
Data Transformation and Rough Sets 

Jaroslaw Stepaniuk Marcin Maj 

Institute of Computer Science 
Bialystok University of Technology Wiejska 45A," 

15-351 Bialystok, Poland 
e-mail: {jstepan, mmaj }@ii.pb.bialystok.pl 

Abstract. Knowledge discovery and data mining systems have to face several 
difficulties, in particular related to the huge amount of input data. This problem 
is especially related to inductive logic programming systems, which employ 
algorithms that are computationally complex. Learning time can be reduced by 
feeding the ILP algorithm only a well-chosen portion of the original input data. 
Such transformation of the input data should throw away unimportant clauses 
but leave ones that are potentially necessary to obtain proper results. In this 
paper two approaches to data reduction problem are proposed. Both are based 
on rough set theory. Rough set techniques serve as data reduction tools to 
reduce the size of input data fed to more time-expensive (search-intensive) ILP 
techniques. First approach transforms input clauses into decision table form, 
then uses reducts to select only meaningful data. Second approach introduces a 
special kind of approximation space. When properly used, iterated lower and 
upper approximations of target concept have the ability to preferably select 
facts that are more relevant to the problem, at the same time throwing out the 
facts that are totally unimportant. 

1 Introduction 

Knowledge discovery in databases (KDD) is concerned with identifying interesting 
patterns and describing them in a concise and meaningful manner. Rough set 
methodology for knowledge discovery was introduced by Pawlak [8]. It provides a 
powerful tool for knowledge discovery from incomplete data. A number of  algorithms 
and systems have been developed based on rough set theory which may induce a set of  
decision rules from a given decision table, and may use induced decision rules to 
classify future examples. Most of  them are attempting to fred and select the best 
minimal set of  decision rules that use only a minimal subset of  attributes (called 
reduct) from the given data table. 

Rough set based systems, such as KDD-R [14], PRIMEROSE [13] and ROSETTA 
[7] have been applied to KDD problems. The patterns discovered by the above 
systems are expressed in attribute-value languages which have the expressive power of  
propositional logic. These languages sometimes do not allow for proper representation 
of complex structured objects and relations among objects or their components. The 
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background knowledge that can be used in the discovery process is of a restricted 
form and other relations f~om the database cannot be used in the discovery process. 
Using clausal logic has some advantages over propositional logic. Clausal logic 
provides a uniform and very expressive means of representation. The background 
knowledge and the examples, as well as the induced patterns, can all be represented as 
formulas in a clausal language. Unlike propositional learning systems, the first order 
approaches do not require that the relevant data be composed into single relation but, 
rather can take into account data, which is organized in several database relations with 
various connections existing among them. 

In this paper we consider two directions in applications of rough set methods to 
discovery of interesting patterns expressed in a clausal language. 

The first direction is based on translation of data represented in clausal language to 
decision table [8] format and next processing using rough set methods based on the 
notion of reduct. Our approach is based on the iterative checking whether a new 
attribute adds to the information. 

The second direction concerns reduction of the size of the data in clausal language 
and is related to results described in [4, 5]. The discovery process is performed only 
on well-chosen portions of data which correspond to approximations in the rough set 
theory. Our approach is based on iteration of  approximation operators. 

2 Approximation Spaces and Rough Sets 

In this section we recall general definition of approximation space [10, 11, 12] which 
can be used for example for the tolerance based rough set model. 

An approximation space is a system AS = (U, I, v), where U is a non-empty set of  

objects, I: U ---> P(U) is an uncertainty function (p (u )  denotes the set of all subsets of 

U ) and v: P(U) x P(U) ---> [0,1] is a rough inclusion function. An uncertainty function 

defines for every object x ~ U objects related to x. The rough inclusion function 
def'mes the value of inclusion between two subsets of U. Definitions of the lower and 
the upper approximations can be written as follows: 

LOW(AS, X)= {x ~ U: v(l(x) ,X)= 1} and UPP(AS, X)= {x ~ U: v(l(x) ,X)> 0). 

We recall some notions of the rough set theory in the case of generalized 
approximation spaces [ 12]. 

Let AS = (U, I, v) be an approximation space and let {X~ ..... X,} be a classification 

of objects (i.e. X~ ..... X , ~ U ,  U x ~ = u  and x ~ x j = o  for i c j ,  where 
/=1 

i , j = l  ..... r). 
The positive region of the classification { X~ ..... X r } with respect to approximation 

space AS is defined as 
r 

,'os(As,{x, . . . . .  

i=1 



443 

The quality of  approximation of  the classification {X~ ..... X r } in the approximation 

space AS is defined as follows: 

card(pOS(As,{Xl ..... Xr})) 
~I(AS,{X, ..... Xr} ) -- card(U) 
This coefficient expresses the ratio of the number of all AS-correctly classified 

objects to the number of all objects in the data table. 
It is always desirable to reduce the amount of  information required to predict an 

outcome. A reduced number of  attributes results in a large number of objects in class 
of objects similar to a given object, making the results more meaningful. If  we can 
remove some of the condition attributes without affecting the degree of dependency 
between the subset of  condition attributes and the decision, the remaining attributes 
will be termed a reduct [8]. 

To explain in more detail the notion of reduct, let (U,A u {d}) be a decision table 

with condition attributes A and a decision attribute d .  Let for every subset B c_ A 

approximation space AS~ is defined. 

A subset B _ A is a relative reduct for (ASA,{d})if and only if 

1. POS(AS,,{d})= POS(ASA,{d} ). 
2. For every proper subset B 'c  B the first condition is not true. 

Approximation spaces and relative reducts are used in next section. 

3 Input Data Transformation Problem 

In this section we discuss problem of adequate data transformation for knowledge 
discovery systems. General scheme of our approach is represented on Figure 1. 

3.1 Reduct Approach 

In this subsection we discuss the following approach: 
1. The data is transformed from clausal logic to decision table format by the iterative 

checking whether a new attribute adds any information to the decision table. 
2. The reducts are computed from obtained decision table. 
3. Rules from reducts are generated. 

Data represented as a set of clauses can be transformed into attribute-value form, 
consisting of a number of objects that have certain values for certain attributes. This 
form is known as the decision table. When certain conditions are not met, the 
transformation is imperfect, because the expressive power of attribute-value language 
is insufficient to properly represent some concepts. In cases like that the 
transformation only leaves a limited knowledge about the problem, usually not enough 
to discover a satisfactory definition. 

The idea of translation was inspired by L1NUS system [2, 1]. We start with a 
decision table directly derived from the target relations positive and negative 
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examples. Assuming we have n-ary target predicate, the first n attributes in the 
decision table are variables of the same type as their respective target predicate 
arguments. Last attribute is the target predicate value - true or false. All positive and 
negative examples of the target predicate are now put into the decision table. Each 
example is put in a separate row in the table. Then background knowledge is applied 
to the decision table. We determine all the possible applications of the background 
predicates on the arguments of the target relation - the first n attributes in the table 
being constructed, taking into account argument types. Each such application 
introduces a new Boolean attribute. 

Relational or Deductive Database ] 

Set of Clauses ] 

Constructed Decision Table 

l 
Rough Set Based Knowledge 

Discovery System 

! 

Reduced Sets of Clauses Based on[ 
Approximations I 

l 
First Order Knowledge Discovery 

System 

Discovered galowledge 

Fig. 1. General Scheme 

One can check if a new attribute adds any information to the decision table. Three 
conditions for adding a new attribute are proposed: 

1. POS(ASs~,{~},{X+,X})D POS(AS~,{X+,X_}). Attribute is added to the decision 

table if it results in a positive region growth with respect to previously selected 
attributes. 

2. card({(x,y)~X+ • where Oe[O,1] is a given real number. 
card(X+ • X_) 

Attribute is added to the decision table if it introduces some distinction between 
objects that belong to different non-empty classes X+ and X_. 

3. argmax{card(POS(ASB~14,{X+,X_})_POS(AS~,{X+,X_}))}. Given several 
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potential attributes, only the attribute with maximal positive region gain is selected 
into the decision table. 
First two conditions can be applied to a single attribute before it is introduced to 

the decision table. If this attribute does not meet a condition it is not included in the 
decision table. The third condition is applied when we have several candidate 
attributes and must select the one that is potentially best. 

In the end we discard the first n nominal attributes as they do not contribute to the 
problem - they are only used as identifiers and cannot be used in the learning process. 

The transformed problem is then analyzed by a rough set based system. First, 
reducts are computed. Next, decision rules are generated. Although expressed in 
propositional logic language, the rules are easily converted to first-order logic 
language. 

This approach is not universal and only applies to problems that can be transformed 
to attribute-value form without the loss of significant data. Counter-examples include 
problems that employ recursive rules and problems that introduce new variables into 
their rules, besides the ones that appear in the target predicate. It is important to note 
that by using a more complicated algorithm to convert these problems to decision 
table form we may minimize the loss of  significant data. This however requires us to 
introduce into the decision table more than n argument attributes (variables). This 
greatly increases the number of  possible applications of background knowledge on 
these arguments. Furthermore, we can consider positions of variables in the predicate 
argument list - this will also generate a lot of  new argument attributes. The combined 
result will be a huge and difficult to comprehend decision table. The effects of  
applying a rough-set based system on such a table are still being investigated. 

3.2 Approximation Space Approach 

The approach presented in this subsection consists of the following steps: 
1. Selection of potentially important facts from background knowledge. 
2. Application of  inductive logic programming system such as FOIL [9] or PROGOL 

[6] to selected clauses. 
Such selection is based on the concept of ,,nominal information", first associated 

with input data reduction problem in [4, 5]. Nominal information of a fact L is the set 
of  its nominal terms (nominal parameter values). It is denoted as Nom(L). 

Nominal information of  a set of instances (or a concept) X is the sum of  all 
instances - positive and negative - it consists of: 

Nora(X) = L.J Nora(L) 
L e X  

Selection of representatives (training set reduction) begins with determining the set 
of  instances of target predicates (definitions of which we seek). Such set is denoted as 

X t a r g e t  �9 

The selections can be represented as lower and upper approximations of X,arge, a U 

in the family of approximation spaces AS#=(U,Io,v), where #cOP and 
OP = {=,n,e,~,D_} is the set of  operators. 
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Definition 3.1 Let AS v = (U,Iv,v) be an approximation space, where U is the set of 
clauses with non-empty nominal information. 
1. For every L ~ U we define I#(L), where #~ OP as 

I=(L) = {L'~ U:Nom( L) = Nom( L')} , 

I~ ( L) = { L' ~ U: Nom( L)n  Nom( L') :/: ~} ,  

, ,~ ,r .  card(Nora(L)n Nom(L')) > e~ ' where e e [0,1] is a parameter, 
I~(L) = ,~ ,~. card(Nora(L) u Uom(L')) - J 

I=( L) = { r'~ U: Nora(L) = Nom( L') }, 

I~(L) = {L'~ U:Xom(L) D Xom(L')}. 
2. The rough inclusion function is defined as: 

card(Nora(X) n Nora(Y)) 
v ( X , Y ) -  cara(Nom(X)) 

Each uncertainty function contributes to a different approximation space which 
results in different kinds of approximations that show different properties. 

Proposition 3.2 For every uncertainty function I v exists a corresponding relation rv 
defined as: 

(L,L') ~ "r v if and only if L'~ Iv(L), where #~ OP. 
It can be observed that: 

1. ~= is an equivalence relation. 
2. T~ and $, are tolerance relations (i.e. reflexive and symmetric relations). 
3. T= and T= are reflexive and transitive relations. 

We then define two transformations 

LOW:{AS#:#~ OP} x P(U) --~ P(U) and UPP:{AS,:#~ OP} • P(U) ~ P(U) 

based on the lower and upper approximations in AS v . 
Starting with X,a,ge, we can construct infinite number of approximations by 

constantly applying one of these transformations first on Xt,,,ge, and then on the 

approximation resulting from the previous step. 
Thus, the problem of selection is reduced to constantly applying upper (lower) 

approximation in the same approximation space to the upper (lower) approximation 
set obtained in the previous step. 

It is worth mentioning that under certain conditions it is possible that 

X cLOW(ASv ,X) ,  which means that in this approximation space lower 

approximation has the ability to expand beyond the set it approximates. This may look 
surprising in comparison to the traditional understanding of approximation spaces and 
rough sets [8]. 

The input data reduction problem is then defined as taking into account clauses that 
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are included in LOW(AS,, Xtarget ). If this approximation appears to be too restrictive, 

which results in bad quality of discovered knowledge, we then consider 

UPP(AS#,X, arge, ) . If it also does not meet our expectations, we proceed to consider 

following approximations: UPP(ASo,UPP(AS~,X,,rge,))and so on. We can stop when 

the approximation is sufficient to learn a satisfactory definition of the target concept. 
Learning is performed with any kind of ILP system. 

This approach may be modified by alternating randomly or by a set pattern between 
the two transformations and obtaining a different kind of sequence. 

Since X, arge, = Xt+rget k...) XZarget (the union of positive and negative examples of the 

target relation) we may also consider separate approximations of X+rge, and X~rg,, 
which are added after the approximation process. This approach results in a more 
restrictive approximation (the sets of selected representatives resulting from this 
approach are subsets of their respective approximations obtained from the whole set 

Xtarget  " 

We sketch the algorithm for calculating upper and lower approximations of X, arge. 

LOW: =O; UPP:=O; 

Nominal : =Nora (Xtarget) ; 
for every L in U-Xtarge, do 
begin 

Class :=I# (L) ; 

NC : =Nom (Class) ; 

RoughInclusion : =V (NC, Nominal ) ; 

if (RoughInclusion=l) then LOW:=LOW<9{L}; 

if (RoughInclusion>0) then UPP:=UPP<){L}; 

end; 

Unlike standard rough set approximation calculation this algorithm's time 

complexity is O(n2mlogm) where n = card(U - X,,~g~,) is the number of  clauses and 

m= card(Nom(U)) is the number of nominal terms. However, in special case of  

uncertainty function A the time can be reduced to O(nmlogm) since we do not need to 

calculate uncertainty class at all and NC:= Nom(L). Other uncertainty functions 
require us to calculate set intersections or perform other set theoretical operations 
which are quite time consuming. 

Example 3.3 The experimental data set is related to document understanding and has 
been an object of previous studies, see for example [4]. Predicate data describes 30 
single page documents. Background predicates express type, position and alignment 
of document blocks. Target predicates describe whether a block is one of the five 
predetermined types: sender, receiver, logo, reference, date. First lower 
approximation and first, second and third upper approximations were considered. By 
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applying approximations in different approximation spaces, several levels of data 
reduction were obtained. In this data set approximation spaces were divided into four 
groups, each displaying different data reduction levels. Overall there were eight data 
levels, ranging from an empty set to a full input data set. Figure 2 shows the results for 
different approximation space groups and eight possible reduction levels resulting 
from four previously mentioned approximations. Bars with different patterns represent 
the gain in input data resulting from applying the next approximation. Experiments 
with FOIL system show that any non-empty approximation is sufficient to obtain 
satisfactory definitions of the target predicates (accuracy above 90%). 

100% 
90% 
80% 

o 70% 
o 60% , ~  

1~ 50% 
O 
~. 40% 
"~ 30% 
o 20% 
�9 ~ 10% 
o~ 0% 

iiiiiiiiiiiiiiiiiiiiii~i~iii!iiii:i~i 
iii:iii:i:i:i:ii:i:~!~:~i 

1 
i 

e=0 e=0.25, e=0.5, c 
e=0.33, n 

:ilii~ I .... 

e--0.66, 
e--0.75, 

E=I,D,= 

Different Approximation Spaces 

[ ]  3rd upper gain 

D2nd upper gain 

�9 1st upper gain 

[ ]  1st lower 

Fig. 2. Four Approximation Space Groups and Eight Approximation Levels 

Conclusions 

This paper has presented two approaches which aim at overcoming the difficulty met 
by knowledge discovery systems namely the huge amount of  data. Both approaches 
aim at throwing away facts that are unimportant to the target concept and leaving facts 
that are potentially necessary. Such process can also be described as selection of 
representatives. First approach, based on the rough set theory concept of reducts can 
only be applied to a certain class of problems that can be transformed into attribute- 
value form without the loss of significant data. The results are quite promising and 
new ways to transform clauses into attribute values are still being investigated. Second 
approach uses another rough set theory concept, namely the approximation spaces. By 
employing a new kind of approximation space we are able to select clauses that are 
more relevant to the problem. If the selection appears to be too restrictive 
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approximation can be used in multiple passes, each of them expanding the clause set 
in a way that includes only the most relevant facts from the ones that were previously 
thrown out. The facts that are totally irrelevant to the problem are never considered. 
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