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1 Introduction

Formal Concept Analysis ([9], [1]) provides a mathematical model of the concept
‘concept’” which i1s used in data analysis for examining conceptual hierarchies in
data tables. If these data tables are too large to be completely given, then the
conceptual structure has to be determined in an interactive knowledge acquisi-
tion process from an expert of the domain. Frploration tools suggest, starting
with the concepts to be examined, hierarchical relationships. The expert is asked
either to confirm them or to provide typical counter-examples. The result of the
exploration is a lattice that is generated by adding all largest common subcon-
cepts and/or least common superconcepts.

Tn [12] and [4], an overview over different exploration tools in Formal Con-
cept Analysis is given. While Attribute Frploration considers largest common
subconcepts only and Object Ezploration least common superconcepts only ([1]),
Concept Exploration treats largest common subconcepts (infima) and least com-
mon superconcepts (suprema) equally ([3], [6], [T], [11], [12]). Tt determines the
lattice of all combinations of infima and suprema of the starting concepts (which
are also called the basic concepts).

A big problem of Concept Exploration is the fact that the resulting lattice
(and the exploration dialogue) may be infinite. Even only three concepts can
generate an infinite lattice! Tn practice however, this case does not appear. We
can overcome this principal difficulty if general knowledge about the domain
provides more information about the structure of the intended lattice. Tf we
know in advance that the lattice is distributive, then the finiteness of the result
1s ensured.

Which additional assumptions imply the distributivity of the lattice? This is
especially the case, if we know that the attributes which generate the conceptual
hierarchy are closed under disjunction. One interesting application is within
Description Logics where digjunction is usually used as constructor. For logics
having a complete subsumption algorithm, this algorithm can be considered
as ‘expert’ for the exploration procedure. By combining both algorithms, one
obtains a completely automatic knowledge acqusition tool ([5], [7]).

With distributivity of the resulting lattice known in advance, we can use its
much stronger structure in the algorithm. This is the underlying idea of Dis-
tributive Concept Fxploration. Tn particular, Distributive Concept Exploration



uses the tensor product of lattices ([10]), which is the co-product in the category
of completely distributive complete lattices. This approach cannot be adapted
to Concept Exploration, since there is no co-product in the category of complete
lattices.

During the exploration the user is asked questions of the form “Is s a sub-
concept of 177 where s and t are lattice terms built with the basic concepts. Tf
the user replies “No”, he must justify his answer by an object belonging to s
and an attribute belonging to # such that the object does not have the attribute.
The result of the exploration is the concept lattice of all combinations of infima
and suprema of the basic concepts, together with a list of objects and attributes
which separate the concepts. The algorithm is implemented by B. Groh.

In the next section the basic notions of Formal Concept Analysis are intro-
duced. The algorithm of Distributive Concept Exploration is described in Sec-
tion 3 and illustrated by an example in Section 4. Because of space limitation,
the mathematical part is quite condensed. Tn order to get an idea of the explo-
ration procedure, the reader may first read the next section until the example
and then have a look at Section 4 before going in the details in Section 3.

2 Formal Concept Analysis

Tensor products of lattices and congruence relations on lattices are the essential
constructions for Cistributive Concept Exploration. Both can adequately be de-
scribed in terms of Formal Concept Analysis. Formal Concept. Analysis (cf. [9],
[1]) is a mathematical approach which reflects the philosophical understanding of
concepts as units of thought consisting of two parts: the extension containing all
objects which belong to the concept and the intension containing the attributes
shared by all those objects (cf. [8]). Tn Formal Concept Analysis this is modeled
by formal concepts that are derived from a formal contert. We briefly recall some
basic definitions:

I 1s a relation between (¢ and M. The elements of (G and M are called objects
and attributes, respectively, and gI'm is read “the object g has the attribute m”.
For A C G and B C M we define A’ := {meM |VgeA : gIm} and dually
B’ .= {geG|YmeRB: gIm}. Now a (formal) concept is a pair (A, B) with A C G,
BC M, A =B and B = A. The set. A is called the extent and the set B
the intent of the concept. The hierarchical subconcept superconcept relation
of concepts is formalized by (A,B) < (C,D) : <—= A C C (<= B D D).
The set of all concepts of the context K together with this order relation is a
complete lattice that is called the concept lattice of K and is denoted by B(K).
Each complete lattice can be viewed as a concept lattice: A complete lattice T,
is isomorphic to the concept lattice B(L, I, <).

Frample. Figure 1 shows a formal context about the potential of gaseous pol-
lutants. (Gases are objects, and possible perils are attributes. In the line dia-
gram of the concept lattice, we label, for each object ¢ € G, its object concept
vg = ({9}, {g}") with the name of the object and, for each attribute m € M,
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Fig. 1. Formal context and concept lattice of gaseous pollutants

its attribute concept um = ({m}’,{m}") with the name of the attribute. This
labeling allows us to determine for each concept its extent and its intent: The ex-
tent [intent] of a concept contains all objects [attributes] whose object concepts
[attribute concepts] can be reached from the concept on a descending [ascending]
path of straight line segments. For instance, the concept labeled with CO has
{CO, SOy, NO,.} as extent, and {human toxicity potential, greenhouse effect,
ecotoxicity} as intent. The concept lattice combines the view of different pol-
lution scenarios with the influence of individual polluants. Such an integrated
view can be of interest for the planning of chimneys for plants generating spe-
cific polluants. Generally spoken, Formal Concept Analysis treats intensional
and extensional aspects equally and in an integrative way.

The tensor product of two complete lattices 1 and o is defined to be the con-
cept lattice L1 @ Lo := B(Ly X Lo, L1 X Lo, V) with (21, 22)V (1, y2) : <= (21 <
y1 or 29 < yo). R. Wille showed in [10] that the tensor product is the co-product
in the category of completely distributive complete lattices with complete ho-
momorphisms. Hence the tensor product of 7,1 and s is, in a certain sense, the
largest complete distributive lattice that can be generated by 7.y and .

We define the direct product of two contexts Ky := (G4, My, ) and Ky :=
(G2, M3, I5) to be the context Ky x Ky := (G4 x G, My x My, V) with the in-
cidence (g1, 92)V(mi,ms) : <= ((g1, m1)ET or (g2, m2)€l). The tensor prod-
uct of two concept lattices is (up to isomorphism) just the concept lattice of the
direct product of their contexts: We have B(K;) @ B(Ks) = B(K; x Ks).

A context is called reduced if each object concept is \/-irreducible (i.e., is not
supremum of smaller elements) and each attribute concept is A-irreducible (i.e.,
is not infimum of larger elements). For a \/ irreducible (/\ irreducible) element,
x of a finite lattice we write 2, (2*) for its unique lower (upper) cover. Tf Ky and
Ky are reduced, then Ky x Ky is also reduced (cf. [10]).

Congruence relations of complete lattices appear in a quite natural way in
Formal Concept Analysis. For finite concept lattices they can always be described
by compatible subcontexts: A context (H, N, .J) is called a subcontezt of a context



(G,M,I)if HCG, NCM and J=1TnN(H x N). Tt is called compatible if for
each concept (A, B) of (G, M, T) the pair (AN H, BN N) is also a concept, of the
subcontext. Factorizing a concept lattice is equivalent to providing a compatible
subcontext, i.e. to deleting suitable rows and columns in the context. The rows
and columns that have to be deleted can be described by using the relation -

For g € G and m € M we define ¢ ,/* m if g Im, ¢’ C ' implies hIm for
all h € G, and m’ C n’ implies g/n for all n € M. For two elements u and v of
a complete lattice ., we write u v, if u is maximal in {z€l. | z#v} and v is
rLu}.

For two elements u and v of a complete lattice, u * v implies that u is
\/ irreducible and » is A irreducible and that u<v, u.<v, and u<v* hold. Tt
should not. be confusing that we use * at the same time as a relation between
elements of a lattice and between objects and attributes of a context because

minimal in {z€l,

g /" m in K is equivalent to vg ,/* pm in the concept lattice B(K).

A context is called distributive if its concept lattice is distributive. All the
contexts needed for Distributive Concept Exploration are distributive reduced
finite contexts. Tn these contexts the ,-relation is a bijection between the set of
objects and the set of attributes. According to [1], in a distributive reduced finite
context the compatible subcontexts are exactly those of the form (H, N, TN(H x
N)) where for each m € N exists ¢ € H s.t. g ,/* m. The following theorem
describes the correspondence between compatible subcontexts and congruence
relations. Tt is a consequence of Lemmata 34 and 36 in [1].

Theorem 1. Let (G, M,T) be a distributive reduced finite context, g € G and
m e M with g ,/* m. Then the kernel of the complete homomorphism

mB(G, M, 1) = B(G\{gh, M\ {m}, T\ ({g} x MUG x {m}))

with (A, B) — (A\{g¢}, B\ {m}) is the congruence relation on B(G, M, T) that
15 generated by forcing vg < pm.

3 Distributive Concept Exploration

Let by, ba, ..., b, be names of the concepts the user wants to explore. They are
called basic concepts. We assume that they generate (by taking greatest common
subconcepts and least, common superconcepts) a (yet unknown) distributive lat-
tice I,. Distributive Concept Exploration determines the lattice 7., together
with a list of objects and attributes which are separating different concepts.
The lattice L, is isomorphic to a quotient lattice FBD(by, ... b,)/@ of the
free bounded distributive lattice generated by the basic concepts. The congru-
ence relation @ reflects the answers given by the user. We use the fact that
FBD(by,...,b;) = FBD(by,...,b,_1) @ FBD(b;) for splitting the determination
of @ into smaller parts: For 7 = 0, ..., n, the exploration algorithm subsequently
determines the lattice I; that is completely generated by the basic concepts
by,...,b; with respect to their hierarchical relationships. The lattice I; is ob-
tained from L;_q by I; = (L;,_1@FBD(b;))/O;, where ©; reflects the hierarchical



relationship between b; and the elements of 1;_;. The result of the exploration
is then given by the lattice I,,.

For each 7 € {0,...,n}, the lattice I; will be determined in two steps: First
7/7;, the tensor product of I;_y with FBD(b;) (which is the three element chain
1L < b; < T),is calculated. Then the user is asked questions of the kind “Is s
a subconcept of 77 with s and # being lattice terms built with by,... b;. The
congruence relation &; on I; is deduced from the answers given by the user. The
factorization of I; by the congruence relation yields the lattice ;.

In the algorithm, the lattices I.; are represented by reduced contexts IK; :=
(G, My, I;), i.e. the lattice L; is isomorphic to the concept lattice B(TK;). As
this context is the result of a repeated use of the direct product of contexts, its
objects and attributes are tuples. They are of the form # := (x,...,2;) € G;
with 29 = T and o, € {T,bg} fork=1,....,n and ¥ := (yo,...,y) € M; with
yo — L and yp € {L, b} for k = 1,...,n. The incidence ZI;ij represents the
inequality A7 < \/ ¢ with A7 := /\j,;:0 z; and \/ i == \/j,;:0 Yi -

As mentioned above, the lattice }:7 has to be calculated as intermediate step
in the determination of the lattice I;. This tensor product of 7;_; with the
chain L < b; < T will be represented by the context TAK; = ((?77 /\’/77;7 77) being
the direct product of K;_; with the context ({b;, T}, {L,b;},{(b;,0;)}). The
context K; will then be derived from TR by deleting suitable rows and columns.
This corresponds to finding a suitable congruence relation on the tensor prod-
uct. Theorem 1 indicates the questions needed for determining these rows and
columns: For all ¥ € (G; and ¢ € M; with ¥ ' ¢ the user is asked: “Is the
infimum of # a subconcept of the supremum of 7?7 This question is equiva-
lent to “Does each object belonging to all concepts zq, ..., z; belong to at least
one of the concepts yp, ..., y;?”. If the user agrees to the question, the object ¥
and the attribute ¢ will be deleted, otherwise they will be kept in G; and M;,
respectively.

Observe that the * relation is inherited and can thus easily be calculated:
For & /4 in K;_y, we have (£, T) (¥, b;) and (Z,b;) /* (y, L) in K, . Deleting
corresponding rows and columns does not change the “-relation.

The algorithm starts with the determination of Iy out of the two element
lattice Lo == FBD(#) = (L<T). The elements | and T are the concepts nothing
and everything (in our field of interest). The lattice Lo is represented by the
context Ky := ({T},{L},0). As we have T 'L in g, the first question in each
exploration is “TIs T (everything) a subconcept of L (nothing)?” Usually, this
will be denied. Tf however the user agrees, the exploration is terminated because
he obtains Ky = (0,0, 0) which is the absorbing element for the direct product
of contexts. Tts concept lattice B(B, D, #) is the one element lattice which is the
absorbing element for the tensor product of lattices.

Next we introduce separating pairs. They are justifications for the claim that
two concepts are different. More precisely, they justify that one of the concepts is
not a subconcept of the other. For two concepts a and b with a not a subconcept
of b, a pair (g, m) is called a separating pair if g is an object of the concept a and
m is an attribute of the concept b such that g does not have the attribute m.



The algorithm computes for each 7; with ¢ = 0,..., n a minimal list of pairs
of objects and attributes, such that for two concepts a and b of I.; with a £ b
there 18 at least one pair in this list which 1s a separating pair for a and b. Tt is
sufficient to have a list of separating pairs for elements ¢ and 0 of I; with ¢ /0,
as for two elements a and b of ; with a € b there always exist such ¢ and ? with
¢ < aand b <0, because I; 18 finite and distributive. The separating pair for
¢ and D is also a separating pair for a and b. On the other hand there must be
different separating pairs for different ¢ 1 0, so that in fact this list is minimal.

During the exploration, the user is asked for separating pairs: Whenever he
denies the question “Is the infimum of ¥ a subconcept of the supremum of 77,
he is prompted for a separating pair for A # and \/ §. The pair will be denoted
by (g,(#), m;(¥)). Thus we obtain two mappings: g; maps from G; to the set of
objects of the separating pairs, and m; maps from M, to the attributes. These
mappings indicate that the object g, (#) belongs to the concept A #, and that the
attribute m; () belongs to the concept \/ §. Because of A & '\ ¢, we know that
g, (¥) and m; () form a separating pair. The mappings g; and m; however do
not indicate whether an object or attribute does not belong to a concept. This
information cannot be deduced from the answers given by the expert during
the exploration dialogue. T.e., because the expert is not asked how objects and
attributes of different separating pairs are related.

Unfortunately, A# V¢ in L; does not imply A% V¢ in L;yy. This
means that the separating pair (g;(#), m; (%)) will in general not remain in the
minimal list for ;¢ : Tf neither g, (#) nor m;(§) belong to b;1q, then there is no
¢ /0 in ;41 separated by this pair. However it can be used to find new separat-
ing pairs for the minimal list: g, (#) might appear in a separating pair for A(#, T)
and \/ (7, b;11) and m;(§) might appear in a separating pair for A(#,b;31) and
\ (7, L). Tf the object g, (¥) belongs to the concept b; 11 and the attribute m; (%)
does not, then they are a separating pair for A(#,b;41)\/ (¥, L) in ;11 and
remain therefore in the minimal list. Tf the object g;(#) does not helong to the
concept b;11 and the attribute m;(§) does, then they are a separating pair for
AET) 2V, bip1) in Liyq and remain in the list. Because the object g, (¥)
does not have the attribute m;(¥), it is not possible that both belong to the
concept b;4q. This justifies the following definition:

P = _ g(F if g, (#) belongs to b;y4
Bivi (#,big1) = i;n(de)ﬁned e]i ) ¢ "
Bt (7, T) = g, (%) if g;(#) does not, belong to b4
undefined else
~ _, _ fm(y if m; () belongs to bjys
Wit (7, big1) = uncgef)ined else W ¢ "
g (7, L) = m; (i) if m; () does not belong to b4
Y undefined else

Thus, for each separating pair (g;(#), m; (%)) in L;, the user has to answer the
two following questions: “Does the object g;(#) belong to the concept b; 117"
and “Does the attribute m;(7) belong the concept b;117”. The algorithm uses



the fact that the answer “Yes” to one of the questions implies the answer “No”
to the other one.

The problem of finding the rows and columns in IK; that have to be deleted,
now turns ouf, to be equivalent to completing the partial mappings g; and m;:
If, for # € G; and 7 € M; with 7 U, at least one of g, (%) and my;(g) is
undefined and the user is not able to find an object or attribute for completing
the separating pair, then the row # and the column ¥ have to be deleted. Tn two
cases we can benefit from the already given knowledge:

1. Tf g;(#) is undefined, m; (%) is defined and # = (T,..., T, b;), then we already
know that there must exist an object that belongs to b; and that does not
have the attribute m; (). The user is then asked for such an object.

2. Tf g;(¥) is defined and m;(y) is undefined then there must exist an attribute
of \/ ¥ that g;(#) does not. have. The user is then asked for such an attribute.

We are now ready to list the algorithm of Distributive Concept Exploration:

Algorithm: Given is the list by, bs, ..., b, of basic concepts.
1i:=0, Ko:=({T},{L},0), g(T) :=undefined, mg(L) :=undefined.
2. For each (¥,9) € G; x M; with Y,
where g; (#) or m; (%) are undefined, do:
o If g,(Z) is undefined:

Tf m; () is defined and #=(T,..., T, b;):
Prompt: “Name an object belonging to b; and not having
the attribute m; (§)!” Set g;(#) according to the answer.

Flse do:
Ask the user: “Is the infimum of ¥ a subconcept,

of the supremum of 7”7

“Yes”: Delete ¥ in (Ai;7 ¥ in /\,/77;7
and the corresponding row and column in I;.
“No”: Prompt: “Give a separating pair for A Z and \/ 7!
Tf m; () is defined, add:
“Fventually you can use m,; (%) as attribute.”
Set g, (#) and m, (%) according to the answer.
o Else (i.e. g;(¥) is defined and m; (%) is undefined) do:
Prompt: “Name an attribute of \/ i that g,(#) does not have!”
Set m; () according to the answer.
3. Set K = K;, g := |G,y My 1= My |y,
4. If i=n, then ST O P.
5. Set Kiyr =T x ({bjgr, THA{L, biya}, {(big1, biy1)}).
6. For each (Z,9) € G; x M; with & /2 i
Ask the user: “Ts g, (#) a b; 4177
If “No”, ask “Has each object in b,y the attribute m;(3)?”"
Set g; 1 (#,bi41) and g, (¥, T) as defined above.

' These two questions are equivalent, to “Does the object g, (%) belong to the concept
b;417” and “Does the attribute m,(z}') belong to the concept b; 4177, resp.



Set m; 11 (¥, b;y1) and m; 14 (g, L) as defined above.
7. Set2:=72+ 1.
8. Goto Step 2.

The result of the algorithm can be shown by a line diagram of B(K,, ). Tt is not
necessary to label all the object and attribute concepts in the diagram. Only the
concepts \/{v7 | P€G,, z;=b;} (= N{py|yeEM,, yi=b;}) of B(K,) have to be
labeled by b;, as they correspond to the basic concepts which completely generate
the whole lattice. The resulting list of separating pairs can be displayed in the
same diagram: For each pair /i in K, , there is exactly one separating pair
(g, (), m, (7). We label the concept v# by g, (#) and the concept pug by m, ()
and mark 47 and py with the same symbol. An example can be seen in the next
section.

4 An Exploration of Zinks

As an example, we want to explore a family of musical instruments: Zinks are
wind instruments with a conical wide bored tube, a shortening hole system
and a mouth piece played like a trumpet. We start the exploration with the
following basic concepts: by = straight zink [gerader Zink], by — silent zink
[stiller Zink], by = curved zink [krummer Zink], bs = corneltino, and by =
cornetto. The exploration is based on information given by the catalogue of the
museum of musical instruments of the University of Leipzig ([2]). The zinks used
for separating pairs are named by their catalogue number.

Figure 2 shows the result of the exploration of the two first basic concepts
straight zink and silent zink (i.e., after Step 4 of the algorithm with i = 2). For
instance, one can see in the diagram that silent zink is a subconcept of straight
zink. The fact that not everything is a straight zink s asserted by the separating
pair Zink 1574 and straight form. The relation s indicated in the diagram by
using the same symbol (e.g., everything,straight zink by () and () Next we
determine the largest lattice that is possibly generated by adding the next basic
concept curved zink (Steps 5 & 6):

“Is Zink 1559 a curved zink?” “No!” “Has every curved zink the attribute
ground tone C7” “No!” “Is Zink 1558 a curved zink?” “No!” “Has

each curved zink the attribute recessed mouthpiece?” “No!” “Is Zink
1574 a curved zink?” “No!” “Has each curved zink the attribute straight
form?” “No!”

Figure 3 shows the context K5 and the mappings gz and mgz. Steps 2 & 3 then
determine the congruence relation on B(IK3) that reflects the dependencies be-
tween the concept curved zink and the concepts straight zink and silent zink.

“TIs the infimum of straight zink, silent zink and curved zink a subconcept
of nothing?” “Yes!” “TIs the infimum of straight zink and curved zink
a subconcept of silent zink?” “Yes!” “Name a curved zink not having
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Fig. 2. The result of the exploration of the first two basic concepts

straight form!” “Zink 15637 “Name an attribute of curved zinks that
Zink 1559 does not have!” “Attached mouthpiece.” “Name an attribute of
the supremum of silent zink and curved zink that Zink 1558 does not have!”
“Recessed mouthpiece or curved form.” “Name an attribute of the supremum
of straight zink, silent zink and curved zink that Zink 157/ does not have!”
“More than 6 finger holes.”

Up to now (at Step 4 with 7 = 3), we have determined the complete lattice
generated by the first three basic concepts straight zink, silent zink, and curved
zink. Tt 1s shown in Figure 4. We continue the exploration in the same way
with the remaining two basic concepts cornetto and cornettino. Finally, we get
the context K5 as shown in Figure 5. Tts line diagram shows all information
about the hierarchical relationships between the five basic concepts. For example,
we can deduce from it that there are no silent zinks that are also cornettos,
because the infimum of silent zink and cornetto is nothing. We can further deduce
that there are other zinks than those we chose for the exploration, because the
supremum of all basic concepts is different from everything. The observation
that the supremum of cornetto and cornettino is curved zink and their infimum
is nothing reflects the fact that the curved zinks can be divided in two disjoint
classes: cornettos and cornettinos.

Let us remark that, in the Fig. 5, Zink 1558 1s not laying below attached
mouthpiece, even though Zink 1558 has an attached mouthpiece! Zink 1558 and
attached mouthpiece belong to different separating pairs, and so their relationship
has not been asked from the expert.

Tf there are other subconcepts of zink we are interested in (for example tenor
zink, serpent or violoncel serpent) we can continue the exploration by starting
with the context K5 and adding the new basic concepts. This serial approach
allows also to extend the acquired knowledge at a later time.
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5 Conclusion

The algorithm as described above is not able to treat incomplete knowledge.
The user is assumed to reply to each question during the exploration either with
“Yes” or “No”. With a little change we can allow the answer “I don’t know”
to the guestion “Is the infimum of # a subconcept of the supremum of §77:
Tn this case the row # and the column § will not be deleted in K; and g,(¥)
and m;(y) will be set to the default value 2. Tn Step 6 of the algorithm all
i1 (F,b541), 8 (7, T), My (¥, bigr) and my 44 (37, L) will then automatically
be set to 2. These ? play the role of “possible separating pairs”. During and after
the exploration procedure the user can either replace them by a real separating
pair or he can delete the corresponding row and column (if he is then sure that
the inequality A # < \/# holds). The result of the exploration can he shown by
a list of line diagrams  one for each possibility of deleting corresponding rows
and columns that are not confirmed by a concrete separating pair.

The algorithm generates in the worst case (i.e., the user denies all de-
pendencies between the basic concepts) the free hounded distributive lattice
FBD(b1,...,b,), which is growing super-exponentially. However, the algorithm
is working on the level of the formal contexts only, whose sizes are logarithmic
in the sizes of the concept lattices. Hence, if the basic concepts are sufficiently
related, then the exploration can be done in reasonable time. Tts efficiency also
depends on the ordering of the basic concepts: The stronger the first basic con-
cepts are related, the smaller the contexts can be kept during the exploration.
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The final result, of course, is independent of this ordering. For basic concepts

that are only weakly related, the whole lattice generated by them is often not
requested. Then the basic concepts can be divided in stronger related classes

which are explored separately (cf. [4]).
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