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Abst rac t .  Generalization lattices encode domain knowledge relevant to 
generalization. They provide a convenient framework for data visualiza- 
tion during user-guided exploration and for automated guidance during 
independent exploration. To reduce the size of a generalization lattice 
for an individual attribute, we define six types of pruning. Then we con- 
sider the generalization space defined by the cross product of lattices 
for several attributes. To increase the relevance of the data exploration 
results, we define five additional types of pruning. An interactive, web- 
based system for visualizing the generalization space allows the user to 
interactively guide the data exploration process. 

1 I n t r o d u c t i o n  

Generalization is fundamental to knowledge discovery and data mining. To pro- 
vide a high-level view of the generalization operations permitted on data, various 
researchers have proposed similar structures, here called generalization lattices 
( GLs), but variously called type hierarchies [12, 9], concept generalization graphs 
[10], domain generalization graphs [6], dependency lattices [7], and attribute lat- 
tices [3]. A generalization lattice is an effective form of knowledge representation 
for encoding prior domain knowledge relevant to generalization. 

In simple form, a generalization lattice shows the relationships between do- 
mains of values. Each generalization operation can be regarded as a mapping 
from one domain to a smaller domain. If a lattice is defined on the domains 
Dx = {A ,B ,C} ,D2  = {A, BorC},D3 = {AorB, C},D4 = {AorBorC}, then 
Dx is the most specific domain, with 3 possible values, D2 and D3 are domains 
of intermediate generality with two possible values each and no ordering defined 
between them, and D4 is the most general domain, with one possible value. In 
the GL, an arc from node Di to node Dj indicates that any value in domain Di 
maps to a value in Dj. Mitchell's version space method is an example of a learn- 
ing method based on a GL. Godin, Missaoui, and Alaoui's work on incremental 
concept formation is based on Galois lattices, a type of GL used in discrete 
mathematics [5]. Bournand and Ganascia investigated the automatic creation of 
a GL from a set of objects described by conceptual graphs[i]. 

In data mining, GLs are used to conceptualize the process of generalizing 
data as a transformation of values from one domain to values of another, smaller 
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domain. The original data, as retrieved from a database or other source, is con- 
sidered the most specific representation of the data. Applying an operation to 
the da ta  that  maps any of several values in one domain to a single value in a 
smaller domain corresponds to traversing an arc in the GL from one node to a 
higher node. Many generalizations are possible, but for da ta  mining, it is effi- 
cient and effective to limit the nodes to those representing generalized encodings 
of the domain that  are of interest to the users of the knowledge discovery sys- 
tem. A GL is appropriate for this task because the possible generalizations form 
a partial  order rather than a strict hierarchy (e.g., days can be generalized to 
weeks or months,  but weeks cannot be generalized to months).  A GL also allows 
a user to guide the generalization process by defining the domains of values to 
be considered in the da ta  exploration process. Placing a node for a domain in a 
GL documents an inductive bias, namely that  the parti t ion of the original da ta  
values represented by that  domain is at a level of granularity that  the user finds 
interesting. 

This work was motivated by the need to automate  the da ta  exploration 
process for cases where many  ways of generalization may  be be appropriate.  
For example, given a database with a t ime-related attribute,  summaries  can be 
created according to a GL containing the hour of day, part of day, day, day of 
week, day of month, week, week in month, week in quarter, month, year, and 
many  others. Our system not only creates all these summaries,  but also ranks 
them to help identify any anomalies, such as a disproportionate percentage of 
sales activity in the first week of a month.  Furthermore, all  at tr ibutes of interest 
can have arbitrari ly complex GLs and our system will consider all resulting 
combinations. These features enable a database analyst to analyze the database 
f rom many different perspectives. 

The remainder of this paper is organized as follows. In Section 2, we formally 
define GLs, and present an example GL for calendar attributes.  In Section 3, 
we describe a semi-automated method for data  exploration which uses pruning 
to identify the nodes of a GL that  are distinct for a particular set of data. 
Six types of pruning are defined: teachability, preliminary manual,  data-range,  
previous-discard, pregeneralization manual,  and post-generalization. In Section 
4, we consider the generalization space defined by the cross product of GLs 
associated with a set of attributes. We define five additional types of pruning and 
several measures for ranking the interestingness of the nodes in the generalization 
space. We also describe an interactive, web-based system for visualizing the 
generalization space that  allows the user to interactively guide the exploration 
process and view the results. In w 5, we present conclusions. 

2 G e n e r a l i z a t i o n  L a t t i c e s  

Given the domain of an at tr ibute represented by a set S = {sl, s 2 , . . . ,  Sn }, S can 
be part i t ioned in many  different ways. For example, D1 = {{s,}, {s2} , . . . ,  {s~}}, 
D2 = {{Sl}, { s2 , . . . ,  s~}}, etc. Let D be the set of parti t ions of set S, and _ be 
a nonempty  binary relation (called a generalization relation) defined on D, such 
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that  Di -~ Dj if for every di E Di there exists dj E Dj such that  di C_ dj. The 
generalization relation _ is a partial  order relation and (D, _~} defines a partial  
order set from which we can construct a lattice called a generalization lattice 
(D, E} as follows. First, the nodes of the graph are elements of D. And second, 
there is a directed arc from Di to Dj (denoted by E(Di, Dj)) iff D i r  Dj, 
Di -~ Dj, and there is no Dk E D such that  Di _ Dk and Dk ~_ Dj. The partial  
order set (D, ~_} is transitively closed and is a lattice. 

Let Dg = {S} and Dd = {{Sl}, {s2} , . . . ,  {sn}}. For any Di G D we have 
Dd ~_ Di and Di ~ Dg, where Dd and Dg are called the bo t tom and top of D, 
respectively. We call the nodes (elements of D) domains, where the bo t tom is 
the most specific level of generality and the top is the most general level. There is 
a trivial GL where the bo t tom is mapped directly to the top (i.e., Da is mapped  
to Dg). For each node Di in (D, E}, we define descendants(Di) to be all nodes 
Dj such that  Di ~_ Dj and ancestors(Di) to be all nodes Dk such that  Dk ~_ Di. 

generalization types 
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Fig.  1. Calendar GL with shading indicating pruning 
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We now describe an example GL for a calendar attribute, as shown in Fig- 
ure 1, adapted from [11]. (The shading is explained in See. 3.) All attributes re- 
luted to the time of an event's occurrence are combined into a calendar attribute, 
which contains subattributes such as year, month, etc. This GL is larger than 
the example GLs given in previous reports ([10], [3], [6], [7]), but the additional 
complexity is required to illustrate our method. In Figure 1, the node labelled 
Y Y Y Y M M D D h h r n m s s  represents the most specific domain considered (i.e., the 
finest granularity of our calendar domain is one second). Every other node repre- 
sents a generalization of this domain, and the arcs connecting the nodes represent 
generalization relations. To handle data  containing calendar values specified to 
finer granularity (e.g., microseconds), more specific nodes could be added to the 
GL. A GL is specified for each attribute to be generalized. 

Specification of a generalization relation is done using one of four techniques 
[11]: (1) granularity generalization for dropping in sequence the least significant 
subattribute, e.g., first drop ss and then ram; (2) subset generalization for drop- 
ping any combination of subattributes; (3) lookup generalization for explicitly 
specifying the mapping of values between the more specific and more general 
domains; and (4) algorithmic specification for all other cases. 

3 A d a p t a t i o n  o f  G e n e r a l i z a t i o n  L a t t i c e s  

To guide the user quickly to the most interesting results, u GL can be manually 
and automatically pruned during the knowledge discovery process. Two auto- 
matic pruning techniques are: (1) based on a superficial examination of the data, 
the GL is pruned prior to generalization according to three heuristics, and (2) 
during generalization, if a step results in either no reduction in the number of 
values, or a complete reduction to one value, special processing is used. After all 
pruning is complete, the resulting GL can be displayed to guide the user to the 
generalizations of interest. In tasks involving multiple attributes, the method's  
first five steps can be applied independently to each attribute with a GL (see 
Sec. 4). In such cases, pruning would be particularly advantageous. 

A GL for an attribute can be pruned in six steps, as follows. 
R e a e h a b i l l t y  P r u n i n g :  Once the user has specified how to map the data  to 
a node in the GL, all nodes not reachable from this node are pruned. 
Preliminary Manual Pruning: The user can hide any interior node re- 
garded as uninteresting, and it is not subsequently displayed. To preserve the 
integrity of the GL for generalization, some hidden nodes are retained and used in 
the generalization process. The GL must not become disconnected. Any hidden 
node adjacent to "ANY" can be pruned and its incoming arcs can be directed 
to "ANY". Nodes with children may be pruned only if those children are still 
reachable afterwards. 
Data-Range Pruning: Any node that  does not correspond to a distinction in 
the data  is removed. Some arcs in the GL represent monotonic functions map- 
ping their domain (parent node data) to their range (child node data). Given a 
set of values A and some monotonic arc E : A ~ Ag, we let m = rain(A) ,  
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M = m a x ( A ) ,  E : m -+ g, and E : M ~ G. Because E is monotonic, 
Va E A , E  : a --+ ag ,g  < ag ~ G. For example, the range of da ta  for a cal- 
endar at t r ibute is determined by identifying its minimum and m a x i m u m  values. 
These two values are generalized along all monotonic arcs, i.e., those permit t ing 
da ta  range pruning. If these two values generalize to the same value at any node 
in the GL, then all occurring values for the calendar at tr ibute generalize to this 
value, as described above. This node and all its descendants can be pruned, i.e., 
conceptually joined with the " A N Y "  node. Granulari ty generalizations are in- 
herently monotonic, while algorithmic generalizations may or may not be. 
P r e v i o u s - D i s c a r d  P r u n i n g :  Any node that  is indistinguishable from another 
node except for information that  data-range pruning has shown to be irrelevant 
is removed. This method is convenient for granularity and subset generMizations. 
If we are considering pruning node B, which is a generalization of node A, we 
look at what information is discarded when data  is generalized from node A to 
node B. If we have already chosen to prune a node C that  contains either exactly 
the subattr ibutes or a superset of the subattr ibutes that  we are discarding when 
generalizing from node A to node B, then we should prune node B. Previous 
analysis has shown that  at node C, the data  will contain only a single value; 
thus, the information in node C does not distinguish any values. We do not au- 
tomatical ly  prune children of node B. 
P r e g e n e r a l i z a t i o n - M a n u a l  P r u n i n g :  Again, the user is allowed to prune 
nodes from the GL. At this point, the time-consuming work of actually general- 
izing the da ta  has not yet been done. Pruning nodes at this point may substan- 
tially reduce the t ime and space required to generalize the values. 
P o s t - G e n e r a l i z a t i o n  P r u n i n g :  The original data  is now generalized step by 
step according to the GL, with each node corresponding to the da ta  at that  
specified level of granularity and each arc corresponding to one t ransformation 
of the data.  After each generalization step, we consider the number  of values in 
the generalized data. If only one distinct value remains after the generalization 
step, then the corresponding node and any other interior node reachable from it 
can be pruned. Otherwise, if the number of values is the same before and after 
the step, then the da ta  have been transformed by a one-to-one mapping  rather 
than by a true generalizing, and we prune by conceptually joining the two nodes. 
This conceptual joining of nodes is transitive. 
E x a m p l e :  We illustrate pruning for a calendar attribute.  The input da ta  are 
8132 login times, collected over a one week period in January  1998: Jan 18 1998 
00:26, Jan 18 1998 00:55, Jan 18 1998 01:21, . . . ,  Jan 24 1998 23:48}. Times are 
not recorded to seconds. 

Given this da ta  and the (unshaded) GL shown in Figure 1, generalization 
and pruning proceeds as follows. First, the user identifies the initial node as 
Y Y Y Y M M D D h h m m .  Reachability pruning (step 1) removes nodes Y Y Y Y M M D -  

D h h m m s s ,  h h m m s s ,  and ss. We assume no preliminary manual  pruning (step 2). 
For da ta  range pruning (step 3), the min imum and m a x i m u m  date values in 
the da ta  are found to be Jan  18 1998 00:26 and Jan 25 1998 23:48,  respec- 
tively. These two dates are generalized by following all arcs allowing da ta  range 
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pruning (most arcs on the lower left of Figure 1). Both values generalize to the 
same value at YYYYMM. Node Y Y Y Y M M  and all its children are pruned (the 
nodes in the upper left side of Figure 1). Previous-discard pruning (step 4), DD is 
pruned because Y Y Y Y M M  has been pruned and generalization from YYYYM-  
MDD to DD is based on discarding YYYYMM. We assume no pregeneralization 
manual pruning (step 5). Finally, the data  are generalized, guided by the pruned 
GL. After each generalization step, the result is checked for further pruning. For 
example, when the data  are generalized from YYYYMMDD to day# of year, 
the number of values remains constant, indicating that results corresponding to 
only one of these nodes should be shown to the user. Thus, these nodes can 
be composed. Similarly, YYYYMMDD is also composed with day of week, and 
weekday name. When the data is generalized to season, lunar month, or week# 
of year, only one value remains; thus, all of these nodes are pruned. 
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In Figure 2, we show the nodes remaining after pruning, enhanced where 
feasible with 2-D plots of the results. Each node gives a summary at a distinct 
level of temporal generality, e.g., the plot for node hh shows the number-of-logins 
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vs hour-of-the-day. In our current implementation,  each node is simply shown 
as a colored sphere, and the user must select it to obtain the detailed summary  
information shown in Figure 2. 

4 M u l t i - A t t r i b u t e  G e n e r a l i z a t i o n  

Given a set of attributes, each with an associated GL, we consider the general- 
ization space formed by all combinations that  include one node from each GL. 
Each combination represents a separate attribute-oriented induction task, where 
values for each at t r ibute are independently generalized to the level of generality 
corresponding to the specified node in that  at t r ibute 's  lattice. In a naive im- 
plementation, each combination requires a complete pass over all input data,  
al though by taking advantage of relationships in the GL, smaller intermediate 
results can be reused [10]. The size of the generalization space depends only on 
the number  of nodes in the associated GLs; it does not depend on the num- 
ber of tuples in the input relation. For m attributes, a database of n tuples, 
and an O(n) generalization algorithm, creating all possible summaries  requires 
O(nl-I~=l ID*I) time, where IDil is the number of nodes in GL D i. We have 
implemented practical serial and parallel algorithms for traversing the general- 
ization state space where m is small (_< 5) and n is large (> 1,000,000) [6, 8]. 

Our approach to interactive da ta  exploration includes visualizing the gener- 
alization space. A sample display from our web-based implementat ion is shown 
in Figure 3 for a da ta  exploration task containing three attributes. GLs for three 
at tr ibutes are shown in the lower left, the generalization space is shown in the 
upper left, a plot of the interestingness versus the number of tuples in the gen- 
eralized relation is shown in the lower right, and a generalized relation (i.e., 
s ummary  in textual  form) corresponding to one combination of nodes is shown 
in the upper right. The display of the generalization space is generated from a 
3-D VRML (virtual reality modelling language) description, while the two lower 
panes are generated by Java applets. 

Originally, the three GLs contained 4, 8, and 6 nodes; thus, the generalization 
space contained 4 x 8 x 6 = 192 nodes, including the original relation. Manual 
pruning removed 1 node from the first GL and 2 nodes from the second GL, 
leaving 3 • 6 x 6 = 108 nodes in the generalization space shown in Figure 3. 

To identify summaries that  a user might find most interesting, two measures 
are used to rank their interestingness: (1) variance compares the distribution 
defined by the tuples in a summary  to that  of a uniform distribution of the tuples, 
and (2) the relative entropy measure (Kullback-Leibler (KL) distance), which is 
also used for comparing da ta  distributions in unstructured textual databases  [4], 
compares the distribution defined by the structured tuples in a summary  to that  
of a uniform distribution of the tuples. In Figure 3, more interesting nodes in 
the generalization space (upper left) are indicated by darker colors, while more 
interesting nodes in the scatterplot (lower right) are positioned to the right. 

To reduce the number of summaries generated during data  exploration, it is 
possible to prune the generalization space based on the interestingness measures. 
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Fig.  3. GSS Display 

We define five pruning heuristics as follows. 
A n c e s t o r  P r u n i n g :  If a summary is a direct descendant of some other sum- 
mary, but has higher interest, then the ancestor can be eliminated. 
D e s c e n d a n t  P r u n i n g :  If a summary is a direct descendant of a summary that 
has higher interest, then the descendant can be eliminated. 
I n t e r e s t i n g n e s s  T h r e s h o l d  P r u n i n g :  All summaries whose degree of inter- 
est is less than some user-specified interestingness threshold are deleted. 
T a b l e  T h r e s h o l d  P r u n i n g :  All summaries containing more tuples than some 
user-specified table threshold are deleted, regardless of  their degree of interest. 
This threshold is commonly  used in attribute-oriented induction [2]. 
A t t r i b u t e  T h r e s h o l d  P r u n i n g :  All summaries containing an attribute where 
the number of distinct values for the attribute is greater than some user-specified 
attribute threshold, are deleted, regardless of their degree of interest. This thresh- 
old is also used extensively in attribute-oriented induction. 

5 C o n c l u s i o n  

Generalization lattices allow users to specify the levels of granularity to consider 
when generalizing a dataset. We showed how pruning heuristics could be used 
to reduce the size of general-purpose generalization lattices for a specific set of  
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data. We also showed how the number of combinations in the generalization space 
could be further pruned by a user, based on a chosen measure of interestingness 
or other attributes of the generalized relation. Our visual display gives a view of 
the overall space of possible generalizations. The user can interactively examine 
specific results and adjust the pruning heuristics. 
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