EMBL nucleotide sequence database: Release notes, release 53, December 1997. 
8. L. Hunter. Molecular biology for computer scientists. In L. Hunter, editor, Artifi- 

cial Intelligence and Molecular Biology. AAAI Press/MIT Press, 1993. 
9. K. Karplus. Evaluating regularizers for estimating distributions of amino acids. In 

C. Rawlings, D. Clark, R. Altman, L. Hunter T. Lengauer, and S. Wodak, editors, 
Proe. of ISMB95. AAAI Press, 1995. 

10. K. Laurio. Probabilistic modeling of protein families. Master's thesis, University 
of SkSvde, Sweden, 1997. 

11. NCBI News. NIH Publication No. 95-3272, September 1995. 
12. B. Rost. Learning from evolution to predict protein structure. In Biocomputing 

and Emergent Computation - Proceedings of BCEC97. World Scientific, 1997. 
13. B. Rost and R. Schneider. Pedestrian guide to analysing sequence databases. In 

K. Ashman, editor, Core Technologies in Biochemistry. Springer, 1997. 
14. C. Shannon. A mathematical theory of communication. Bell Systems Technical 

Journal, 27, 1948. 
15. K. SjSlander. Bayesian evolutionary tree estimation. In Proceedings of the Com- 

puting in the Genome Era conference, Washington DC, March 1997. 
16. K. SjSlander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I.S. Mian, and 

D. Haussler. Dirichlet mixtures: A method for improved detection of weak but 
significant protein sequence homology. CABIOS, 12(4):327-45, 1996. 

17. E.L.L. Sonnhammer, S.R. Eddy, E. Birney, A. Bateman, and R. Durbin. Pfam: 
Multiple sequence alignments and hmm-profiles of protein domains. Nucleic Acids 
Research, in press, 1998. 

18. E.L.L. Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: A comprehensive database 
of protein domain families based on seed alignments. Proteins, 28:405-20, 1997. 


