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 Springer-Verlag Berlin{Heidelberg 19981 IntroductionFormal Concept Analysis ([9], [1]) provides a mathematical model of the concept`concept' which is used in data analysis for examining conceptual hierarchies indata tables. If these data tables are too large to be completely given, then theconceptual structure has to be determined in an interactive knowledge acquisi-tion process from an expert of the domain. Exploration tools suggest, startingwith the concepts to be examined, hierarchical relationships. The expert is askedeither to con�rm them or to provide typical counter-examples. The result of theexploration is a lattice that is generated by adding all largest common subcon-cepts and/or least common superconcepts.In [12] and [4], an overview over di�erent exploration tools in Formal Con-cept Analysis is given. While Attribute Exploration considers largest commonsubconcepts only and Object Exploration least common superconcepts only ([1]),Concept Exploration treats largest common subconcepts (in�ma) and least com-mon superconcepts (suprema) equally ([3], [6], [7], [11], [12]). It determines thelattice of all combinations of in�ma and suprema of the starting concepts (whichare also called the basic concepts).A big problem of Concept Exploration is the fact that the resulting lattice(and the exploration dialogue) may be in�nite. Even only three concepts cangenerate an in�nite lattice! In practice however, this case does not appear. Wecan overcome this principal di�culty if general knowledge about the domainprovides more information about the structure of the intended lattice. If weknow in advance that the lattice is distributive, then the �niteness of the resultis ensured.Which additional assumptions imply the distributivity of the lattice? This isespecially the case, if we know that the attributes which generate the conceptualhierarchy are closed under disjunction. One interesting application is withinDescription Logics where disjunction is usually used as constructor. For logicshaving a complete subsumption algorithm, this algorithm can be consideredas `expert' for the exploration procedure. By combining both algorithms, oneobtains a completely automatic knowledge acqusition tool ([5], [7]).With distributivity of the resulting lattice known in advance, we can use itsmuch stronger structure in the algorithm. This is the underlying idea of Dis-tributive Concept Exploration. In particular, Distributive Concept Exploration



uses the tensor product of lattices ([10]), which is the co-product in the categoryof completely distributive complete lattices. This approach cannot be adaptedto Concept Exploration, since there is no co-product in the category of completelattices.During the exploration the user is asked questions of the form \Is s a sub-concept of t?", where s and t are lattice terms built with the basic concepts. Ifthe user replies \No", he must justify his answer by an object belonging to sand an attribute belonging to t such that the object does not have the attribute.The result of the exploration is the concept lattice of all combinations of in�maand suprema of the basic concepts, together with a list of objects and attributeswhich separate the concepts. The algorithm is implemented by B. Groh.In the next section the basic notions of Formal Concept Analysis are intro-duced. The algorithm of Distributive Concept Exploration is described in Sec-tion 3 and illustrated by an example in Section 4. Because of space limitation,the mathematical part is quite condensed. In order to get an idea of the explo-ration procedure, the reader may �rst read the next section until the exampleand then have a look at Section 4 before going in the details in Section 3.2 Formal Concept AnalysisTensor products of lattices and congruence relations on lattices are the essentialconstructions for Cistributive Concept Exploration. Both can adequately be de-scribed in terms of Formal Concept Analysis. Formal Concept Analysis (cf. [9],[1]) is a mathematical approach which re
ects the philosophical understanding ofconcepts as units of thought consisting of two parts: the extension containing allobjects which belong to the concept and the intension containing the attributesshared by all those objects (cf. [8]). In Formal Concept Analysis this is modeledby formal concepts that are derived from a formal context. We brie
y recall somebasic de�nitions:A (formal) context is a triple K := (G;M; I) where G and M are sets andI is a relation between G and M . The elements of G and M are called objectsand attributes, respectively, and gIm is read \the object g has the attribute m".For A � G and B � M we de�ne A0 := fm2M j 8g2A : gImg and duallyB0 := fg2G j 8m2B : gImg. Now a (formal) concept is a pair (A;B) with A � G,B � M , A0 = B and B0 = A. The set A is called the extent and the set Bthe intent of the concept. The hierarchical subconcept{superconcept{relationof concepts is formalized by (A;B) � (C;D) : () A � C (() B � D).The set of all concepts of the context K together with this order relation is acomplete lattice that is called the concept lattice of K and is denoted by B(K).Each complete lattice can be viewed as a concept lattice: A complete lattice Lis isomorphic to the concept lattice B(L;L;�).Example. Figure 1 shows a formal context about the potential of gaseous pol-lutants. Gases are objects, and possible perils are attributes. In the line dia-gram of the concept lattice, we label, for each object g 2 G, its object concept
g := (fgg00; fgg0) with the name of the object and, for each attribute m 2 M ,



NOx
N2O
NH3
SO2
CO
CO2

gr
ee

nh
ou

se
ef

fe
ct

oz
on

e 
de

pl
et

io
n 

po
te

nt
ia

l
ac

id
ifi

ca
tio

n
nu

tr
ifi

ca
tio

n
hu

m
an

 to
xi

ci
ty

 p
ot

en
tia

l
ca

rc
in

og
en

ity
/to

xi
ci

ty
ec

ot
ox

ic
ity

ecotoxicity

acidification

nutrification

carcinogenity/toxicity

greenhouseeffect

human toxicity potential

ozone depletion potential

NH3

CO2

CO

SO2

NOx

N2OFig. 1. Formal context and concept lattice of gaseous pollutantsits attribute concept �m := (fmg0; fmg00) with the name of the attribute. Thislabeling allows us to determine for each concept its extent and its intent: The ex-tent [intent] of a concept contains all objects [attributes] whose object concepts[attribute concepts] can be reached from the concept on a descending [ascending]path of straight line segments. For instance, the concept labeled with CO hasfCO, SO2, NOxg as extent, and fhuman toxicity potential, greenhouse e�ect,ecotoxicityg as intent. The concept lattice combines the view of di�erent pol-lution scenarios with the in
uence of individual polluants. Such an integratedview can be of interest for the planning of chimneys for plants generating spe-ci�c polluants. Generally spoken, Formal Concept Analysis treats intensionaland extensional aspects equally and in an integrative way.The tensor product of two complete lattices L1 and L2 is de�ned to be the con-cept lattice L1
L2 :=B(L1�L2; L1�L2;r) with (x1; x2)r(y1; y2) :() (x1 �y1 or x2 � y2). R. Wille showed in [10] that the tensor product is the co-productin the category of completely distributive complete lattices with complete ho-momorphisms. Hence the tensor product of L1 and L2 is, in a certain sense, thelargest complete distributive lattice that can be generated by L1 and L2.We de�ne the direct product of two contexts K1 := (G1;M1; I1) and K2 :=(G2;M2; I2) to be the context K1 � K2 := (G1 � G2;M1 �M2;r) with the in-cidence (g1; g2)r(m1;m2) :() ((g1;m1)2I1 or (g2;m2)2I2). The tensor prod-uct of two concept lattices is (up to isomorphism) just the concept lattice of thedirect product of their contexts: We have B(K1) 
B(K2 ) �= B(K1 � K2 ).A context is called reduced if each object concept is W-irreducible (i. e., is notsupremum of smaller elements) and each attribute concept is V-irreducible (i. e.,is not in�mum of larger elements). For a W{irreducible (V{irreducible) elementx of a �nite lattice we write x� (x�) for its unique lower (upper) cover. If K1 andK2 are reduced, then K1 � K2 is also reduced (cf. [10]).Congruence relations of complete lattices appear in a quite natural way inFormalConcept Analysis. For �nite concept lattices they can always be describedby compatible subcontexts: A context (H;N; J) is called a subcontext of a context



(G;M; I) if H � G, N �M and J = I \ (H � N ). It is called compatible if foreach concept (A;B) of (G;M; I) the pair (A\H;B \N ) is also a concept of thesubcontext. Factorizing a concept lattice is equivalent to providing a compatiblesubcontext, i. e. to deleting suitable rows and columns in the context. The rowsand columns that have to be deleted can be described by using the relation%. :For g 2 G and m 2 M we de�ne g %. m if g 6 Im, g0 � h0 implies hIm forall h 2 G, and m0 � n0 implies gIn for all n 2 M . For two elements u and v ofa complete lattice L, we write u %. v, if u is maximal in fx2L j x6�vg and v isminimal in fx2L j x6�ug.For two elements u and v of a complete lattice, u %. v implies that u isW{irreducible and v is V{irreducible and that u6�v, u��v, and u�v� hold. Itshould not be confusing that we use %. at the same time as a relation betweenelements of a lattice and between objects and attributes of a context becauseg %. m in K is equivalent to 
g %. �m in the concept lattice B(K).A context is called distributive if its concept lattice is distributive. All thecontexts needed for Distributive Concept Exploration are distributive reduced�nite contexts. In these contexts the %.-relation is a bijection between the set ofobjects and the set of attributes. According to [1], in a distributive reduced �nitecontext the compatible subcontexts are exactly those of the form (H;N; I\(H�N )) where for each m 2 N exists g 2 H s. t. g %. m. The following theoremdescribes the correspondence between compatible subcontexts and congruencerelations. It is a consequence of Lemmata 34 and 36 in [1].Theorem1. Let (G;M; I) be a distributive reduced �nite context, g 2 G andm 2M with g %. m. Then the kernel of the complete homomorphism�:B(G;M; I)!B(G n fgg;M n fmg; I n (fgg �M [G� fmg))with (A;B) 7! (A n fgg; B n fmg) is the congruence relation on B(G;M; I) thatis generated by forcing 
g � �m.3 Distributive Concept ExplorationLet b1; b2; : : : ; bn be names of the concepts the user wants to explore. They arecalled basic concepts. We assume that they generate (by taking greatest commonsubconcepts and least common superconcepts) a (yet unknown) distributive lat-tice Ln. Distributive Concept Exploration determines the lattice Ln togetherwith a list of objects and attributes which are separating di�erent concepts.The lattice Ln is isomorphic to a quotient lattice FBD(b1; : : : ; bn)=� of thefree bounded distributive lattice generated by the basic concepts. The congru-ence relation � re
ects the answers given by the user. We use the fact thatFBD(b1; : : : ; bi) �= FBD(b1; : : : ; bi�1)
FBD(bi) for splitting the determinationof � into smaller parts: For i = 0; : : : ; n, the exploration algorithm subsequentlydetermines the lattice Li that is completely generated by the basic conceptsb1; : : : ; bi with respect to their hierarchical relationships. The lattice Li is ob-tained fromLi�1 by Li �= (Li�1
FBD(bi))=�i, where �i re
ects the hierarchical



relationship between bi and the elements of Li�1. The result of the explorationis then given by the lattice Ln.For each i 2 f0; : : : ; ng, the lattice Li will be determined in two steps: FirsteLi, the tensor product of Li�1 with FBD(bi) (which is the three element chain? < bi < >), is calculated. Then the user is asked questions of the kind \Is sa subconcept of t?" with s and t being lattice terms built with b1; : : : ; bi. Thecongruence relation �i on eLi is deduced from the answers given by the user. Thefactorization of eLi by the congruence relation yields the lattice Li.In the algorithm, the lattices Li are represented by reduced contexts Ki :=(Gi;Mi; Ii), i. e. the lattice Li is isomorphic to the concept lattice B(Ki ). Asthis context is the result of a repeated use of the direct product of contexts, itsobjects and attributes are tuples. They are of the form ~x := (x0; : : : ; xi) 2 Giwith x0 = > and xk 2 f>; bkg for k = 1; : : : ; n and ~y := (y0; : : : ; yi) 2Mi withy0 = ? and yk 2 f?; bkg for k = 1; : : : ; n. The incidence ~xIi~y represents theinequality V~x � W~y with V~x := Vik=0 xi and W~y := Wik=0 yi.As mentioned above, the lattice eLi has to be calculated as intermediate stepin the determination of the lattice Li. This tensor product of Li�1 with thechain ? < bi < > will be represented by the context eKi := ( eGi;fMi; eIi) beingthe direct product of Ki�1 with the context (fbi;>g; f?;big; f(bi; bi)g). Thecontext Ki will then be derived from eKi by deleting suitable rows and columns.This corresponds to �nding a suitable congruence relation on the tensor prod-uct. Theorem 1 indicates the questions needed for determining these rows andcolumns: For all ~x 2 eGi and ~y 2 fMi with ~x %. ~y the user is asked: \Is thein�mum of ~x a subconcept of the supremum of ~y ?" This question is equiva-lent to \Does each object belonging to all concepts x0; : : : ; xi belong to at leastone of the concepts y0; : : : ; yi?". If the user agrees to the question, the object ~xand the attribute ~y will be deleted, otherwise they will be kept in Gi and Mi,respectively.Observe that the %.{relation is inherited and can thus easily be calculated:For ~x%. ~y in Ki�1 , we have (~x;>)%. (~y; bi) and (~x; bi)%. (~y;?) in eKi . Deletingcorresponding rows and columns does not change the %.-relation.The algorithm starts with the determination of L0 out of the two elementlattice eL0 := FBD(;) = (?<>). The elements ? and > are the concepts nothingand everything (in our �eld of interest). The lattice eL0 is represented by thecontext eK0 := (f>g; f?g; ;). As we have >%.? in eK0 , the �rst question in eachexploration is \Is > (everything) a subconcept of ? (nothing)?" Usually, thiswill be denied. If however the user agrees, the exploration is terminated becausehe obtains K0 = (;; ;; ;) which is the absorbing element for the direct productof contexts. Its concept lattice B(;; ;; ;) is the one element lattice which is theabsorbing element for the tensor product of lattices.Next we introduce separating pairs. They are justi�cations for the claim thattwo concepts are di�erent. More precisely, they justify that one of the concepts isnot a subconcept of the other. For two concepts a and b with a not a subconceptof b, a pair (g;m) is called a separating pair if g is an object of the concept a andm is an attribute of the concept b such that g does not have the attribute m.



The algorithm computes for each Li with i = 0; : : : ; n a minimal list of pairsof objects and attributes, such that for two concepts a and b of Li with a 6� bthere is at least one pair in this list which is a separating pair for a and b. It issu�cient to have a list of separating pairs for elements c and d of Li with c%. d,as for two elements a and b of Li with a 6� b there always exist such c and d withc � a and b � d, because Li is �nite and distributive. The separating pair forc and d is also a separating pair for a and b. On the other hand there must bedi�erent separating pairs for di�erent c%. d, so that in fact this list is minimal.During the exploration, the user is asked for separating pairs: Whenever hedenies the question \Is the in�mum of ~x a subconcept of the supremum of ~y ?",he is prompted for a separating pair for V~x and W~y. The pair will be denotedby (gi(~x);mi(~y)). Thus we obtain two mappings: gi maps from Gi to the set ofobjects of the separating pairs, and mi maps from Mi to the attributes. Thesemappings indicate that the object gi(~x) belongs to the concept V~x, and that theattribute mi(~y) belongs to the concept W~y. Because ofV~x%. W~y, we know thatgi(~x) and mi(~y) form a separating pair. The mappings gi and mi however donot indicate whether an object or attribute does not belong to a concept. Thisinformation cannot be deduced from the answers given by the expert duringthe exploration dialogue. I. e., because the expert is not asked how objects andattributes of di�erent separating pairs are related.Unfortunately, V~x %. W~y in Li does not imply V~x %. W ~y in Li+1. Thismeans that the separating pair (gi(~x);mi(~y)) will in general not remain in theminimal list for Li+1: If neither gi(~x) nor mi(~y) belong to bi+1, then there is noc%. d in Li+1 separated by this pair. However it can be used to �nd new separat-ing pairs for the minimal list: gi(~x) might appear in a separating pair forV(~x;>)and W(~y; bi+1) and mi(~y) might appear in a separating pair for V(~x; bi+1) andW(~y;?). If the object gi(~x) belongs to the concept bi+1 and the attribute mi(~y)does not, then they are a separating pair for V(~x; bi+1)%.W(~y;?) in Li+1 andremain therefore in the minimal list. If the object gi(~x) does not belong to theconcept bi+1 and the attribute mi(~y) does, then they are a separating pair forV(~x;>) %. W(~y; bi+1) in Li+1 and remain in the list. Because the object gi(~x)does not have the attribute mi(~y), it is not possible that both belong to theconcept bi+1. This justi�es the following de�nition:egi+1(~x; bi+1) := ngi(~x) if gi(~x) belongs to bi+1unde�ned elseegi+1(~x;>) := ngi(~x) if gi(~x) does not belong to bi+1unde�ned elseemi+1(~y; bi+1) := nmi(~y) if mi(~y) belongs to bi+1unde�ned elseemi+1(~y;?) := nmi(~y) if mi(~y) does not belong to bi+1unde�ned elseThus, for each separating pair (gi(~x);mi(~y)) in Li, the user has to answer thetwo following questions: \Does the object gi(~x) belong to the concept bi+1?"and \Does the attribute mi(~y) belong the concept bi+1?". The algorithm uses



the fact that the answer \Yes" to one of the questions implies the answer \No"to the other one.The problem of �nding the rows and columns in eKi that have to be deleted,now turns out to be equivalent to completing the partial mappings egi and emi:If, for ~x 2 eGi and ~y 2 fMi with ~x %. ~y, at least one of egi(~x) and emi(~y) isunde�ned and the user is not able to �nd an object or attribute for completingthe separating pair, then the row ~x and the column ~y have to be deleted. In twocases we can bene�t from the already given knowledge:1. If egi(~x) is unde�ned, emi(~y) is de�ned and ~x = (>; : : : ;>; bi), then we alreadyknow that there must exist an object that belongs to bi and that does nothave the attribute emi(~y). The user is then asked for such an object.2. If egi(~x) is de�ned and emi(~y) is unde�ned then there must exist an attributeof W~y that egi(~x) does not have. The user is then asked for such an attribute.We are now ready to list the algorithm of Distributive Concept Exploration:Algorithm: Given is the list b1; b2; : : : ; bn of basic concepts.1. i := 0, eK0 := (f>g; f?g; ;), eg0(>) := unde�ned, em0(?) := unde�ned.2. For each (~x; ~y) 2 eGi � fMi with ~x%. ~y,where egi(~x) or emi(~y) are unde�ned, do:� If egi(~x) is unde�ned:{ If emi(~y) is de�ned and ~x = (>; : : : ;>; bi):Prompt: \Name an object belonging to bi and not havingthe attribute emi(~y)!" Set egi(~x) according to the answer.{ Else do:Ask the user: \Is the in�mum of ~x a subconceptof the supremum of ~y ?"\Yes": Delete ~x in eGi, ~y in fMi,and the corresponding row and column in eIi.\No": Prompt: \Give a separating pair for V~x and W ~y !"If emi(~y) is de�ned, add:\Eventually you can use emi(~y) as attribute."Set egi(~x) and emi(~y) according to the answer.� Else (i. e. egi(~x) is de�ned and emi(~y) is unde�ned) do:Prompt: \Name an attribute of W~y that egi(~x) does not have!"Set emi(~y) according to the answer.3. Set Ki := eKi , gi := egi jGi , mi := emi jMi .4. If i=n, then STOP.5. Set eKi+1 := Ki � (fbi+1;>g; f?;bi+1g; f(bi+1; bi+1)g).6. For each (~x; ~y) 2 Gi �Mi with ~x%. ~y:{ Ask the user: \Is gi(~x) a bi+1?"{ If \No", ask \Has each object in bi+1 the attribute mi(~y)?"1{ Set egi+1(~x; bi+1) and egi+1(~x;>) as de�ned above.1 These two questions are equivalent to \Does the object gi(~x) belong to the conceptbi+1?" and \Does the attribute mi(~y) belong to the concept bi+1?", resp.



{ Set emi+1(~y; bi+1) and emi+1(~y;?) as de�ned above.7. Set i := i+ 1.8. Goto Step 2.The result of the algorithm can be shown by a line diagram of B(Kn ). It is notnecessary to label all the object and attribute concepts in the diagram. Only theconcepts Wf
~x j~x2Gn; xi=big (= Vf�~y j ~y2Mn; yi=big) of B(Kn ) have to belabeled by bi, as they correspond to the basic concepts which completely generatethe whole lattice. The resulting list of separating pairs can be displayed in thesame diagram: For each pair ~x %. ~y in Kn , there is exactly one separating pair(gn(~x);mn(~y)). We label the concept 
~x by gn(~x) and the concept �~y by mn(~y)and mark 
~x and �~y with the same symbol. An example can be seen in the nextsection.4 An Exploration of ZinksAs an example, we want to explore a family of musical instruments: Zinks arewind instruments with a conical wide{bored tube, a shortening hole{systemand a mouth piece played like a trumpet. We start the exploration with thefollowing basic concepts: b1 = straight zink [gerader Zink ], b2 = silent zink[stiller Zink ], b3 = curved zink [krummer Zink ], b4 = cornettino, and b5 =cornetto. The exploration is based on information given by the catalogue of themuseum of musical instruments of the University of Leipzig ([2]). The zinks usedfor separating pairs are named by their catalogue number.Figure 2 shows the result of the exploration of the two �rst basic conceptsstraight zink and silent zink (i. e., after Step 4 of the algorithm with i = 2). Forinstance, one can see in the diagram that silent zink is a subconcept of straightzink . The fact that not everything is a straight zink is asserted by the separatingpair Zink 1574 and straight form. The relation%. is indicated in the diagram byusing the same symbol (e. g., everything%.straight zink by and ) Next wedetermine the largest lattice that is possibly generated by adding the next basicconcept curved zink (Steps 5 & 6):\Is Zink 1559 a curved zink?" | \No!" | \Has every curved zink the attributeground tone C?" | \No!" | \Is Zink 1558 a curved zink?" | \No!" | \Haseach curved zink the attribute recessed mouthpiece?" | \No!" | \Is Zink1574 a curved zink?" | \No!" | \Has each curved zink the attribute straightform?" | \No!"Figure 3 shows the context eK3 and the mappings eg3 and em3. Steps 2 & 3 thendetermine the congruence relation on B(eK3 ) that re
ects the dependencies be-tween the concept curved zink and the concepts straight zink and silent zink .\Is the in�mum of straight zink , silent zink and curved zink a subconceptof nothing?" | \Yes!" | \Is the in�mum of straight zink and curved zinka subconcept of silent zink?" | \Yes!" | \Name a curved zink not having
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m 2: groundtoneC recessedmouthpiece straightformg2 :155915581574 K2 ? b 2 b 1_b 2b1 ^ b2 %. � �b1 %. �> %.Fig. 2. The result of the exploration of the �rst two basic conceptsstraight form!" | \Zink 1563." | \Name an attribute of curved zinks thatZink 1559 does not have!" | \Attached mouthpiece."| \Name an attribute ofthe supremum of silent zink and curved zink that Zink 1558 does not have!" |\Recessed mouthpiece or curved form." | \Name an attribute of the supremumof straight zink , silent zink and curved zink that Zink 1574 does not have!" |\More than 6 �nger holes."Up to now (at Step 4 with i = 3), we have determined the complete latticegenerated by the �rst three basic concepts straight zink , silent zink , and curvedzink . It is shown in Figure 4. We continue the exploration in the same waywith the remaining two basic concepts cornetto and cornettino. Finally, we getthe context K5 as shown in Figure 5. Its line diagram shows all informationabout the hierarchical relationships between the �ve basic concepts. For example,we can deduce from it that there are no silent zinks that are also cornettos,because the in�mumof silent zink and cornetto is nothing . We can further deducethat there are other zinks than those we chose for the exploration, because thesupremum of all basic concepts is di�erent from everything . The observationthat the supremum of cornetto and cornettino is curved zink and their in�mumis nothing re
ects the fact that the curved zinks can be divided in two disjointclasses: cornettos and cornettinos.Let us remark that, in the Fig. 5, Zink 1558 is not laying below attachedmouthpiece, even though Zink 1558 has an attached mouthpiece! Zink 1558 andattached mouthpiece belong to di�erent separating pairs, and so their relationshiphas not been asked from the expert.If there are other subconcepts of zink we are interested in (for example tenorzink , serpent or violoncel serpent) we can continue the exploration by startingwith the context K5 and adding the new basic concepts. This serial approachallows also to extend the acquired knowledge at a later time.
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em 3: groundtoneC recessedmouthpiece straightformeg3 :155915581574 eK3 ? b 2 b 1_b 2 b 3 b 2_b 3 b 1_b 2_b 3b1 ^ b2 ^ b3 %. � � � � �b1 ^ b3 %. � � � �b3 %. � � �b1 ^ b2 � �%. � �b1 � %. �> %.Fig. 3. The intermediate result eK3 and its concept lattice5 ConclusionThe algorithm as described above is not able to treat incomplete knowledge.The user is assumed to reply to each question during the exploration either with\Yes" or \No". With a little change we can allow the answer \I don't know"to the question \Is the in�mum of ~x a subconcept of the supremum of ~y ?":In this case the row ~x and the column ~y will not be deleted in eKi and egi(~x)and emi(~y) will be set to the default value ?. In Step 6 of the algorithm allegi+1(~x; bi+1), egi+1(~x;>), emi+1(~y; bi+1) and emi+1(~y;?) will then automaticallybe set to ?. These ? play the role of \possible separating pairs". During and afterthe exploration procedure the user can either replace them by a real separatingpair or he can delete the corresponding row and column (if he is then sure thatthe inequality V~x � W~y holds). The result of the exploration can be shown bya list of line diagrams | one for each possibility of deleting corresponding rowsand columns that are not con�rmed by a concrete separating pair.The algorithm generates in the worst case (i. e., the user denies all de-pendencies between the basic concepts) the free bounded distributive latticeFBD(b1; : : : ; bn), which is growing super-exponentially. However, the algorithmis working on the level of the formal contexts only, whose sizes are logarithmicin the sizes of the concept lattices. Hence, if the basic concepts are su�cientlyrelated, then the exploration can be done in reasonable time. Its e�ciency alsodepends on the ordering of the basic concepts: The stronger the �rst basic con-cepts are related, the smaller the contexts can be kept during the exploration.
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morethan6�ngerholesg3 :1563155915581574 K3 b 1_b 2 b 3 b 2_b 3 b 1_b 2_b 3b3 %. � � �b1 ^ b2 �%. � �b1 � %. �> %.Fig. 4. Result of the exploration of the �rst three basic conceptsThe �nal result, of course, is independent of this ordering. For basic conceptsthat are only weakly related, the whole lattice generated by them is often notrequested. Then the basic concepts can be divided in stronger related classeswhich are explored separately (cf. [4]).References1. B. Ganter, R. Wille: Formale Begri�sanalyse: Mathematische Grundlagen. Sprin-ger, Heidelberg 19962. H. Heyde: H�orner und Zinken. Musikinstrumenten{Museum der Universit�at Leip-zig. Katalog Bd. 5. VEB Deutscher Verlag f�ur Musik, Leipzig 19823. U. Klotz, A. Mann: Begri�exploration. Diplomarbeit, TH Darmstadt 19884. G. Stumme: Exploration tools in formal concept analysis. In: Ordinal and symbolicdata analysis. Studies in classi�cation, data analysis, and knowledge organization8, Springer, Heidelberg 1996, 31{445. G. Stumme: The concept classi�cation of a terminology extended by conjunctionand disjunction. In: N. Foo, R. Goebel (eds.): PRICAI'96: Topics in arti�cial in-telligence. LNAI 1114, Springer, Heidelberg 1996, 121{1316. G. Stumme: Concept Exploration { A Tool for Creating and Exploring ConceptualHierarchies. In: D. Lukose, H. Delugach, M. Keeler, L. Searle, J. F. Sowa (eds.):Conceptual Structures: Ful�lling Peirce's Dream. LNAI 1257, Springer, Berlin1997, 318{331
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