
General izat ion Latt ices

Howard J. Hamilton, Robert J. Hilderman,
Liangchun Li, and Dee Jay Randall

Department of Computer Science
University of Regina

Regina, Saskatchewan, Canada $4S 0A2
{hamilton,hilder,lil,randal} @cs.uregina.ca

Abst rac t . Generalization lattices encode domain knowledge relevant to
generalization. They provide a convenient framework for data visualiza-
tion during user-guided exploration and for automated guidance during
independent exploration. To reduce the size of a generalization lattice
for an individual attribute, we define six types of pruning. Then we con-
sider the generalization space defined by the cross product of lattices
for several attributes. To increase the relevance of the data exploration
results, we define five additional types of pruning. An interactive, web-
based system for visualizing the generalization space allows the user to
interactively guide the data exploration process.

1 I n t r o d u c t i o n

Generalization is fundamental to knowledge discovery and data mining. To pro-
vide a high-level view of the generalization operations permitted on data, various
researchers have proposed similar structures, here called generalization lattices
(GLs), but variously called type hierarchies [12, 9], concept generalization graphs
[10], domain generalization graphs [6], dependency lattices [7], and attribute lat-
tices [3]. A generalization lattice is an effective form of knowledge representation
for encoding prior domain knowledge relevant to generalization.

In simple form, a generalization lattice shows the relationships between do-
mains of values. Each generalization operation can be regarded as a mapping
from one domain to a smaller domain. If a lattice is defined on the domains
Dx = {A ,B ,C} ,D2 = {A, BorC},D3 = {AorB, C},D4 = {AorBorC}, then
Dx is the most specific domain, with 3 possible values, D2 and D3 are domains
of intermediate generality with two possible values each and no ordering defined
between them, and D4 is the most general domain, with one possible value. In
the GL, an arc from node Di to node Dj indicates that any value in domain Di
maps to a value in Dj. Mitchell's version space method is an example of a learn-
ing method based on a GL. Godin, Missaoui, and Alaoui's work on incremental
concept formation is based on Galois lattices, a type of GL used in discrete
mathematics [5]. Bournand and Ganascia investigated the automatic creation of
a GL from a set of objects described by conceptual graphs[i].

In data mining, GLs are used to conceptualize the process of generalizing
data as a transformation of values from one domain to values of another, smaller

329

domain. The original data, as retrieved from a database or other source, is con-
sidered the most specific representation of the data. Applying an operation to
the da ta that maps any of several values in one domain to a single value in a
smaller domain corresponds to traversing an arc in the GL from one node to a
higher node. Many generalizations are possible, but for da ta mining, it is effi-
cient and effective to limit the nodes to those representing generalized encodings
of the domain that are of interest to the users of the knowledge discovery sys-
tem. A GL is appropriate for this task because the possible generalizations form
a partial order rather than a strict hierarchy (e.g., days can be generalized to
weeks or months, but weeks cannot be generalized to months). A GL also allows
a user to guide the generalization process by defining the domains of values to
be considered in the da ta exploration process. Placing a node for a domain in a
GL documents an inductive bias, namely that the parti t ion of the original da ta
values represented by that domain is at a level of granularity that the user finds
interesting.

This work was motivated by the need to automate the da ta exploration
process for cases where many ways of generalization may be be appropriate.
For example, given a database with a t ime-related attribute, summaries can be
created according to a GL containing the hour of day, part of day, day, day of
week, day of month, week, week in month, week in quarter, month, year, and
many others. Our system not only creates all these summaries, but also ranks
them to help identify any anomalies, such as a disproportionate percentage of
sales activity in the first week of a month. Furthermore, all at tr ibutes of interest
can have arbitrari ly complex GLs and our system will consider all resulting
combinations. These features enable a database analyst to analyze the database
f rom many different perspectives.

The remainder of this paper is organized as follows. In Section 2, we formally
define GLs, and present an example GL for calendar attributes. In Section 3,
we describe a semi-automated method for data exploration which uses pruning
to identify the nodes of a GL that are distinct for a particular set of data.
Six types of pruning are defined: teachability, preliminary manual, data-range,
previous-discard, pregeneralization manual, and post-generalization. In Section
4, we consider the generalization space defined by the cross product of GLs
associated with a set of attributes. We define five additional types of pruning and
several measures for ranking the interestingness of the nodes in the generalization
space. We also describe an interactive, web-based system for visualizing the
generalization space that allows the user to interactively guide the exploration
process and view the results. In w 5, we present conclusions.

2 G e n e r a l i z a t i o n L a t t i c e s

Given the domain of an at tr ibute represented by a set S = {sl, s 2 , . . . , Sn }, S can
be part i t ioned in many different ways. For example, D1 = {{s,}, {s2} , . . . , {s~}},
D2 = {{Sl}, { s2 , . . . , s~}}, etc. Let D be the set of parti t ions of set S, and _ be
a nonempty binary relation (called a generalization relation) defined on D, such

330

that Di -~ Dj if for every di E Di there exists dj E Dj such that di C_ dj. The
generalization relation _ is a partial order relation and (D, _~} defines a partial
order set from which we can construct a lattice called a generalization lattice
(D, E} as follows. First, the nodes of the graph are elements of D. And second,
there is a directed arc from Di to Dj (denoted by E(Di, Dj)) iff D i r Dj,
Di -~ Dj, and there is no Dk E D such that Di _ Dk and Dk ~_ Dj. The partial
order set (D, ~_} is transitively closed and is a lattice.

Let Dg = {S} and Dd = {{Sl}, {s2} , . . . , {sn}}. For any Di G D we have
Dd ~_ Di and Di ~ Dg, where Dd and Dg are called the bo t tom and top of D,
respectively. We call the nodes (elements of D) domains, where the bo t tom is
the most specific level of generality and the top is the most general level. There is
a trivial GL where the bo t tom is mapped directly to the top (i.e., Da is mapped
to Dg). For each node Di in (D, E}, we define descendants(Di) to be all nodes
Dj such that Di ~_ Dj and ancestors(Di) to be all nodes Dk such that Dk ~_ Di.

generalization types

�9 ~ lookup
�9 granularity

. -~ subset

............................... �9 algorithm
.- r- data range

prunable

V.

IYYYY;

Fig. 1. Calendar GL with shading indicating pruning

331

We now describe an example GL for a calendar attribute, as shown in Fig-
ure 1, adapted from [11]. (The shading is explained in See. 3.) All attributes re-
luted to the time of an event's occurrence are combined into a calendar attribute,
which contains subattributes such as year, month, etc. This GL is larger than
the example GLs given in previous reports ([10], [3], [6], [7]), but the additional
complexity is required to illustrate our method. In Figure 1, the node labelled
Y Y Y Y M M D D h h r n m s s represents the most specific domain considered (i.e., the
finest granularity of our calendar domain is one second). Every other node repre-
sents a generalization of this domain, and the arcs connecting the nodes represent
generalization relations. To handle data containing calendar values specified to
finer granularity (e.g., microseconds), more specific nodes could be added to the
GL. A GL is specified for each attribute to be generalized.

Specification of a generalization relation is done using one of four techniques
[11]: (1) granularity generalization for dropping in sequence the least significant
subattribute, e.g., first drop ss and then ram; (2) subset generalization for drop-
ping any combination of subattributes; (3) lookup generalization for explicitly
specifying the mapping of values between the more specific and more general
domains; and (4) algorithmic specification for all other cases.

3 A d a p t a t i o n o f G e n e r a l i z a t i o n L a t t i c e s

To guide the user quickly to the most interesting results, u GL can be manually
and automatically pruned during the knowledge discovery process. Two auto-
matic pruning techniques are: (1) based on a superficial examination of the data,
the GL is pruned prior to generalization according to three heuristics, and (2)
during generalization, if a step results in either no reduction in the number of
values, or a complete reduction to one value, special processing is used. After all
pruning is complete, the resulting GL can be displayed to guide the user to the
generalizations of interest. In tasks involving multiple attributes, the method's
first five steps can be applied independently to each attribute with a GL (see
Sec. 4). In such cases, pruning would be particularly advantageous.

A GL for an attribute can be pruned in six steps, as follows.
R e a e h a b i l l t y P r u n i n g : Once the user has specified how to map the data to
a node in the GL, all nodes not reachable from this node are pruned.
Preliminary Manual Pruning: The user can hide any interior node re-
garded as uninteresting, and it is not subsequently displayed. To preserve the
integrity of the GL for generalization, some hidden nodes are retained and used in
the generalization process. The GL must not become disconnected. Any hidden
node adjacent to "ANY" can be pruned and its incoming arcs can be directed
to "ANY". Nodes with children may be pruned only if those children are still
reachable afterwards.
Data-Range Pruning: Any node that does not correspond to a distinction in
the data is removed. Some arcs in the GL represent monotonic functions map-
ping their domain (parent node data) to their range (child node data). Given a
set of values A and some monotonic arc E : A ~ Ag, we let m = rain(A) ,

332

M = m a x (A) , E : m -+ g, and E : M ~ G. Because E is monotonic,
Va E A , E : a --+ ag ,g < ag ~ G. For example, the range of da ta for a cal-
endar at t r ibute is determined by identifying its minimum and m a x i m u m values.
These two values are generalized along all monotonic arcs, i.e., those permit t ing
da ta range pruning. If these two values generalize to the same value at any node
in the GL, then all occurring values for the calendar at tr ibute generalize to this
value, as described above. This node and all its descendants can be pruned, i.e.,
conceptually joined with the " A N Y " node. Granulari ty generalizations are in-
herently monotonic, while algorithmic generalizations may or may not be.
P r e v i o u s - D i s c a r d P r u n i n g : Any node that is indistinguishable from another
node except for information that data-range pruning has shown to be irrelevant
is removed. This method is convenient for granularity and subset generMizations.
If we are considering pruning node B, which is a generalization of node A, we
look at what information is discarded when data is generalized from node A to
node B. If we have already chosen to prune a node C that contains either exactly
the subattr ibutes or a superset of the subattr ibutes that we are discarding when
generalizing from node A to node B, then we should prune node B. Previous
analysis has shown that at node C, the data will contain only a single value;
thus, the information in node C does not distinguish any values. We do not au-
tomatical ly prune children of node B.
P r e g e n e r a l i z a t i o n - M a n u a l P r u n i n g : Again, the user is allowed to prune
nodes from the GL. At this point, the time-consuming work of actually general-
izing the da ta has not yet been done. Pruning nodes at this point may substan-
tially reduce the t ime and space required to generalize the values.
P o s t - G e n e r a l i z a t i o n P r u n i n g : The original data is now generalized step by
step according to the GL, with each node corresponding to the da ta at that
specified level of granularity and each arc corresponding to one t ransformation
of the data. After each generalization step, we consider the number of values in
the generalized data. If only one distinct value remains after the generalization
step, then the corresponding node and any other interior node reachable from it
can be pruned. Otherwise, if the number of values is the same before and after
the step, then the da ta have been transformed by a one-to-one mapping rather
than by a true generalizing, and we prune by conceptually joining the two nodes.
This conceptual joining of nodes is transitive.
E x a m p l e : We illustrate pruning for a calendar attribute. The input da ta are
8132 login times, collected over a one week period in January 1998: Jan 18 1998
00:26, Jan 18 1998 00:55, Jan 18 1998 01:21, . . . , Jan 24 1998 23:48}. Times are
not recorded to seconds.

Given this da ta and the (unshaded) GL shown in Figure 1, generalization
and pruning proceeds as follows. First, the user identifies the initial node as
Y Y Y Y M M D D h h m m . Reachability pruning (step 1) removes nodes Y Y Y Y M M D -

D h h m m s s , h h m m s s , and ss. We assume no preliminary manual pruning (step 2).
For da ta range pruning (step 3), the min imum and m a x i m u m date values in
the da ta are found to be Jan 18 1998 00:26 and Jan 25 1998 23:48, respec-
tively. These two dates are generalized by following all arcs allowing da ta range

333

pruning (most arcs on the lower left of Figure 1). Both values generalize to the
same value at YYYYMM. Node Y Y Y Y M M and all its children are pruned (the
nodes in the upper left side of Figure 1). Previous-discard pruning (step 4), DD is
pruned because Y Y Y Y M M has been pruned and generalization from YYYYM-
MDD to DD is based on discarding YYYYMM. We assume no pregeneralization
manual pruning (step 5). Finally, the data are generalized, guided by the pruned
GL. After each generalization step, the result is checked for further pruning. For
example, when the data are generalized from YYYYMMDD to day# of year,
the number of values remains constant, indicating that results corresponding to
only one of these nodes should be shown to the user. Thus, these nodes can
be composed. Similarly, YYYYMMDD is also composed with day of week, and
weekday name. When the data is generalized to season, lunar month, or week#
of year, only one value remains; thus, all of these nodes are pruned.

1/1 c a t e g o r y , A N Y 9 2 7 2 ~ s t a n c e s / c a t e g o r y
�9 v ~

... �9 , ~ �9 h ..

w e e k d a y or w e e k e n d ~ m m

. i

WHkdmy = W~,=nd

I'
day o f w e e k I

(a l s o day# of year (1-366) and YYYYMMDD) [

.. ++~_ +.

3 1 ~ f

~ T~ W~ l ~ r~

o
o lo 2o 3o 4o 50

Mr, u l~

h h

mo .

i+
0 1 2 3 4 5 G 7 8 9 1 0 1 1 1 2 ~ 3 ~ 4 ~ 5 1 G I 7 1 e 1 9 ~ 2 1 ~

Hour ~ d a y

Y Y Y Y M M D D h h
1 6 6 / 1 6 8 categories , average o f 5 5 . 1 9 ins tances /category

4,
i
I

]
i
i
I
I

Y Y Y Y M M D D h h m m
4 8 5 3 / 1 0 0 8 0 categories , average o f 0 . 9 2 i n s t a n c e s / c a t e g o r y

F i g . 2 . F i n a l C a l e n d a r G L

In Figure 2, we show the nodes remaining after pruning, enhanced where
feasible with 2-D plots of the results. Each node gives a summary at a distinct
level of temporal generality, e.g., the plot for node hh shows the number-of-logins

334

vs hour-of-the-day. In our current implementation, each node is simply shown
as a colored sphere, and the user must select it to obtain the detailed summary
information shown in Figure 2.

4 M u l t i - A t t r i b u t e G e n e r a l i z a t i o n

Given a set of attributes, each with an associated GL, we consider the general-
ization space formed by all combinations that include one node from each GL.
Each combination represents a separate attribute-oriented induction task, where
values for each at t r ibute are independently generalized to the level of generality
corresponding to the specified node in that at t r ibute 's lattice. In a naive im-
plementation, each combination requires a complete pass over all input data,
al though by taking advantage of relationships in the GL, smaller intermediate
results can be reused [10]. The size of the generalization space depends only on
the number of nodes in the associated GLs; it does not depend on the num-
ber of tuples in the input relation. For m attributes, a database of n tuples,
and an O(n) generalization algorithm, creating all possible summaries requires
O(nl-I~=l ID*I) time, where IDil is the number of nodes in GL D i. We have
implemented practical serial and parallel algorithms for traversing the general-
ization state space where m is small (_< 5) and n is large (> 1,000,000) [6, 8].

Our approach to interactive da ta exploration includes visualizing the gener-
alization space. A sample display from our web-based implementat ion is shown
in Figure 3 for a da ta exploration task containing three attributes. GLs for three
at tr ibutes are shown in the lower left, the generalization space is shown in the
upper left, a plot of the interestingness versus the number of tuples in the gen-
eralized relation is shown in the lower right, and a generalized relation (i.e.,
s ummary in textual form) corresponding to one combination of nodes is shown
in the upper right. The display of the generalization space is generated from a
3-D VRML (virtual reality modelling language) description, while the two lower
panes are generated by Java applets.

Originally, the three GLs contained 4, 8, and 6 nodes; thus, the generalization
space contained 4 x 8 x 6 = 192 nodes, including the original relation. Manual
pruning removed 1 node from the first GL and 2 nodes from the second GL,
leaving 3 • 6 x 6 = 108 nodes in the generalization space shown in Figure 3.

To identify summaries that a user might find most interesting, two measures
are used to rank their interestingness: (1) variance compares the distribution
defined by the tuples in a summary to that of a uniform distribution of the tuples,
and (2) the relative entropy measure (Kullback-Leibler (KL) distance), which is
also used for comparing da ta distributions in unstructured textual databases [4],
compares the distribution defined by the structured tuples in a summary to that
of a uniform distribution of the tuples. In Figure 3, more interesting nodes in
the generalization space (upper left) are indicated by darker colors, while more
interesting nodes in the scatterplot (lower right) are positioned to the right.

To reduce the number of summaries generated during data exploration, it is
possible to prune the generalization space based on the interestingness measures.

335

(~

O
4~OUNt

ANY ANY

(f~ ~i)

(2 J

- ~ DP# REG.
(4) 0,5C COOE

1200

591

143

70

35

17

8

4

2

1

o " ~)o o t
(

1923 3847 5771 7694 961a 11542134651531~1731319G3 ~2~'

Int=esting~s* (1]10NI }

Fig. 3. GSS Display

We define five pruning heuristics as follows.
A n c e s t o r P r u n i n g : If a summary is a direct descendant of some other sum-
mary, but has higher interest, then the ancestor can be eliminated.
D e s c e n d a n t P r u n i n g : If a summary is a direct descendant of a summary that
has higher interest, then the descendant can be eliminated.
I n t e r e s t i n g n e s s T h r e s h o l d P r u n i n g : All summaries whose degree of inter-
est is less than some user-specified interestingness threshold are deleted.
T a b l e T h r e s h o l d P r u n i n g : All summaries containing more tuples than some
user-specified table threshold are deleted, regardless of their degree of interest.
This threshold is commonly used in attribute-oriented induction [2].
A t t r i b u t e T h r e s h o l d P r u n i n g : All summaries containing an attribute where
the number of distinct values for the attribute is greater than some user-specified
attribute threshold, are deleted, regardless of their degree of interest. This thresh-
old is also used extensively in attribute-oriented induction.

5 C o n c l u s i o n

Generalization lattices allow users to specify the levels of granularity to consider
when generalizing a dataset. We showed how pruning heuristics could be used
to reduce the size of general-purpose generalization lattices for a specific set of

336

data. We also showed how the number of combinations in the generalization space
could be further pruned by a user, based on a chosen measure of interestingness
or other attributes of the generalized relation. Our visual display gives a view of
the overall space of possible generalizations. The user can interactively examine
specific results and adjust the pruning heuristics.
A c k n o w l e d g e m e n t : We thank the reviewers for comments. This research was
supported by the Natural Sciences and Engineering Research Council of Canada
and the Institute for Robotics and Intelligent Systems.

R e f e r e n c e s

1. I. Bournaud and J.-G. Ganascia. Accounting for domain knowledge in the con-
struction of a generalization space. In Proceedings of the Third International Con-
ference on Conceptual Structures, pages 446-459. Springer-Verlag, August 1997.

2. Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational
databases. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery
in Databases, pages 213-228, Cambridge, MA, 1991. AAAI/MIT Press.

3. S. Chaudhuri and U. Dayal. OLAP and data warehousing. Technical report,
AAAI, Newport Beach, CA, August 1997. Tutorial notes.

4. R. Feldman and I. Dagan. Knowledge discovery in textual databases (KDT). In
Proceedings of the First International Conyerence on Knowledge Discovery and
Data Mining (KDD'95), pages 112-117, Montreal, August 1995.

5. R. Godin, R. Missaoui, and H. Alaoui. Incremental concept formation algorithms
based on Galois (concept) lattices. Computational Intelligence, 11(2):246-267,
1995.

6. H.J. Hamilton, R.J. Hilderman, and N. Cercone. Attribute-oriented induction us-
ing domain generalization graphs. In Proceedings of the Eighth IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI'96), pages 246-253,
Toulouse, France, November 1996.

7. V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes effi-
ciently. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD'96), pages 205-216, May 1996.

8. R.J. Hilderman, H.J. Hamilton, R.J. Kowalchuk, and N. Cercone. Parallel
knowledge discovery using domain generalization graphs. In J. Komorowski and
J. Zytkow, editors, Proceedings of the First European Conference on the Principles
of Data Mining and Knowledge Discovery (PKDD'96), pages 25-35, Trondheim,
Norway, June 1997.

9. G.M. Mineau and R. Godin. Automatic structuring of knowledge bases by concep-
tual clustering. IEEE Transactions on Knowledge and Data Engineering, 7(5):824-
829, October 1995.

10. W. Pang, R.J. Hilderman, H.J. Hamilton, and S.D. Goodwin. Data mining with
concept generalization graphs. In Proceedings of the Ninth Annual Florida AI
Research Symposium, pages 390-394, Key West, Florida, May 1996.

11. D.J. Randall, H.J. Hamilton, and R.J. Hilderman. Generalization for calendar
attributes using domain generalization graphs. In Fifth International Workshop
on Temporal Representation and Reasoning (TIME'98), pages 177 184, Sanibel
Island, Florida, May 1998.

12. J.F. Sowa. Conceptual Structures. Addison-Wesley, Reading, MA, 1984.

