Skip to main content

Artificial neural networks aid the design of non-carcinogenic azo dyes

  • Communications
  • Conference paper
  • First Online:
  • 95 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1609))

Abstract

This research involves the integration of fuzzy entropies (used in the context of measuring uncertainty and information) with computational neural networks. An algorithm for the creation and manipulation of fuzzy entropies, extracted by a neural network from a data set, is designed and implemented. The neural network is used to find patterns in terms of structural features and properties that correspond to a desired level of activity in various azo dyes. Each molecule is described by a set of structural features, a set of physical properties and the strength of some activity under consideration. After developing an appropriate set of input parameters, the neural network is trained with selected molecules, then a search is carried out for compounds that exhibit the desired level of activity. High level molecular orbital and density functional techniques are employed to establish databases of various molecular properties required by the neural network approach.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becke, A. D.: Phys. Rev., A38 (1968) 3098

    Article  Google Scholar 

  2. Perdew J. P., Zunger A. Phys. Rev., B23 (1981) 5048

    Article  Google Scholar 

  3. Perdew J. P.: Phys. Rev., B33 (1986) 8822

    Article  Google Scholar 

  4. Spartan v. 5.0, Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, CA (1996)

    Google Scholar 

  5. Waring, D. R., Hallas G.: The Chemistry and Application of Dyes, Plenum Press, New York (1990)

    Google Scholar 

  6. Freeman, H., Esancy, M., Esancy, J., Claxton, L.: Color Yes, Cancer No, Chemtech (1991) 438–445

    Google Scholar 

  7. Zadeh, L. A.: Fuzzy sets, Information and Control 8 (1965) 338–353

    MATH  MathSciNet  Google Scholar 

  8. Kosko B: Fuzzy Entropy and Conditioning, Information Sciences 40(1986)165–174

    MATH  MathSciNet  Google Scholar 

  9. De Luca A., Termin, S.: A Definition of a Nonprobabilistic Entropy in the Setting of Fuzzy Sets Theory, Information and Control 20 (1972) 301–312

    Article  MATH  MathSciNet  Google Scholar 

  10. Kaufmann, A.: Introduction to the Theory of Fuzzy Subsets, Academic Press, New York (1975)

    MATH  Google Scholar 

  11. Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information, Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  12. Knopfmacher J.: On Measures of Fuzziness, J. Math. Anal. and Appl. 49 (1975) 529–534

    Article  MATH  MathSciNet  Google Scholar 

  13. Loo S. G.: Measures of Fuzziness Cybernetica 20 (1977) 201–210

    MATH  Google Scholar 

  14. Yager R. R.: On the Measure of Fuzziness and Negation. Part I: Membership in the Unit Interval, International Journal of General Systems 5 (1979) 221–229

    Article  MATH  MathSciNet  Google Scholar 

  15. Yager R. R.: On the Measure of Fuzziness and Negation. Part II: Lattices, Information and Control 44 (1980) 236–260

    Article  MATH  MathSciNet  Google Scholar 

  16. Higashi M., Klir G. J.: On Measures of Fuzziness and Fuzzy Complements, International Journal of General Systems 8 (1982) 169–180.

    MATH  MathSciNet  Google Scholar 

  17. Kosko B.: Neural Networks, and Fuzzy Systems, Prentice Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  18. Zadeh L.: A Computational Approach to Fuzzy Quantifiers in Natural Languages, Comput. Math. Appl. 9 (1983) 149–184

    Article  MATH  MathSciNet  Google Scholar 

  19. Zadeh L.: The Role of Fuzzy Logic in the Management of Uncertainty in Expert Systems, Fuzzy Sets and Systems 11 (1983) 199–227

    Article  MATH  MathSciNet  Google Scholar 

  20. Dombi, J.: A General Class of Fuzzy Operators, the De Morgan Class of Fuzzy Operators and Fuzziness Measures, Fuzzy Sets and Systems 8 (1982) 149–163

    Article  MATH  MathSciNet  Google Scholar 

  21. Cios K. J., Sztandera, L. M.: Continuous ID3 Algorithm with Fuzzy Entropy Measures, Proceedings of the 1st International Conference on Fuzzy Systems and Neural, Networks, IEEE Press, San Diego (1992) 469–476

    Google Scholar 

  22. Cios, K. J., Goodenday, L. S., Sztandera, L. M.: Hybrid Intelligence Systems for Diagnosing Coronary Stenosis, IEEE Engineering in Medicine and Biology 13 (1994) 723–729

    Article  Google Scholar 

  23. Sztandera L. M.: Relative Position Among Fuzzy Subsets of an Image, M.S. Thesis, Computer Science and Engineering Department, University of Missouri-Columbia, Columbia, MO (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Zbigniew W. Raś Andrzej Skowron

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sztandera, L.M., Bock, C., Trachtman, M., Velga, J. (1999). Artificial neural networks aid the design of non-carcinogenic azo dyes. In: Raś, Z.W., Skowron, A. (eds) Foundations of Intelligent Systems. ISMIS 1999. Lecture Notes in Computer Science, vol 1609. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0095138

Download citation

  • DOI: https://doi.org/10.1007/BFb0095138

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65965-5

  • Online ISBN: 978-3-540-48828-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics