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A b s t r a c t .  Four-fold table logical calculi are defined. Formulae of these 
calculi correspond to patterns based on four-fold contingency tables of 
two Boolean attributes. An FFT quantifier is a part of the formula, it 
corresponds to an assertion concerning frequencies from four-fold table. 
Several classes of FFT quantifiers are defined and studied. It is shown 
that each particular class has interesting properties from the point of 
view of KDD. Deduction rules concerning formulae of four-fold tables 
calculi are demonstrated. It is shown that complex computation of sta- 
tistical tests can be avoided by using tables of critical frequencies. 

1 I n t r o d u c t i o n  

Interest ing pat terns  - assertions concerning analyzed database  are the the core of  
K D D  process . Some of these assertions can be easily unders tood as formulae of a 
suitable logical calculus. Names of  relations and names of  fields of  the analyzed 
da tabase  belong to basic symbols  of  such calculus. There are interesting and 
useful features of  these calculi, e.g., deduct ion rules [7]. 

There  is a group of impor tan t  pat terns  concerning two Boolean a t t r ibutes  
derived f rom the analyzed database.  The  pat terns  correspond to the relations of  
the Boolean at tr ibutes.  The  pat terns  are evaluated on the basis of a four-fold 
table Tab.1. Here ~o and r are at tr ibutes,  a is the number  of objects (records 
of the analyzed database)  satisfying both  ~o and r  b is the number  of objects 
satisfying ~o and not  satisfying r  etc. 

r -,r 

c d 

Table  1. Four-fold table of ~0 and r 

An  example of a pa t te rn  based on the four-fold table is the association rule, 
see [1]. At t r ibutes  ~o and r with four-fold table (a, b, c, d) are associated by an 
association rule with parameters  conf and sup if and only if 

a a 
>conf  A > s u p .  

a + b -  a + b + c + d -  
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Further  examples are given, e.g., in [2], [8], [9]. 
Observat ional  calculi are logical calculi formulae of which correspond to var- 

ious assertions concerning analyzed data.  They  are defined and studied in [2], 
see also [7]. A special case of observational  calculi is defined in section 2. It  is 
a Four-Fold Table Predicate Calculus, further  only F F T P C .  The formulae of  
F F T P C  are of the form ~ ~ r where ~ and r are Boolean at tr ibutes.  Symbol  

is an FFT quantifier. It expresses the relation of a t t r ibutes  p and r 
The  goal of  this paper  is to show tha t  it is useful to unders tand  the rela- 

t ions of  two Boolean at t r ibutes  as formulae of F F T P C .  Several classes of  F F T -  
quantifiers are defined in section 3, e.g., implicat ional  or equivalence quantifiers. 
Deduct ion rules concerning the formulae of F F T P C  are studied in section 4. Ta- 
bles of critical frequencies are discussed in section 5. They  can be used to avoid 
a complex computa t ion  when testing pat terns  of  the form ~ --~ r  

2 F o u r - f o l d  T a b l e  P r e d i c a t e  C a l c u l i  

We have to define a language of F F T P C ,  its models and values of formulae.  

D e f i n i t i o n 1 .  The  t y p e  o f  F F T P C  is an integer positive number  T. 

D e f i n i t i o n 2 .  A l a n g u a g e  o f  t h e  F F T P C  o f  t y p e  T is given by: 

1. B a s i c  s y m b o l s :  
Basic attributes A 1 , . . . ,  AT, propositional connectives A, V, -1, and 
FFT quantifier .-,. 

2. A t t r i b u t e s :  
- If  ~ is a basic at tr ibute,  then ~ is an at tr ibute.  
- I f  ~ and ~b are at tr ibutes,  then also ~ A r , ~ V r and - ~  are derived 

attr ibutes.  
- If  ~ is a derived at tr ibute,  then ~ is an at tr ibute.  
- Usual conventions concerning parentheses are valid. 

3. F o r m u l a e :  
If  ~ and r are a t t r ibutes  and ~ is an F F T  quantifier, then ~ ~ r is a 
formula.  

D e f i n i t i o n 3 .  A m o d e l  o f  t h e  F F T P C  o f  t y p e  T is each {0, 1}-data  mat r ix  
with T columns. 

D e f i n i t i o n 4 .  We consider each model  M with n rows to be the result of an 
observat ion of n objects.  The i-th observed object  corresponds to the i-th row. 
We say tha t  the i-th o b j e c t  h a s  t h e  b a s i c  a t t r i b u t e  A1 in M if value 1 is in 
the first column of  the i-th row of M . We say tha t  the i-th object  has derived 
a t t r ibute  A1 A A2 in M if value 1 is both  in the first and in the second column 
of  the i-th row of M . Similarly for other basic and derived at tr ibutes.  

D e f i n i t i o n 5 .  F r e q u e n c y  Fr(~, M) o f  a n  a t t r i b u t e  ~ i n  a m o d e l  M is 
the number  of objects having a t t r ibute  ~. 
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D e f i n i t i o n 6 .  A s s o c i a t e d  f u n c t i o n  F ~  o f  t h e  F F T  q u a n t i f i e r  ~ is a {0, 1} 
- valued funct ion defined for all quadruples  < a, b, c, d > of non-negat ive  integer 
numbers  such t ha t  a + b + c + d > 0 . We usually write only --~ (a, b, c, d) 
ins tead of F ~  (a, b, e, d). 

D e f i n i t i o n 7 .  Let ~ ~ r be a fo rmula  of an F F T P C  q~. Let M be a mode l  r  
Then  v a l u e  Val(~ ~., r M) o f  t h e  f o r m u l a  ~ ~ r i n  t h e  m o d e l  M is defined 
as the value 

F ~  ( F r ( ~  A r  M) ,  F r ( ~  A ~ r  M) ,  F r ( - , ~  A r  M) ,  F r ( ~  A - ~ ,  M) )  

If Val(~ ~ r  M)  = 1, then we say tha t  ~ ~ r is true in M. If  Vai(~ ~ r M) = O, 
then ~ ,~ r is false in M. 

T h e  quadruple  (a, b, c, d), where a = Fr(~ A r M), b = Fr(~ A--,r M), 
c = F r ( - ~  A r M) and d = Fr(--,~ A --,r M), is called the four-fold table  of  

the fo rmula  ~ ,-- r in a model  (da ta  mat r ix )  M .  We shall wri te only F F T  ins tead 
of four-fold table.  

3 C l a s s e s  o f  Q u a n t i f i e r s  

Proper t ies  of a fo rmula  ~ ~ ~ depend on proper t ies  of its associated funct ion 
F ~  (a, b, c, d). We define the funct ion F ~  to make  the pa t t e rn  ~ ,-~ r interest ing 
f rom the point  of  view of a da t abase  user. One of the interest ing relat ions of  at-  
t r ibutes  ~ and r is the relat ion ~ implies r An i m p o r t a n t  quest ion is: " Which 
quantifier expresses the relation of implication ?" A class of  impl ica t iona l  quan-  
tifiers is defined in [2]. 

D e f i n i t i o n S .  An F F T  q u a n t i f i e r  ,-, is i m p l i c a t i o n a l  if 

~-. (a, b, c, d) = l A a ' > a  A b / < b  implies ~ ( a ' , b ' , c ' , d ' )  = 1 

for non-negat ive  integers a, b, c, d, a ~, b ~, c', d ~ such tha t  a + b + c + d > 0 and 
a ' +  b ~ + c' + d' > 0. 

T h e  condi t ion a / > a and b' < b means  tha t  the four-fold table  (a ' ,  b', c', d ~) is 
" b e t t e r  f rom the point  of  view of impl ica t ion"  than  the four-fold table  (a, b, c, d) 
( i-better ,  see [2]). I f  (a, b, c, d) is an F F T  of ~ ..~ r in model  M and (a ' ,  b', c', d') 
is an F F T  of ~ ~ r in mode l  M t, then  the  sentence "Be t t e r  f rom the point  
of  view of impl ica t ion"  means:  In model  M'  are more  objects  sat isfying bo th  
~v and r t han  in M , and in model  M'  are fewer objects  sat isfying ~ and not  
sat isfying r t han  in M .  Thus  it is reasonable  to expect  t ha t  if fo rmula  ~ ~ r is 
t rue  in mode l  M,  then  it is also t rue  in model  M ~. This  expec ta t ion  is ensured 
for impl ica t iona l  quantif iers by definition 8. 

Example 1. Quantif ier  ~ p , ,  of  founded implication for 0 < p _< 1 and s > 0 is 
impl ica t ional ,  see [2]. I t  is =~p,~ (a, b, c, d) = 1 if and only if ~-5+b --> P A a _> s .  
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E x a m p l e 2 .  Quantifier ::v~ . . . .  of lower  cr i t ical  imp l i ca t ion  for 0 < p < 1, 
0 < c~ < 1 and s > 0 is implicational,  see [2]. It is 

a+b ( ." ~ i[1  ~ x a + b - i  , a +  b)  I 
::~p,~,s ( a , b , c , d )  = 1 i f a n d o n l y i f  E i! (a  ~_-b-~ i ) ! v  <_ c~ A a >_ s . 

$ ~ - a  

Let us note tha t  the formula  9 ::Vp,a,s r corresponds to the test (on the 
level a)  of the null hypothesis  H0 : P ( r  _< P against the al ternat ive one 
H1 : P ( r  > P. Here P ( r  is the condit ional  probabil i ty of the validi ty of r 
under  the condit ion 9, see [2] for more details. 

I t  is easy to prove for an implicat ional  quantifier ::~* tha t  the value ::~* 
(a, b, c, d) does not  depend either on c or on d. Thus  we shall write only ::V* (a, b) 
instead of  =~* (a, b, c, d) for each implicat ional  quantifier =~*. 

We call conditions like "a  ~ > a and b ~ _< b"  t r u t h  p r e s e r v a t i o n  c o n d i t i o n s ,  
see [8]. The  condit ion a I _> a and b ~ < b is a t r u t h  p r e s e r v a t i o n  c o n d i t i o n  
f o r  i m p l i c a t i o n a l  q u a n t i f i e r s  . Further  classes of  F F T  quantifiers are defined 
in [8], some of  them using t ru th  preservation conditions. 

D e f i n i t i o n 9 .  An  F F T  q u a n t i f i e r  ,-- is d o u b l e  i m p l i c a t i o n a l  if 

( a , b , c , d ) =  1 A a ' > a  Ab '  < b  A c ' < c  implies ~ ( a ' , b ' , c ' , d ' ) = l  

for non-negat ive integers a, b, c, d, a ~, b ~, c ~, d ~ such tha t  a + b + c + d > 0 and 
a ~ + b ~+ c ~ + d ~ > 0. 

We can see a reason for such a definition in an analogy to proposi t ional  logic. 
If  u and v are proposi t ions and both  u --+ v and v -+ u are true, then u is 
equivalent to v ( -+ is a proposi t ional  connective of implication).  Thus  we can 
t ry  to express the relation of  equivalence of at t r ibutes  9 and r using "double  
implicat ional"  FFT-quant i f ier  r such tha t  

9 r 1 6 2  if and only if 9 = : ~ * r 1 6 2  9, 

where ==~* is a suitable implicat ional  quantifier. If  we apply the t ru th  preservation 
condi t ion for implicat ional  quantifier to 9 O* r we obta in  a '  > a A b ~ < b. 
If  we apply it to  r :=~* 9, we obtain  a '  > a A c' _< c, (c is here instead of  
b, see Tab . l ) .  This leads to t h e  t r u t h  p r e s e r v a t i o n  c o n d i t i o n  f o r  d o u b l e  
i m p l l c a t i o n a l  q u a n t i f i e r s  a ~ > a A b j < b A c ~ < c, see definition 9. Several 
F F T  quantifiers are defined according to this idea in [3], an example follows. 

E x a m p l e  3. A quantifier r of f ounde d  double impl i ca t ion  for 0 < p < 1 and 
s > 0 is double implicational ,  see [8]. It  is r (a, b, c, d) = 1 if and only if 

a > A a > s .  a+-5+c - P 

It  is proved in [8] tha t  quantifier r belongs to the class of  Z-doub le  
implicat ional  quantifiers: 
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D e f i n i t i o n  10. An F F T  quant i f ier  ,,, is S - d o u b l e  i m p l i c a t i o n a l  if 

( a , b , c , d ) =  1 A a ' > _ a  A b / + c ' _ < b + c  implies ~ ( a  ~ , b , c , d ) = l '  ' ' 

for non-negative integers a, b, e, d, a', b', c', d' such that  a + b + c + d > 0 and 
a I + b ' + c / + d ' > 0 .  

It  is obvious that  each S-double implicational quantifier is also double im- 
plicational. It  follows from the definition that  if a quantifier r belongs to S -  
double implicational quantifiers, then the value :=~* (a, b, c, d) does not depend 
on d. Thus we shall write only r (a, b, c) instead of r (a, b, c, d) for S-double  
implicational quantifier r 

We have a similar si tuation for equivalence quantifiers. If  u and v are propo- 
sitions and both u --+ v and -~u --+ -~v are true, then u is equivalent to v. Thus 
we can try to express the relation of equivalence of attr ibutes ~ and r using an 
"equivalence" FFT-quantifier =* such that  

~ , - - * r  if and only if ~ O * r 1 6 2  

where ::~* is a suitable implicational quantifier. If  we apply the t ruth  preservation 
condition for implicational quantifier to ~ O* r we obtain a'  > a A b' < b, if 
we apply it to- - ,~=~* -~r we o b t a i n d '  > d A c' < c, (cis  here instead o f b  
and d instead of a, see Tab. l ) .  This leads to the truth preservation condition for 
equivalence quantifiers: a' > a A b' < b A c' < c A d' > d and consequently to the 
definition of e q u i v a l e n c e  q u a n t i f i e r s  [8] (associational quantifiers according to 
[2]). In [3] are defined several F F T  quantifiers as equivalence quantifiers. 

Example 3. A quantifier =p of p-equivalence for 0 < p < 1 is equivalence quan- 
tifier, see [8].I t  isC:~p,s (a ,b ,e ,d)  = 1 if and only if ~ > p A a  >_ s. The  
quantifier --p is also a S-equivalence quantifier [8]. 

Several further classes of implicational quantifiers are defined and studied in 
[8], e.g., pure double implicational, typical double implicational, pure equivalence, 
and typical S-equivalence. Each of these classes of F F T  quantifiers contains 
useful quantifiers. Some of them are implemented in the system PC-GUHA, see 
[6]. Some impor tant  features of FFT-quantifiers related to classes of F F T  are 
discussed in the following sections. 

4 D e d u c t i o n  r u l e s  

A deduction rule is the relation of the form 
Olll . ..~Ol n 

' 

where c~1,.. . ,  c~,/3 are formulae. This d e d u c t i o n  r u l e  is c o r r e c t  if for each 
model M holds: if c q , . . . , c ~  are true in M, then also )3 is true in M. We are 
interested in correct deduction rules of the the form ~ where ~ ,~ r and 

~ ,-~ ~b I are formulae of an F F TP C .  Such deduction rules can be used, e.g., in 
the following ways: 
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To r e d u c e  t h e  o u t p u t  of  a d a t a  m i n i n g  p r o c e d u r e :  If formula p ~ 
is a part of a data  mining procedure output  (thus it is true in analyzed 
data) and if ~ is a correct deduction rule, then it is not necessary to 

put p~ ~ r into the output.  The used deduction rule must be clear enough 
from the point of view of the user of the data mining procedure. An example 
of a simple deduction rule is dereduction deduction rule ~ ' r  which is 

~:=~*r X 
correct for each implicational quantifier O* [2]. 

- To d e c r e a s e  t h e  n u m b e r  o f  a c t u a l l y  t e s t e d  f o r m u l a e :  If formula ~ ~ r 
is true in an analyzed model (data matrix) and if ~ is a correct deduction 
rule, then it is not necessary to test ~ / ~  ~ .  

Let us note that correct deduction rules (not only in the form of ~ )  
are used in the GUHA procedure PC-ASSOC, see, e.g., [4] or [6]. Anyway, it is 
reasonable to ask when the deduction rule of the form ~ is correct. Several 
results concerning this problem were achieved in [5]. We are going to show some 
of them. We need several notions. 

D e f i n i t i o n l l .  Let ~ be an attribute. Then an a s s o c i a t e d  p r o p o s i t i o n a l  for -  
m u l a  ~r(~) to ~ is the same string of symbols as 9, but the particular basic 
attributes are understood as the propositional variables. 

Example 5. If A1 A A7 is a derived attribute, then 7r(A1 A AT) is propositional 
formula A1 A A7 with propositional variables A1 and A7. 

D e f i n i t i o n l 2 .  Let ,-~ be an F F T  quantifier. Then 

1. ~ is a - d e p e n d e n t  if there are non-negative integers a, a/, b, c, d such that  
(a, b, c, d) r ~ (a', b, c, d). Analogously for b - d e p e n d e n t .  

2. ,-~ is ( b + c ) - d e p e n d e n t  if there are non-negative integers a, b, c, d, b/, c ~ 
such that b + c r b' + c' and ~ (a, b, c, d) r --~ (a, b', c', d). Analogously for 
( a + d ) - d e p e n d e n t .  

D e f i n i t l o n 1 3 .  Interesting quantifiers: 

1. An i m p l l c a t i o n a l  q u a n t i f i e r  O* is i n t e r e s t i n g  if O* is both a-dependent 
and b-dependent, and if O* (0, 0) = 0. 

2. A Z - d o u b l e  i m p l i c a t i o n a l  q u a n t i f i e r  r is i n t e r e s t i n g  if r is both 
a-dependent and (b + c)-dependent, and if r (0, 0, 0) = 0. 

3. A Z - e q u i v a l e n c e  q u a n t i f i e r  =* is i n t e r e s t i n g  i f - *  is (a + d)-dependent 
and i f - *  (0, b,c, 0 ) = 0 f o r  b + c > 0 .  

T h e o r e m  14. Correct deduction rules: 

1. I f  0 "  is an interesting implicational quantifier, then deduction rule ~ * r  
is correct if and only if at least one of the following conditions a), b) is 
satisfied (see also [7]): 

a) Both (i) and (ii) are tautologies: 
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(1) A -+ A 
( i i )  A - +  A 

b )  rr(~) -+ -,7r(r is a tautology. 

2. I f  <ez* is an interesting ~-double implieational quantifier, then deduction rule 
~<**~ is correct if and only if at least one of the following conditions a), 

b) is satisfied: 
a)  Both (i) and (ii) are tautologies: 

( i )  A - +  A 

(ii)  7r(~') A -wr(r V -~Tr(~') A 7r(r -+ rr(~) A -~7r(r V -,~r(~) A 7r(r 
b )  (i): ~r(~) -+ ~7r(r or (ii): 7r(r -+ --wr(~) are tautologies. 

3. If--* is an interesting ~-equivalence quantifier, then deduction rule ~-*~P 
is correct if and only i f  (Tr(~) A 7r(r V-~Tr(;) A-,Tr(r --+ (Tr(; ') A 7r(r V 
~r (~ ' )  A ~r ( r  is a tautology. 

Proof. Let us outl ine the proof  of  a theorem concerning correct deduct ion rules 
for impl ica t iona l  quantifiers,  see point  1. We have to prove: 

A) :  I f  1.a is satisfied, then  deduct ion rule ~ * r  is correct.  
q o J ~ * r  ' 

B):  I f  1.b is satisfied, then  deduct ion rule ~ is correct.  

C) :  If  nei ther  1.a nor 1.b are satisfied, then deduct ion rule ~ is not  correct.  

We suppose:  M is a model ,  ~ O *  r is a formula ,  and (a, b, c, d) is a cont ingency 
table  of  p O*  r in M ,  analogously  for ~ '  =~* r  and (a ~, b ~, d ,  d').  

A):  Let Val(~  :::,* r  M)  = 1. I t  means  =** (a, b) = 1. The  condi t ion 1.a(i) 
implies  a < a', the condit ion 1.a(ii) implies b' <_ b. Thus  it is also =V* (a', b') = 1, 
see the definit ion 8 of the impl ica t ional  quantifier.  

B):  If  rr(p) --+ -,~r(r is a tautology,  then it is a = 0 for each model  M.  The  
quantif ier  =~* is an interest ing impl ica t ional  quantifier,  thus O *  (0, 0) = 0. I t  
implies  O *  (0, b) = 0 for each b (see definition 13 of the interest ing impl ica t iona l  
quantifier) .  Thus  Val(~  ~ *  r  M)  = 0 for each model  M. I t  means  t ha t  the 
assertion: [ f V a l ( ~  ~ *  r  = 1 then Val(~'  0 "  r  = 1 is true. 

C):  We suppose t ha t  nei ther  1.a nor 1.b are satisfied. We have to find a mode l  
M such tha t  Val(~  O *  r  M)  = 1 and VaI(p'  O* r  M)  = 0. I f  nei ther  1.a nor 
1.b are satisfied, then D)  or E) are satisfied: 

D ) :  Nei ther  1.a(i) nor  1.b are satisfied. 
E): Neither  1.a(ii) nor 1.b are satisfied. 

D) :  T h e  impl ica t ional  quantifier  o *  is a-dependent ,  thus there are A, /3  such 
t ha t  ==>* (A, B) = 1. The  condit ion 1.a(i) is not  satisfied, thus there is an objec t  
o, such t ha t  o has the a t t r i bu te  q0 A r  and o has not  the  a t t r ibu te  qo' A r  Let  
M be a mode l  with A objects  o (a d a t a  ma t r i x  with A identical  rows, each of 
t h e m  equal  to a row corresponding to the row of o). I t  means  a -= A, b = 0 
and also a ~ = 0, b ~ >_ 0. The  quantifier  O*  is impl ica t ional  and ==~* (A, B) = 1, 
thus also =V* (A, 0) = 1. Further ,  a '  = 0 and =>* (0, 0) = 0 (=~* is interest ing 
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implicational) ,  thus also o *  (a I, b I) = O. It means tha t  Val(~  =:~* r M)  = 1 
and Val(~  I =~* r M)  -- 0. 

E):  The  quantifier =~* is b-dependent, thus there are non-negat ive integers 
A, B, B 1 such tha t  :=~* (A, B) = 1 and ==~* (A, B ' )  = 0. The  condit ion 1.a(ii) 
is not  satisfied, thus there is an object which has the a t t r ibute  9 / A _,r and 
has not  the a t t r ibute  ~ A ~ r  Let us call it object of type B. The  condi t ion 1.b 
is not  satisfied, thus there is an object which has both  the a t t r ibute  p and the 
a t t r ibu te  r  Let us call it object of type h. Let M be a model  with A objects  of  
type  h and B objects of  type B. Values of at t r ibutes  impor tan t  for comput ing  
Val(~  ~ *  r M)  and Val(~ I ~ *  r M)  and consequences for cont ingency tables 
(a, b, c, d) and (a' ,  51, c', d 1) are in Tab. 2. Symbol  . . . .  means  tha t  we do not  know 

line attribute A objects of type h B objects of type B consequence 
1 ~ A r X: T by definition a _> A 
2 ~'  A r  B, see Y a'  < A 
3 ~ A -~r V -~o A r F, see X F by definition b = 0 
4 ~' A -~r V -,~o' A r  Y: T by definition b' > B 

Table  2. Values of attributes for case E 

the corresponding value, X :  and Y:  are labels. Symbol  T means tha t  an object  
of  a corresponding type has a corresponding a t t r ibute  (symbol  F means  "has  
not") .  It is O*  ( A , B )  = 1, a > A and b = 0, thus also O*  (a,b) = 1. Further,  
it is o *  ( A , B  I) = 0, a / < A and b' > B t, thus o *  (a,b/) = 0. This finishes the 
proof. [] 

5 Tables of critical frequencies 

T h e o r e m  15. Let 0 "  be an irnplicational quantifier. Then there is a non-negative 
and non-decreasing function Tb~ .  with value Tb~ .  (a) E {0, 1 , 2 , . . . }  U {oo} 
such that it is 

0 "  (a, b) = 1 if and only if b < Tb=~. (a) 

for all integers a > 0 and b >_ O. 

Proof. We define Tb~ .  (a) = min{e I O*  (a, e) = 0}, see the definition of  impli- 
cat ional  quantifiers. [:3 

We call funct ion Tb~ .  a table of critical frequencies for implicational quanti- 
tier 0 * .  It  is used in the G U H A  procedure P C - A S S O C  [7]. It  is impor t an t  t ha t  
the funct ion Tb~ ,  makes it possible to use a simple test of inequali ty instead of  a 
ra ther  complex computa t ion .  E.g., we can use inequali ty b < T b ~  .... (a) instead 

5-~a+b ~ p i ( 1  _ p)a+b-i of  condit ion L,i=a i.(a+b-i). <_ a A a > s for quantifier ~p,a,~ of 
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lower critical implication, see example 2. An other form of the table of crit- 
ical frequencies for implicational quantifier is defined in [2]. Further tables of 
critical frequencies for Z-double implicational quantifiers and for Z-equivalence 
quantitiers are defined in [8]. 

6 C o n c l u s i o n s  

We have defined several classes of FFT quantifiers. Deduction rules and tables 
of critical frequencies have been discussed as useful tools for dealing with some 
patterns in the KDD process. We have shown that properties of these tools are 
closely related to classes of FFT quantifiers. 

There are further useful classes of FFT quantifiers, e.g., symmetrical quanti- 
tiers, a,d-symmetrical quantifiers, strong double implieational quantifiers, strong 
double equivalence quantifiers and F-quantifiers (with the same behaviour as 
Fisher's test), see [2], [5], [8]. 

This work is supported by grant 47160008 of the Ministry of Education and 
by grant 201/96/1445 of the Grant Agency of the Czech Republic. 
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