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Abstract. Functional Dependency satisfaction, where the value of one 
attribute uniquely determines another, may be approximated by Numer- 
ical Dependencies (NDs), wherein an attribute set determines at most k 
attribute sets. Hence, we use NDs to "mine" a relation to see how well a 
given FD set is approximated. We motivate NDs by examining their use 
with indefinite information in relations. The family of all possible ND 
sets which may approximate an FD set forms a complete lattice. Using 
this, a proximity metric is presented and used to assess the distance of 
each resulting ND set to a given FD set. 
Searching for a definite relation extracted from an indefinite relation 
which satisfies a given set of FDs, known as the consistency problem, 
has been shown to be NP-complete. We propose a novel application of 
the bootstrap, a computer intensive resampling technique, to determine 
a suitable number of definite relations upon which to apply a heuristic 
based hill-climbing algorithm which attempts to minimise the distance 
between the best ND set and the given FD set. The novelty is that we 
repeatedly apply the bootstrap to an indefinite rdat ion with an increas- 
ing sample size until an approximate fixpoint is reached at which point 
we assume that the sample size is then representative of the indefinite 
relation. We compare the bootstrap with its predecessor, the jackknife, 
and conclude that both are applicable with the bootstrap providing ad- 
ditional flexibility. This work highlights the utility of computer intensive 
resampling within a dependency data mining context. 
K e y  W o r d s  - Functional Dependency , Numerical Dependency, Data 
Mining, Indefinite Relation, Resampling, Bootstrap 

1 I n t r o d u c t i o n  

Numer ica l  Dependencies (NDs)[1] are general isat ions of Func t iona l  Dependen-  
cies (FDs) which allow an a t t r ibu te  set to uniquely  de termine  up to k different 
a t t r ibu te  set values, no t ing  tha t  k = 1 in the case of FDs. Indefini te  in fo rmat ion  
representa t ion in relat ions has been shown to be a useful facility for incomple te  
specifications in design and  p l ann ing  appl icat ions [2]. We define indefinite cells 
as cells con ta in ing  one or more values which represent a set of possibilit ies denot-  
ing the current  l imi t  of knowledge in the database.  A definite relat ion extracted 
from one conta in ing  indefinite in format ion  is a relat ion with the same schema 
and definite cells, which are invar ian t  throughout ,  bu t  with each indefinite cell, 
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say C, replaced with a definite cell containing one value from C. Associated with 
an indefinite relation may be a set of integrity constraints. There may be cases, 
highlighted below, where the traditional FD is too strict and a weaker integrity 
constraint, such as an ND, is required. Table 1 shows how we might want to 
represent indefinite information in a teaching relation PLAN(Lecturer,Course). 
Irrespective of whatever courses Mark and Robin decide to teach no definite re- 
lation extracted from P L A N  will satisfy the FD Lecturer -+ Course though all 
satisfy the ND Lecturer _+2 Course, representing that a Lecturer can teach up 
to two courses in a year. For an FD X _+ Y, the set of all possible NDs, X __.k y ,  
which may approximate this allow k to range from 1 up to the maximum active 
domain size (ADS) combination in Y. All of these possibilities are shown to form 
a complete lattice which is then used as the base for a metric on ND sets which 
we use to gain a value between 0 and 1 for the proximity of a relation to FD set 
satisfaction. 

Table 1. An indefinite relation PLAN 

Lecturer Course 
Mark {B11a,C320} 
Robin B11a 
{Robin,Mark} B151 

Given a set of FDs F and an indefinite relation r (a relation with one or 
more indefinite cells) we tackle the problem of attempting to find a definite rela- 
tion extracted from r which satisfies F. This is widely known as the consistency 
problem, shown to be NP-Complete in general, and of polynomial time complex- 
ity in the case where indefinite information is only allowed in attributes which 
are present in the right hand side of FDs (referred to as a good database) or 
when the FDs have a singleton right hand side and attributes of at most arity 
two are allowed in the left hand side [2]. Within our algorithm we use the chase 
process [3], a heuristic designed to modify a database to satisfy constraints, ex- 
tended in [4] for numerical dependencies and indefinite information, and used 
in a hill-climbing fashion. Henceforth, we refer to definite relations as possible 
worlds. 

We use the bootstrap procedure [5], a computationally intensive statistical 
resampling procedure that requires no assumptions on the distribution of the 
possible worlds. We initially take a sample S of n observed possible worlds. Based 
upon this sample we perform a number of bootstrap replications. Each bootstrap 
replication, of size n, samples from S with replacement. In this way the bootstrap 
can be used to provide a guide to the distribution of ND satisfaction in the 
possible worlds. The key assumption we make in this case is that our sample of 
observed possible worlds is representative of the indefinite relation. We repeat the 
bootstrap with an increasing sample size of observed possible worlds. After each 
bootstrap iteration we calculate the mean and standard error. The number of 
observed possible worlds (sample size) is increased until the bootstrap procedure 
converges to an approximate fixpoint, defined as the state where the change in 
variance is sufficiently small. In this sense the convergence of the bootstrap mean 
value tells us, with a high probability, that  increasing the sample size further 
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will not provide us with any additional information concerning the distribution 
of da ta  within the indefinite relation. Our results have shown this convergence 
always occurs at a sample size that  is an upper bound on the number actually 
used by the chase hill-climbing procedure. This is a novel application of sampling 
within databases, not previously used within the limits of our experience. 

We also experimented with the jackknife resampling technique for comparison 
purposes. The jackknife creates n resamples from an original sample of size n 
where each resample is of size n - 1 with a single possible world left out of each 
resample. Given the restricted choice of points within the jackknife resamples the 
returned variance is smaller, on average, than that  obtained from the boots t rap  
and it reaches a fixpoint with a fewer number of worlds. As anticipated, the 
difference between the boots t rap and the jackknife is minimal.  The jackknife 
was shown to approximate  the boots t rap in [5] though we conclude that  the 
boots t rap  is generally superior in its role of parameter  estimation, providing a 
bet ter  but not excessive parameter  for a suitable sampling size as well as being 
more flexible. We conducted simulations to test the viability of our approach. 
These are described extensively in [4] and indicate that  our use of the boots t rap  
for parameter  setting is a useful tool. 

The rest of the paper  is organised as follows. In Section 2 we introduce the 
concepts of indefinite information and numerical dependency, which is central to 
the process of approximating the distance to FD sets, as well as the background 
on the lattice of NDs and the proximity metric. Section 3 introduces the fl 'ame- 
work for the boots t rap and in Section 4 we describe and analyse the boots t rap  
and jackknife algorithms. Finally, in Section 5 we give our concluding remarks. 

2 Relational Database Background 

D e f i n i t i o n  1 ( R e l a t i o n  s c h e m a  a n d  i n d e f i n i t e  r e l a t i o n s ) .  Let /./ be a 
countable set of at tr ibutes and :D be a countable set of domain values. A re- 
lation schema R is a finite set of attributes in L/. An (indefinite) tuple t over R 
is a total  mapping  from R into 7)(7)) such that  VA E R, t(A) E 7)(7)). n tuple 
t over R is definite if VA C R, [ t(A) ]= l, i.e. t(A) is a singleton, where [ t(A) I 
denotes the cardinality of t(A). 

A indefinite relation r over R is a finite (possibly empty)  set of indefinite 
tuples over R. A relation over R is definite if all of its tuples are definite. The 
set of all possible worlds which may be formed from r is precisely the set of all 
combinations of replacing each indefinite cell with one of its values. From now 
on we let R be a relation schema, r be a relation over R and t E r be an indefinite 
tuple. Letters from the beginning of the alphabet such as A, B denote singleton 
at t r ibute  sets {A},{B} in R. We generalise the concept of an FD by a numerical 
dependency. 

D e f i n i t i o n  2 ( N u m e r i c a l  d e p e n d e n c y ) .  A numerical dependency over R (or 
simply an ND) is a s ta tement  of the form X __+k y ,  where X, Y C R and k > 1. X 
__+k y is satisfied when for each unique attr ibute set value in X there are at most  
k different at tr ibute set values in Y. A set of NDs N is satisfied in s, denoted by 
s ~ N, whenever V X __+k y E N, s ~ X __+k y .  
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From now on we let N be a set of NDs over R, F a set of FDs over R, 
a n d X - - + k  y be a s ingleND over R, with k_> 1. When  k = 1, X _ + 1  Y i s  an 
FD, wri t ten as X _+ Y. A set of  FDs F is weakly satisfied (or s imply satisfied 
whenever no ambigui ty  arises) in a relation r, denoted by r ~ F, whenever r 
has a possible world s such tha t  s ~ F. If  r ~ F we say tha t  r is consistent 
with respect to F; otherwise if r ~ F then we say tha t  r is inconsistent with 
respect to F (or s imply r is inconsistent). We define a set of NDs N to be weakly 
satisfied in a relation r in the same way as for FDs; similarly we define a relation 
r to be consistent with respect to a set of NDs if r ~ N and otherwise to be 
inconsistent.  We note tha t  if r ~ X _+k y then it is also the case tha t  r ~ X 
__+k+l y ,  i.e. the smaller k the more functional the ND. We consider, wi thout  
loss of  generality, only FDs and NDs with singleton right hand  sides. 

D e f i n i t i o n  3 ( T h e  c o n s i s t e n c y  p r o b l e m ) .  Given a set of FDs F and a rela- 
t ion r, possibly containing indefinite cells, the consistency problem is the problem 
of deciding whether  r ~ F. 

D e f i n i t i o n  4 ( M o r e  f u n c t i o n a l  se t  o f  N D s ) .  A set of NDs N1 over R is 
more functional than a set of  NDs N2 over R, denoted by N2 ~ N1, whenever 
X _+k2 A E N2 if and only i f X  __+kl A G N1 and kl < ks. 

The  set-theoretic relation, more  functional  than,  is a partial  order in the 
sets of  NDs. Assume tha t  we are considering only sets of  NDs which are more  
funct ional  than  a given set of NDs, N over R, each of the form X _+k y ,  for some 
k _> 1. Then  the family of sets of NDs tha t  are more functional  than  N form 
a lattice whose b o t t o m  element is N and whose top element is the set of FDs 
induced by N, i.e. {X _+ Y [ X _+k y E N}. The least upper bound, lub, of N1 and 
N~ is the set of  NDs {X _+,,~/,~(kl,k2) y [ X _+kl y E N1 and X _+k2 y C N2}, 
where rain(k1, k2) is the m i n i m u m  of kl and ks, and the greatest lower bound, 
glb, is defined similarly using max imum.  We call the lattice, whose top element 
is the set of  FDs F over R and whose bo t t om element is the set of NDs {X -+'~ 
Y I X -+ Y G F}, s  (or s imply L;,~ if F is unders tood f rom context) ,  with 
rn > 1. Therefore, we can approximate a set of FDs F by a set of NDs N such 
tha t  N _E F. The  closer N is to F in s the better  the approximat ion  is. From 
now on we let s be the lattice of NDs whose top element is F and assume tha t  
[ r [-- m + 1, with m _> 1. A set of  NDs N over R is the best approximation of a 
set of  FDs F over R with respect to a relation r over R, with I r [= m + 1 (or 
s imply  the best approximat ion  of  F if r is unders tood f rom context) ,  if r ~ N 
and there does not exist a set of  NDs, N ~ E s such tha t  N -~  N ~ and r ~ N ~. 

We introduce a measure for calculating the proximity  of  two ND sets using 
their posit ion within the lattice. We show in [4] tha t  this measure isa metric.  
We define the size of a set of NDs N to be the number  of  a t t r ibutes  appearing 
in N including repeti t ions and define a step, either up or down, to be exactly 
minus or plus one, respectively, to a single branch of one ND within an ND set. 
Furthermore,  we say that  N2 is covered by N1, denoted by N2 - <  N1, where 
N1,N2 G Era, if N1 # N~, N2 _E N1 and VN ~ G L;,~ such tha t  N2 E_ N ~ ~_ N~ we 
have N ~ = N2. In our s imulat ions one of  the ND sets is always the given FD set 
F in which case the metr ic  tells us the proximity  between the ND set and F. We 
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define distance to be the sum of steps taken in the lattice. We define the bo t tom 
of the lattice to be the set of NDs with each branching factor equivalent to the 
domain size of the at t r ibute on the right hand side of each ND. 

P r o p o s i t i o n  5. The m ax i m um  distance between any two points in the lattice 
to their lub is always equivalent to the distance from the bo t tom to the top of 
the lattice. 
Proof. By induction, presented in [4]. [] 

D e f i n i t i o n  6 ( P r o x i m i t y  o f  t w o  N D  se t s ) .  Given two sets of NDs N1 and 
N2 we define the metric as follows: 

~i=1,2 Distance from Ni to lub{N1, N2} 
p(N1, N2) = Max distance between any two ND sets to their lub in the lattice 

F i g .  1 .  A v e r a g e  N u m b e r  of Wor lds  given as 
u p p e r  b o u n d s  by the  B o o t s t r a p  a n d  Jackkn i f e  
t echn iques  
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Fig. 2. L a t t i c e  of  NDs  for  a r e l a t i on  of 2 
FDs  (not  specified) a n d  an  ADS of 4 for  each  
d e p e n d e n c y  

l 
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3 Incorporat ing  the  Boot s t rap  and the  Jackknife  
The boots t rap  [5] is a data  driven simulation method for non-parametr ic  statisti- 
ca|  inference. Given tha t  the number of possible worlds of an indefinite relation 
increases exponentially in the size of the relation it is impossible to examine 
all possible worlds for the best solution. The complete population distribution 
is unknown; otherwise we would know exactly how many definite relations to 
generate to have a specific probabili ty of finding the closest ND set to the given 
FD set. This suggests applying a boots t rap procedure to a sample of definite 
instances to approximate  the population distribution based on the sample dis- 
tr ibution [5]. We use the boots t rap procedure to tell us how many worlds we 
need to consider so that  we have a high confidence that  generating additional 
worlds will not improve our solution. Algorithm 1 presents this procedure and 
Algori thm 2 presents a corresponding procedure using the jackknife. 

D e f i n i t i o n  7 ( T h e  B o o t s t r a p  S a m p l e ) .  Given an indefinite relation r over 
schema R we uniformly randomly extract n possible worlds. Each of these worlds 
will satisfy a set of NDs (which may contain FDs). These n possible worlds are 
referred to as the original sample or observed possible worlds and are written 
as/5 = (rl r 2 , . ,  r~). A boots t rap sample is/5* ( 1, r ~ , . . . ,  r~) where for all 
i -- 1, 2 . . . ,  n each r~ is randomly selected with replacement from the n observed 
possible worlds in/5. 
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We denote the q NDs which may hold in r by Xi __+k~ y/where  1 < i < q and 
refer to the branching factor k which holds for ND Xi _+k Yi in r as brx,y,(r).  
When we refer to the sample mean of a set of possible worlds we are implying 
the sample mean of the sets of NDs of the possible worlds. 

D e f i n i t i o n  8 ( T h e  B o o t s t r a p  S a m p l e  M e a n ) .  Given a bootstrap sample/3* 
~k 

= (7"7, r~ , . . . ,  r,~), we calculate the mean g(.), or any other statistic of interest, 
in exactly the same way as we would have for the original sample of ND sets, 

each containing rn NDs, g(/3*) = {[(_j ] 1 <_ j <_ m} where 14[j = ~ brxjyj(r*) 
i = 1  

D e f i n i t i o n  9 ( T h e  B o o t s t r a p  M e a n  of  all Values) .  Given a set of B boot- 
strap samples/3~, we calculate the mean g(.), or any other statistic of interest, 
in exactly the same way as we would have for the original sample, g(/3~) = 

B 

Algori thm 1 (llO0'l'STltAt'(ndJJg, B)). 
1. beg in  
2.ND_m :ffi 0 ; 
3 . n  := Ind_bgl; 
4.for i to B do 

5. ND_s := Uniform Randomly select n 
ND sets from nd_bg with replacement 

6. Insert the mean of ND_s into ND_m; 
7. end  for 
8 . r e t u r n  the mean of ND_m; 
9. end. 

Algorithn, 2 (JACi(I(NIFE(nd.bg)), 
I. begin 
2.ND..m :ffi O; 
3 .n  :ffi Ind_bgl; 
4 . for  j := 1 to n do  
5. ND_s := nd_bg - nd] ; 

;6 .  Insert  the mean of ND_s into  
ND_m; 

7. end for 
8 . re turn  the mean of ND_m; 
9. end. 

The Bootstrap Replication Size (BRS), B in Algorithm 1, is the number of 
times a bootstrap sample of size n is created from the observed possible worlds 
and evaluated on a parameter of interest. We denote the B bootstrap samples 
by/3~ = (/3~,/3~,... ,/3~). [5] tackles how large the BRS should be. Given a BRS 
B, [5] refers to the ideal bootstrap estimate which takes B equal to infinity. This 
is not true for indefinite relations where the ideal limit is the number of possible 
worlds in the relation. [5] show the amount of computation time it takes for 
increased BRS sizes increases linearly. We show that this is also the case for 
increasing the BRS for indefinite relations, exemplified in [4]. 

D e f i n i t i o n  10 (The  B o o t s t r a p  S t a n d a r d  E r r o r  for  I n d e f i n i t e  R e l a t i o n s ) .  
The  sample  standard error in the values for /3  bootstrapped values is: 

S~eB : {---R ,~Y~'/B l(,s(pk ) -- .S(~b)} 1/2 

We now describe the methods of our Bootstrap application, detailed in Al- 
gorithm 3. We start with a small initial sample size and a Bootstrap Replication 
Size B. Having created B bootstrap samples we will have a bootstrap mean of 
all values in the form of an ND set. From this value we can use the bootstrap 
to calculate its standard deviation. From this we can empirically infer the width 
of the interval in which a certain percentage of the relations occur, either using 
standard confidence intervals or by creating the confidence intervals empirically 



297 

using an ordering of the boots t rap resamples. We increase the samples ize  on 
each iteration by a fixed amount,  5, until we reach a point where the mean value 
of the NDs in the ND set stabilises. The convergence to stability is controlled 
by the accuracy to t significant digits, with t = 3 providing a sufficient accuracy 
in our simulations. This convergence provides a parameter  whereupon anything 
higher is unlikely to have much additional change in variance and this is also 
verified by the convergence of the empirical confidence intervals. It  is unlikely, 
even for an ND set with just one dependency, for the fixpoint to be reached ran- 
domly, and running our simulations in batches of 500 implied that  any outlying 
fixpoint values would have a negligible impact  on the final results obtained. 
A l g o r i t h m  3 (WORLD_LIMIT (r, F, B)).  
1. begin 
2. n := initial(r); Y, sample size 

3. No := H i g h e s t  ND s e t  s a t i s l i a b Z e  i n  r u s i n  9 c h a s e  ; 

4. /V1 := 0; j := l ;  

5.  w h i l e  Nj , /V~- I  a r e  n o t  a p p r o x i m a t e  f i x p o i n t  d o  
6.  ND_bag := n ND s e t s  f rom n p o s s i b l e  w o r l d s ;  

7.  /~j := B00TSTRAP(IID_bag, n ,  B) ;  
8.  n := n + f i ;  j := j + 1; 7. I n c r e a s e  t h e  s ample  s i z e  by  
9. end while 
10. r e t u rn  n; 
11. e n d .  

We also examined the variance of the observed possible worlds, for a range 
of original sample sizes, as the boots t rap replication size was scaled from 20 
up to 50,000 to decide on a suitable BRS. As this was increased we noted that  
above 1000 there was negligible change in the variance. For the purposes of 
our experiment setting B at 100 gave suitable results above which there was 
negligible change. 

4 A p p l y i n g  R e s a m p l i n g  t o  t h e  C o n s i s t e n c y  P r o b l e m  

Algori thm 3, WORLDIIMIT(r ,F,B) ,  describes our novel use of the boots t rap  
procedure. Details of the simulations we conducted for different FD sets and 
indefinite relations are discussed in [4]. Our procedure relies on the assumption 
that  different sample sizes are required proportional to the variance within an 
indefinite relation in the different ND sets which may be satisfied in possible 
worlds. The number  of dependencies in the given FD set also influences the 
results obtained f rom our use of the bootstrap.  We use the B O O T S T R A P  algo- 
r i thm in exactly the same manner  as a standard boots t rap procedure despite that  
we potentially have all possible worlds within the indefinite relation. Based on 
this we conducted experiments whereby the boots t rap resamples were obtained 
not from the original sample but from the indefinite relation. The variance of 
resampling from the relation was much higher than resampling from the sample 
and in such cases the upper bound was much higher. Therefore, based on our 
results, we conjecture that  it is suitable to use just one original sample from the 
indefinite relation within each iteration of WORLD_LIMIT.  

In Figure 4 we see that,  for both FD set F1 = {A -4 B, A -+ C, A -4 D} and 
F2 = {A -4 B, B -4 C, C -4 D}, as the number of tuples increases there is a 
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Fig. 3. Ef ron ' s  empi r i ca l  pe rcen t i l e  confi-  
dence  l imi ts  shown  to  conve rge  for  the  dis- 
t a n c e  l's of  N O  sets  

g oa, 

g.]> 

Fig. 4 .  A v e r a g e  N u m b e r  of  Wor lds  r equ i red  
by the  chase  a n d  h i l l -c l imbing a p p r o a c h  

r  i s  z 0  

slight peak, after which further increases in the number of tuples results in a fall 
in the average number of worlds required. This is due to every relation within a 
batch having a fixed domain size d and a max imum indefinite cell arity, reaching 
a point where it is likely that  any further increases in the tuple size will lead to 
the satisfaction of the numerical dependency set with each branch determining 
up to d branches and so fewer worlds are required before any a t tempts  to apply 
the chase returns an undefined relation implying that  nothing better  can be 
found. The peaks in Figure 4 were reflected in the values of ~ returned by our 
boots t rap  technique. In our application of the bootstrap,  as the relation size of a 
random relation is increased and the domain size is held constant, the sampling 
will also reach a point where the variance in the samples amongst  the randomly 
generated possible worlds is reduced due to most possible worlds satisfying the 
NDs each with a branching factor close to their domain size. 

The question of why the boots t rap provides an upper bound remains. The 
chase and hill-climbing algorithm exits if the chase heuristic returns an undefined 
relation for the current highest found ND set N-c in the lattice. This implies that  
the indefinite relation is unable to satisfy any ND sets above NT. Given that  
this generally occurs before reaching the limit cr (provided by the bootstrap)  it 
seems reasonable to propose that  the variance across the possible worlds of an 
indefinite relation, in terms of ND set satisfaction, is a naive statistic and our hill- 
climbing and chase heuristic method is sufficient to reach a good approximation 
before examing c~ initial points. The correspondence between the heuristic and 
the changing upper limit, due to changing variance of ND set satisfaction in 
indefinite relations, is to be expected and its usefulness is highlighted in this 
work. 

4.1 D i f f e r e n c e s  b e t w e e n  r e s a m p l i n g  m e t h o d s  
The strategy of the jackknife is to remove a single data  point from each resample. 
This allows the creation of n jackknife resamples from an original sample of size 
n. The boots t rap provides additional flexibility in that  the sample is made up of 
any values uniformly and randomly selected with replacement from the original 
and, additionally, is not limited to n resamples. In our process the number of 
worlds required is increased until a fixpoint is reached. Using the jackknife as 
the worlds reach a large number q we are constrained to q resamples, each of 
size q - 1. Under the boots t rap application we have a fixed number of resamples 
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which, in the majority of cases, will increase to a sample size that is smaller 
than the q required by the jackknife. We found that the results were very similar 
for both the bootstrap and jackknife, highlighted in Figure 1, despite our use of 
the bootstrap conducting fewer replications than the jackknife at large sample 
sizes. Figure 1 also presents the falling limit of the fixpoint as the domain size is 
held constant but the tuple size increases, due to a reduction in variance within 
possible worlds as the relation size grows, highlighted in Figure 3 where the 
empirical confidence limits for the bootstrap process are shown to converge for 
the distance measure of an ND set. 

5 C o n c l u s i o n  
We have described how the representation of indefinite information lends itself 
to utilising ND sets. In addition to this we note that NDs suitably approximate 
FDs in a data mining context. In many dependency data mining applications, 
which range from data summarisation to learning within decision trees [6], we 
may wish to obtain a numerical value, between 0 and 1, denoting how close a 
set of FDs are to being satisfied; the metric presented in this paper achieves 
this. In [2] we are shown how indefinite information may be used to represent 
a possible schedule. Our approach allows us to discover an approximation to 
an ideal relation, that  which satisfies a set of FDs. NDs are ~ useful tool in 
this context and schedule representation within relational databases is enhanced 
with their use. The consistency problem for relations with indefinite information 
is widely known to be NP-complete. Therefore we cannot expect to develop a 
polynomial time based solution unless P = N P  or the database is restricted 
as in [2]. Our approach does however introduce an interesting new technique 
based on sampling, incorporating the bootstrap to provide useful approxima- 
tions for problems such as the consistency problem. Simulations imply that  the 
bootstrap provides a suitable upper bound. We are also planning to explore re- 
sampling within the temporal database domain, another area where there is a 
combinatorial explosion of data points. 
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