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Abstract .  The efficiency of the otherwise expedient decision tree learn- 
ing can be impaired in processing data-mining-sized data if superlinear- 
time processing is required in attribute selection. An example of such a 
technique is optimal multisplitting of numerical attributes. Its efficiency 
is hit hard even by a single troublesome attribute in the domain. 
Analysis shows that there is a direct connection between the ratio of the 
numbers of boundary points and training examples and the maximum 
goodness score of a numerical attribute. Class distribution information 
from preprocessing can be applied to obtain tighter bounds for an at- 
tribute's relevance in class prediction. These analytical bounds, however, 
are too loose for practical purposes. 
We experiment with heuristic methods which postpone the evaluation of 
attributes that have a high number of boundary points. The results show 
that substantial time savings can be obtained in the most critical data 
sets without having to give up on the accuracy of the resulting classifier. 

1 I n t r o d u c t i o n  

Ident i fying and el iminat ing either irrelevant at t r ibutes  [4, 13] or un t rus twor thy  
t ra ining examples [3, 12, 17] prior to classifier construct ion are techniques used 
to aid and enhance the induct ion process (for a comprehensive survey see [1]). 
Such cleaning methods  can be heavier than  the actual  process of building a 
classifier. Moreover, irreversible decisions to remove at t r ibutes  or examples are 
taken. In this paper  we explore efficient ways of enhancing the induct ion process 
by overlooking some at t r ibutes  at some stages, but  wi thout  losing the possibility 
to use them later if they turn out  to be beneficial then. 

Induct ive  process tha t  is based on univariate par t i t ioning of  the given da t a  
se t - -e .g . ,  top-down induct ion of decision t rees-- is  inherently myopic  to interre- 
lations between attr ibutes.  Its s t ronghold is the extreme efficiency on mid-sized 
da t a  sets. However, when large databases  are processed even this advantage  may  
vanish; in particular,  if the a t t r ibute  selection entails processing tha t  requires 
superlinear t ime in the number  of examples or some other characterist ic figure. 

Evaluat ing nominal  a t t r ibutes  is efficient. Numerical  a t t r ibute  domains,  on 
the other  hand,  need to be discretized, which m a y  be t ime consuming if the do- 
main  at hand  has a very high number  of candidate  cut  points. Even a l inear-t ime 
m e t h o d  like binarization can require substant ial  amount  of  t ime. This presents 
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a particular problem for learning algorithms that  have to manipulate  numerical 
at tr ibutes exhaustively; e.g., opt imal  [8, 11] or greedy [10] multisplitters in deci- 
sion tree learning. The inconvenience for all at tr ibute selection strategies alike is 
that  the time consumption of at tr ibute selection is dominated by the at tr ibutes 
that  require the heaviest evaluation. Hence, even a single difficult a t t r ibute can 
ruin the efficiency of an otherwise manageable domain. 

This paper studies how boundary points [9] can be utilized to determine the 
relevance of an at t r ibute in univariate induction. It is shown that  an at t r ibute 
with many  boundary points is not relevant for class prediction. As evaluating 
such an at tr ibute is also t ime consuming, postponing its evaluation should turn 
out beneficial in the resulting classifiers quality and speed of classifier construc- 
tion. We do not want to trade accuracy for efficiency or simplicity, but strive to 
mainta in  the prediction ability of the resulting decision tree while speeding up 
the classifier construction by simple and efficient dynamic data  processing. 

During the iterative top-down induction of a decision tree the number  of 
boundary points that  have to be taken into account in one dimension decreases, 
since the recursive partit ioning of the data  removes possible cut po in t s - -and  
boundary points as well. Also, the number of available training examples de- 
creases during tree construction as the training set gets part i t ioned into smaller 
and smaller subsets. Due to this dynamics, we do not definitely disregard an 
at tr ibute,  which at some point has a too high number of boundary points, but 
keep it for further evaluation in the changed situation. 

2 P r e l i m i n a r i e s  

All numerical dimension of data  represented as at tr ibute value assignments share 
as a common characteristic figure the number of instances, n. Another charac- 
teristic figure is the number of different values, V, for the attribute.  Numerical 
at tr ibutes can have a very large, even infinite, domain. As a third figure numeri- 
cal dimensions have the number of boundary points, B - 1. Intuitively, boundary 
points are such values of a numerical value range that  partit ioning the data  with 
those values as thresholds will not needlessly separate two instances of the same 
class to different subsets of the partition. Such a partitioning will not obviously 
harm the prediction of the example class labels. 

The basic relationships of these three figures are B _< V _< n, but it is the 
common (mis)conception that  B << V << n in real-world data. Recently the 
relationship of these figures have been studied in detail [8] for a large collection 
of the most  commonly used machine learning data  sets from the UCI da ta  repos- 
itory [16]. It  turns out that  most typically the number of boundary points in a 
numericM dimension is at least half of the total  number of existing values in the 
data.  The claim V << n is better  grounded, and B << n even more so. 

The min imum preprocessing in handling a numerical at tr ibute is to sort the 
training data  by its value. The data  cannot be parti t ioned in this dimension so 
that  two examples with equal values for the underlying at tr ibute would belong 
to different subsets. Therefore, we can consider a categorized version of the data, 
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where all examples with an equal value constitute a bin of examples. There are 
as many  bins as distinct values for the attribute, V. 

Fayyad and Irani 's  [9] analysis of the binarization technique proved that  for 
the information gain function [18] only boundary points need to be considered 
as potential  cut points, because opt imal  binary splits always fall on them due to 
the convexity of the function. Codrington and Brodley [5] present further studies 
of the convexity properties of many common at tr ibute evaluation functions. 

D e f i n i t i o n  1. Let a sequence S of examples be sorted by the value of a nu- 
merical at t r ibute A. The set of boundary points is defined as follows: A value 
T E Dom(A) is a boundary point if and only if there exists a pair of examples 
Sl, s2 E S, having different classes, such that  valA(Sl) = T < vala(s2); and there 
does not exist another example s C S such that  vala(s l )  < valA(s) < vala(s2).  

In the original definition a boundary point was taken to be a value that  is 
strictly in between the values valA(sl) and vala(s2) [9]. The above definition 
leads to parti t ions with the same subsets. Let us now define a block of examples. 
I t  is a concept tha t  facilitates the discovery of all boundary points of a da ta  set. 

D e f i n i t i o n  2. Let the example set S be ordered by the value of a numerical 
at t r ibute A. Let C be the class attribute. A block of examples is a maximal- 
length sequence of consecutive examples S l , . . . ,  s6 C S such that  

1. va lc (s l )  = . . . .  valc(sb) and there does not exist an example s E S such 
that  va la(s l )  <_ valA(s) < valA(sb) and valc(s)  r va lc(s l ) ,  or 

2. valA(sl) . . . . .  valA(Sb) and there exists si, i C { 2 , . . . , b } ,  such that  
valc(sl) # valc(sl). 

Blocks of type (1) are uniform ones and those of type (2) are mixed ones. Bound- 
ary points of a set are exactly the borders of blocks, which makes finding them 
simple. Blocks are obtained from bins by merging only adjacent class uniform 
bins with the same class label into a block. Mixed bins are never merged into a 
block with another bin. 

In decision tree learning the number of boundary points in a numerical di- 
mension depends on the phase of tree construction: it is the highest at the root 
level, when the da ta  has not yet been partitioned, reduces through some splits 
defined by other attributes, until finally, at the level of the last decision nodes, 
it reaches a linear correlation with the decision tree's accuracy on the training 
da ta  (if the numerical at tr ibute in question is to be chosen to the tree). 

A well-behaved function always has an opt imal  multisplit on boundary points 
[8]. All the most  commonly used at tr ibute evaluation functions are well-behaved. 
By using a well-behaved function we may concentrate on boundary points inde- 
pendent of whether the parti t ion arity is limited a priori or not. If  a well-behaved 
evaluation function also has the so-called cumulativity property, the general op- 
t imal parti t ioning algorithm of Fulton et al. [11] can be adapted to operate in 
t ime that  is quadratic in the number of blocks instead of bins. 
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3 B o u n d a r y  p o i n t s  a s  a n  i n d i c a t i o n  o f  a t t r i b u t e  r e l e v a n c e  

Let us study the well-behaved evaluation function average class entropy, ACE. 
For a parti t ion ~Ji Si of the data  set S, ACE is defined to be 

ACE(~ i Si) = (WlSl) E~ I&lH(Sd = ( l /n)  g~ I&IH(&), 

where H is the entropy function: H(S) = - Ejm=l P(Cj, S)log 2 P(Cj ,  S), in 
which m denotes the number of classes and P(C S) stands for the proportion 
of examples in S that  have class C. 

Let us bound the minimum value of average class entropy in the following 
situation. We are partitioning a numerical at t r ibute 's  value range into t intervals; 
there are n training examples and the domain in question contains B blocks. 

Since ACE is a well-behaved function, its optimal  &parti t ion is defined by 
e - 1 boundary points. Hence, there are B - f further boundary points within 
the parti t ion subsets. It  pays to maximize the number of examples belonging 
to part i t ion subsets that  have zero entropy, i.e., such examples that  belong to 
class uniform intervals. To that  end, intervals into which the unused boundary 
points fall, have to be as short as possible. Tha t  is obtained if each example 
in such a subset alone constitutes an uniform block, then there is a boundary 
point in between every pair of consecutive examples. We are approximating the 
min imum value of ACE, so we can freely assume there to be only two classes. 

Let us now settle the question into how many subsets should the extra bound- 
ary points be distributed. As the above motivation shows I& [H(Sd/bl minimizes 
when bg = I & l -  1. It can be easily verified that  the function IS~lH(&)/b~ = 
g ( s d l & l / ( l & l -  1) decreases monotonically when [Si I increases and, hence, it 
holds that  ~ ~ ~ ~ i = 1  Isilg(si)/bi >- I Ui=lsilg(ui=] s i ) / (~i=l  bi) for any set of 
subsets $1,. . . ,  Se which contain bi = ISgl-  1 boundary points each. Therefore, 
packing the extra boundaries into a single interval will lead to a smaller ACE 
value than segregating the boundary points. 

The above construction gives the idealized minimum value of A CE: No other 
part i t ion subset, except the one into which all unused boundary points have 
been packed, contributes to the impurity of the partition. Hence, the average 
class entropy of the parti t ion is ACE(~J~=z Si) > ( B -  e)/n. In other words, the 
lowest obtainable average class entropy of a parti t ion depends directly on the 
ratio B/n. 

Due to the heavily idealized assumptions underlying the above calculations, 
we do not expect this lower bound to be very tight. Nevertheless, it shows that  
there is a direct correlation between the B/n  ratio and an at t r ibute 's  relevance 
for class prediction in univariate induction. The way to apply the bound is 
straightforward: if the ratio (B - f ) / n  shows that  by partit ioning the data  along 
this dimension cannot lead to a better choice of an at tr ibute than the current 
best choice, then we can leave this at tr ibute unevaluated (at this point). 

The above calculated min imum value for ACE serves as the basis for an upper 
bound of the highest obtainable value of the information gain function [18]. It  
is defined as IG(~ i Si) = H(S) - ACs Si). H ( S ) - - t h e  entropy of the da ta  
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set 5; prior to partitioning i t -- is  constant with respect to the dimensions of the 
data. Therefore, IG's maximum value coincides with ACE's minimum value and 
its relevance assignment can, by the same rationale, be bound by the ratio B / n .  

Many other evaluation functions use IG as their building block, which means 
that  from the above analysis of A C E  we can obtain bounds for the values of 
these functions as well. Such functions include, e.g., balanced gain [8, 14], gain 
ratio [19,20], and normalized distance measure [15]. Also, the gini index (of 
diversity) [2] has a very similar formula as IG, and ought to be easy to analyze. 
In this paper we, however, only consider balanced gain, BGlog, which is defined 

as BGlog(U~=I Si) = IG(Uk_l Si)/ log2 k. It has turned out to be a function 
with, in most cases, superior performance than information gain and gain ratio 
functions. In addition, it has other desirable properties [8]. 

4 U t i l i z i n g  i n f o r m a t i o n  f r o m  p r e p r o c e s s i n g  

No mat ter  which partitioning strategy is used to handle numerical attributes, 
preprocessing of the data  is required. At least the examples have to be sorted. 
Identification of candidate cut points requires a scan over the data set. Hence, 
the direct approximation of attribute relevance on the basis of the number of 
boundary points presented in the preceding section requires time that has a linear 
dependency on the number of examples n. However, from the preprocessing stage 
we can also extract, at the low cost of O(mB),  the class distributions of blocks. 
In practice, this preprocessing time has been observed to be negligible with 
respect to the time required by actual evaluation of candidate partitions [8]. 
These distributions give another possibility to bound (sometimes more tightly) 
the relevance of an attribute on the basis of boundary points. 

For the function A C E  it is quite easy to show--using basic information the- 
oretical resul ts-- that  its optimal (least) value is obtained by the partit ion that  
is defined by all the boundary points of the data. 

T h e o r e m  3 (Log S u m  I n e q u a l i t y  [6]). Given non-negative ai, bl, i = 1 , . . . ,  k, 

k k 
Ei=l  ai log(ai/bi) >_ (Eik=l ai) log(~-:~ik=l ai/ ~ i= l  bi) 

with equality iff ai/bi is constant, i = 1 , . . . ,  k. 

Let us substitute into the Log Sum Inequality the non-negative fractions 
ai : ni , j /n a n d  bi = ni /n,  w h e r e  0 _ ni,j ~ ni < n,  i : 1 , . . . ,  k; we ge t  

k ~i=1 (ni,j /n) log(ni,j/n,) > (nj /n)  log(nj/n).  

Negating both sides and summing over j = 1 , . . . ,  m we get 
k m - E i : l  ( ~ / n )  Ej:I (ni , j /ni) log(ni , j /ni)  <_ - ~ = 1  (n j /n ) log (h i /n ) .  

Bringing the notation in accord with the earlier one, we have n = [S I, n~ = [S~I, 
n j / n  = P(Cj ,  S), and ni , j /ni  = P(Cj ,  Si), which maintain the non-negativity 
of ai and bi. Taking, furthermore, the logarithms to have base 2, the above 
inequality can be rewritten as 
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(]/ISI) Ei I&IH(&) H(S) ~ ACE(~Ji Si) <_ ACE(S). 
In other words, any parti t ion ~ i  Si, i = 2 , . . . ,  B, of a data  set S will have at 
most  the same average class entropy as the whole data  set. 

A C E  is convex in between any two consecutive boundary points [5, 9] and any 
further partit ioning of the da ta  on a boundary point reduces the average class 
entropy of the partition. Hence, the minimum A CE value over a da ta  set is always 
obtained by the B-part i t ion that  has as its subsets all the blocks of the data. Let 
us denote the value of A C E  in such a case by orb = ( I /n)E/B=I  [SiIH(Si). The 
value of this parti t ion serves as an approximation of a numerical a t t r ibute 's  util- 
ity in class prediction: ACE(U i Si) >_ OB, for any parti t ion ~ i  Si, i = 2 , . . . ,  B, 
of the da ta  set S. Clearly, this lower bound can be computed in linear time. 

The value of H(S)  can, of course, be computed at the same single pass 
through the da ta  and it is constant for all attributes. H(S) - oB is a lower 
bound for information gain of any parti t ion of S. Incidentally, this explains why 
the information gain function is so eager to favor higher arity parti t ions of nu- 
mericM at tr ibute domains and nominal attributes with many  potential  values 
[19]. Furthermore, we can use this value to obtain an upper bound for the bal- 
anced gain. Observe that  BGlog does not (necessarily) obtain its max imum value 
when all blocks of the data  constitute a parti t ion subset of their own since the 
denominator  log 2 k biases against unnecessary splitting. 

It is common to set an upper bound k for the arity of the partition. Obviously, 
the above-derived approximations are not very tight if k << B. We cannot use 
parti t ions of arity k as our approximation,  since enumerating them requires 
O(B ~) time. 

5 E m p i r i c a l  e v a l u a t i o n  

This section presents the results of comparat ive experiments in which C4.5 al- 
gori thm [20] changed to multisplit numerical attributes optimally using the bal- 
anced gain function and equipped with four different postponing strategies: 

A n a l y t i c .  We combine the two analytically derived bounds and compare 
the best observed BG~og score with the value (H(S) - ~m~x)/log 2 k, where 
0"ma x : n l a x { ( B  - -  s O'B}. 

- -  H e u r i s t i e l .  This heuristic postpones the evaluation of an at tr ibute if B / n  > 
t. As threshold t we try values .5, .2, and .1. 

- H e u r i s t i c 2 .  This heuristic orders the numerical at tr ibutes by the number 
of boundary points and postpones the evaluation ( 1 -  t)100% of them, 
those that  have the highest number of boundary points. We test values 
t = { .9 ,  .7, 
H e u r i s t i c 3 .  The final heuristic postpones the evaluation of 
attr ibutes that  have Bmin/B > t, where Brain is the least 
count among the attributes. Threshold values .9, .7, and .5 

Into our comparison we have chosen 15 data  sets mainly from 
tory with such properties that  they contain numerical attributes, 

those numerical 
boundary point 
are a t tempted.  

the UCI reposi- 
have at tr ibutes 
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Fig. i. The average accuracies of the postponing strategies in the 5x2cv test. The 

average accuracy of not postponing the evaluation of any attributes is 75.2%. The bars 

represent the relative gain or loss with respect to not postponing attribute evaluation. 

with a high number of boundary points, or are large. Most of the domains are 
well-known; we do not describe them here, for a comprehensive description of 
their characteristic figures see, e.g., [8]. The domains are Abalone, Adult, Aus- 
tralian, Auto imports, German, Glass, Letter recognition, Mole, Page blocks, 
Satellite, Segmentation, Shuttle, Vehicle, Waveform, and Yeast. 

As the test strategy we use two-fold cross validation testing repeated five 
times, 5x2cv; it has been observed to be a reliable statistical test in experiments 
that  involve comparison of more than two learning algorithms [7]. 

The average prediction accuracies obtained using the strategies in the 5x2cv 
test are depicted in Fig. 1. The most salient observation to be made from these 
results is that  we cannot claim Heuristic3 nor Heuristicl with thresholds .2 
and .1 to maintain the overall level of prediction accuracy that  exists when the 
evaluation of attributes is not delayed. Heuristic2, on the other hand, maintains 
the overall accuracy even when 50% of attributes are left unevaluated at each 
at tr ibute selection step. The strategy Analytic does not change the prediction 
accuracy significantly but, as can be observed from the representation in Fig. 
2, that  is mainly due to it not postponing the evaluation of attributes near 
the root level of the tree; only when the number of remaining boundary points 
approaches that of the partition arity limit, the analytical bounds start to have 
an effect. The analytically derived bounds are not tight enough to gain speed-up 
in practice. 

The utility of the heuristic methods is ultimately decided on the time saving 
that  is obtained through using them. In particular, on the domains that  contain 
singular malignant attributes that  cause the optimal multisplitting algorithm to 
use excessive amounts of time. The reference time is that of not postponing the 
evaluation of attributes. The overall performance is summarized by the geometric 
mean of these results. 

Fig. 2 shows the average time consumptions of the postponing strategies. We 
can observe that  Heuristic1 with threshold .5--which still maintains the over- 
all prediction accuracy well--cannot bring time savings, except for one domain: 
Abalone. It is, however, important  to notice that for all t ime critical domains, 
except Waveform, the tighter thresholds maintain (or even increase) accuracy 
and bring speed-ups; they are substantial whenever there are individual malig- 



228 

27.6 223 m- 9 pn T 64 m 
ANALYTIC HEURI .5 HEURI .2 HEURI .i HEUR2 .9 

26.6 
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HEUR2 .7 HEUR2 .5 HEUR3 .9 HEUR3 .7 HEUR3 .5 
Fig. 2. The geometric mean times of the postponing strategies in the 5x2cv test. The 
mean time required when not postponing the evaluation of attributes is 23.0 seconds. 
The bars represent relative speed-up or slow-down on individual domains. 

nant attributes in the domain--e.g. ,  Abalone and Adul t - -bu t  less impressive in 
other cases--e.g., Page blocks and Shuttle: 

From Fig. 2 we can see that the speed-up of Heuristic2 depends on the strict- 
ness of the threshold: with parameter value .9 no time savings are obtained, but 
the lower values bring better results. Again the best results are obtained for the 
most critical domains. A small accuracy-efficiency tradeoff exists also for this 
heuristic (cf. Fig. 1). Heuristic3 gains a lot of speed for the decision tree con- 
struction, bu t - -wi th  these threshold values--the loss of accuracy is intolerable. 

Altogether, all three heuristics do well in getting rid of singular malignant 
attributes, which are not useful in induction in any case. The achieved speed-up 
depends on the domain and on the strictness of the threshold. Unfortunately, in 
other cases the heuristics can work against the accuracy of the result by post- 
poning the evaluation of an important attribute, forcing the learning algorithm 
to make a less profitable choise. Heuristic 2 appears very safe in this respect. 

6 C o n c l u s i o n s  a n d  f u r t h e r  w o r k  

We presented an analysis on the relationship of a numerical attribute's relevance 
to class prediction and the number of boundary points in the data dimension de- 
termined by the attribute. The analytic bounds are not tight enough to screen 
out malignant attributes, but suggest efficient heuristics that can be used to 
enhance univariate decision tree induction by postponing the evaluation of at- 
tributes that are very likely to have a low relevance and would require substantial 
amount of time for evaluation. The empirical evaluation confirms the benefits 
that  can be obtained in case of removing malignant attributes, but also show 
that some heuristics can work against the accuracy of the resulting decision tree. 

The most obvious direction for further work is to continue the analysis of 
the multisplitting of numerical attributes to obtain tighter and more practical 
bounds for the utility of an attribute in class prediction. In case of the bound that 
utilizes information from the preprocessing, the most urgent need would be to 
close the gap between the arity of the lower bound, B, and that of the partition 
under consideration, s That  gap is the reason for this bound's  looseness. 
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Further heuristics that  take the number of boundary points into account are 
easy to figure out, as well as enhancements to the heuristics studied in this paper. 
For instance, turning off the postponing in case of small domains or when the 
tree construction has proceeded to a certain stage would both probably enhance 
the efficiency of the heuristics. 
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