
HAL Id: hal-02101840
https://hal-lara.archives-ouvertes.fr/hal-02101840

Submitted on 17 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting and Removing Dead Code using Rank 2
Intersection
Frederic Prost

To cite this version:
Frederic Prost. Detecting and Removing Dead Code using Rank 2 Intersection. [Research Report]
LIP RR-1997-10, Laboratoire de l’informatique du parallélisme. 1997, 2+23p. �hal-02101840�

https://hal-lara.archives-ouvertes.fr/hal-02101840
https://hal.archives-ouvertes.fr

Laboratoire de l’Informatique du Parallélisme
Ecole Normale Supérieure de Lyon
Unité de recherche associée au CNRS n°1398

Detecting and Removing Dead Code

using Rank � Intersection

Ferrrucio Damiani

Fr�ed�eric Prost
Mai ��

Research Report No �����

Ecole Normale Supérieure de Lyon

Adresse électronique : lip@lip.ens−lyon.fr
Téléphone : (+33) (0)4.72.72.80.00 Télécopieur : (+33) (0)4.72.72.80.80

46 Allée d’Italie, 69364 Lyon Cedex 07, France

Detecting and Removing Dead Code

using Rank � Intersection

Ferrrucio Damiani

Fr�ed�eric Prost

Mai ��

Abstract

In this paper we extend� by allowing rank � intersection types� the type assign�
ment system for the detection and elimination of dead code in typed functional
programs presented by Coppo et al Giannini and the �rst author in the Static
Analysis Symposium ���� The main application of this method is the optimiza�
tion of programs extracted from proofs in logical frameworks� but it could be
used as well in the elimination of dead code determined by program special�
ization� This system rely on annotated types which allow to exploit the type
structure of the language for the investigation of program properties� The de�
tection of dead code is obtained via annotated type inference� which can be
performed in a complete way� by reducing it to the solution of a system of in�
equalities between annotation variables� Even though the language considered
in the paper is the simply typed ��calculus with cartesian product� if�then�else�
�xpoint� and arithmetic constants we can generalize our approach to polymor�
phic languages like Miranda� Haskell� and CAML�

Keywords� Intersection Types� Dead�Code Analysis� Annotated Types

R�esum�e

Dans ce papier nous �etendons� en permettant des types intersections de rang
�� un syst�eme d�inf�erence de types pour la d�etection et l��elimination du code
mort dans les programmes fonctionnels typ�es pr�esent�e par Coppo et al dans
le Static Analysis Symposium ���� La principale application de cette m�ethode
est l�optimisation de programmes extraits de preuves� mais il peut aussi bien
�etre utilis�e pour l��elimination du code mort produit par la sp�ecialisation de pro�
grammes� Ce syst�eme repose sur des types annot�es qui permettent d�exploiter la
structure des types du langage pour trouver des propri�et�es sur un programme�
La d�etection du code mort est obtenue via un syst�eme d�inf�erence de types�
L�inf�erence peut �etre r�ealis�e en r�eduisant le probl�eme �a la solution d�un sys�
t�eme d�in�egalit�es entre les variables d�annotations� Bien que le langage consid�er�e
soit le ��calcul simplement typ�e �etendu par le produit cart�esien� le if�then�else�
le point �xe et des constantes arithm�etiques� nous pouvons g�en�eraliser notre
approche aux langages polymorphes tels que Miranda� Haskell et CAML�

Mots�cl�es� Types intersection� analyse de code mort� types annot�es

	

Detecting and Removing Dead Code
using Rank � Intersection

Ferruccio Damiani� and Fr�ed�eric Prost�

� Dipartimento di Informatica� Universit�a di Torino�
Corso Svizzera ���� ����� Torino �Italy	

� Laboratoire de l
Informatique du Parall�elisme� Ecole Normale Sup�erieure de Lyon�
�� All�ee d
Italie� ���� Lyon Cedex �� �France	

Abstract� In this paper we extend� by allowing rank � intersection types� the
type assignment system for the detection and elimination of dead code in typed
functional programs presented by Coppo et al in the Static Analysis Sympo�

sium ���� The main application of this method is the optimization of programs
extracted from proofs in logical frameworks� but it could be used as well in the
elimination of dead code determined by program specialization� This system
rely on annotated types which allow to exploit the type structure of the lan�
guage for the investigation of program properties� The detection of dead code
is obtained via annotated type inference� which can be performed in a com�
plete way� by reducing it to the solution of a system of inequalities between
annotation variables� Even though the language considered in the paper is the
simply typed ��calculus with cartesian product� if�then�else� �xpoint� and arith�
metic constants we can generalize our approach to polymorphic languages like
Miranda� Haskell� and CAML�

Introduction

Types have been recognized as useful in programming languages because they provide a
semantical
context dependent� analysis of programs� Such analysis can be incorporated
in the compiling process� It is used on one side to check the consistency of programs
and on the other to improve the e�ciency of the code produced�
In addition to prevent run�time errors� type systems can characterize run�time prop�

erties of programs� For instance intersection types� see ���
and also ���� in their full
generality� provide a characterization of normalization�
Type systems tailored to speci�c analysis� such as strictness� totality� binding time

etc� have been introduced� see ��� ��� �� ��� ��� ��� ��� ���� In this perspective types
represent program properties and their inference systems are systems for reasoning for�
mally about them� In this paper we keep a clear distinction between the type structure
of the language
types in the usual sense� and the annotated types
�non standard�
types� which represent� inside the type structure of the language� particular properties�
This distinction is very useful from a theoretical point of view� see ��� �� ���� as well
as in the design of both checking algorithms� see ��� ���� and inference algorithms�
see ��� ���� Type based analyzers rely on an implicit representation of types� either via
type inequalities� see ���� or via lazy
implicit� types� see ���� In this paper we pursue
the �rst approach� reducing the annotated type inference problem to the solution of a
system of inequalities between annotations on types�
Type analysis is also used in the area of program extraction from formal proof�

see �� �� ��� �� �� ���� The programs extracted from proofs are usually very ine�cient� as
they contain parts that are useless for the computation of the �nal result� they therefore
require some sort of simpli�cation� One of the more e�ective simpli�cation techniques
is the �pruning�� and has been developed by Berardi� see ��� In this technique useless
terms
also called �dead code�� are discovered by analyzing the type of terms� The

�

method was improved in ��
see also �� Chap� �� with the use of type inclusion� an
application is well typed if the argument has a type included in the input type of the
corresponding function� The optimization algorithm proposed in �� is rather di�cult
to understand and this makes its correctness proof even more di�cult to follow�
In �	� is presented a type inference system for detecting �dead code�� and an al�

gorithm that simpli�es ��terms based on the system of ��� The method presented in
the paper is much more self�evident than the original one� The language considered
is the simply typed ��calculus with a primitive recursor over natural numbers� pairs
and arithmetic constants� The idea is to start from a typed term and to decorate it
by properties
called re�nement or annotated types� that indicate whether or not a
subterm is dead code� To this aim two annotations for the basic type nat
the type
of natural numbers� are introduced� The �rst� �nat corresponds to the idea that the
value may be used� and so could only be replaced with a term with the same behavior

observationally equivalent�� The second� �nat� corresponds to the fact that the value
is not used� and so it does not matter what the term is
it could be any closed term of
the same type�� These properties are propagated to higher types�
For instance� if a function of type nat � nat has the properties �nat � �nat or
�nat � �nat then the whole term will not be used� The property �nat � �nat� instead�
informally represents the set of all the terms of type nat � nat which yield a useful
output whenever applied to an argument which is not used for the computation of this
output
like �xnat�Q where x does not occur in Q�� In other words� �nat � �nat char�
acterizes all the functions of type nat � nat that don�t use their argument� Finally�
the property �nat � �nat does not contain any information about dead code�
The soundness of the system and of the optimizing transformation induced is proved
via a partial equivalence relation semantics of the annotated types� showing that the
optimized programs are observationally equivalent to the original ones�
Let us consider a simple example� Let M �
�xnat���P where P is a term of type
nat� Since x is not used in the body of the lambda we can assign the annotated type
�nat � �nat to �xnat��� so we discover that P is not useful for the computation of M
and could be replaced by any constant of the right type�
In this paper� we extend the annotated type inference system of �	� by allowing

rank � intersection
see ���� of annotated types�
To see the usefulness of this extension� consider the term�

N �
�f �nat�nat��nat�nat�f
�xnat���P � f
�ynat�y�Q�
�znat�nat�z� �

it is easy to see that the subterm P is dead code� To prove this by the annotated type
assignment system we need to assign the annotated type �� �
�nat � �nat�� �nat �
�nat to the �rst occurrence of f in the body of the ��abstraction� On the other hand�
since Q is useful to the computation of the �nal value of N � we are forced to assign the
annotated type� �� �
�nat � �nat� � �nat � �nat to the the second occurrence of f
in the body of the ��abstraction�
The two annotated types �� and �� are not comparable using the type inclusion relation
of �	�� i�e�� in the language of properties considered in �	� there is not a property �

that implies both them� So with the system of �	� it is not possible to prove that P
is dead code� since for doing this is necessary to assume such a property � for the ��
abstracted variable f � As we will see� the system proposed in the present paper allows
to assume the intersection
or conjunction� of �� and �� for f � and so allows to prove
that P is dead code�
The �rst section of this paper introduces the language we are dealing with and

its semantics� Section � presents the rank � annotated type assignment system� In the
third section we introduce a code simpli�cation based on annotated type information� in
particular we show that a term and its simpli�ed version are observationally equivalent�

�

Section � presents an algorithm for inferring annotated typings of terms� The algorithm
is complete� i�e�� given a term� it allows to �nd all the dead code that can be detected
by using the annotated type assignment system of Sect� ��

� A Typed Functional Language and its Semantics

In this section we introduce a typed functional language
basically the simply typed
��calculus with cartesian product� if�then�else� �xpoint� and arithmetic constants� and
its operational semantics� The set of types is de�ned assuming as basic types nat and
bool� the set of naturals and the set of booleans� Types are ranged over by �� �� ���

De�nition� �Types�� The language of types
T � is de�ned by the following grammar�
� ��� � j �� � j �� �� where � � fnat� boolg�

Typed terms are de�ned from a set of typed term constants

K � f �nat� �nat� � � � succnat�nat� pred nat�nat� �nat�nat�nat� �nat�nat�nat� � � �

true bool� false bool� not bool�bool� � bool�bool�bool� and bool�bool�bool� � � �

� nat�nat�bool� �nat�nat�bool� � � � g �

ranged over by C�� and a set V of typed term variables
ranged over by x�� y� � � � ���
The type of a constant C is denoted by T
C�� Typed terms� ranged over byM � N � � � ��
are de�ned as follows�

De�nition� �Typed terms�� We write �T M � �� and say that M is a typed term
of type �� if �M � � is derivable by the rules in Fig� ��

�Var	 � x� � � �Con	 � C� � �

�� I	 �M � �
� �x ��M � �� �

�� E	 �M � �� � � N � �
�MN � �

��I	
� M� � �� � M� � ��
� hM��M�i � �� � ��

��Ei	
�M � �� � ��
� �iM � �i

i � f�� �g

�Fix	 �M � �
� fixx ��M � �

�If	 � N � bool �M� � � �M� � �
� if N thenM� elseM� � �

�Case	 � N � nat �M � � � F � nat� �
� case�N�M�F 	 � �

�It	 � N � nat �M � � � F � �� �
� it�N�M�F 	 � �

�Rec	
� N � nat �M � � � F � nat� �� �

� rec�N�M�F 	 � �

Fig� �� Rules for term formation

The program constructors case� it and rec have been included in view of an application
to the optimization of terms extracted from proofs� Note that with this notation we
explicitly mention in M the types of all its variables and constants� In the following
we often omit to write types which are understood� The set of free variables of a term
M � denoted by FV
M �� is de�ned in the standard way�

�

As usual a substitution is a �nite function mapping term variables to terms� denoted
by x� �� N�� � � � � xn �� Nn�� which respects the types� i�e�� each x

�i
i is substituted by

a term Ni of the same type� Substitution acts on free variables� the renaming of the
bound variables is implicitly supposed�
Let 	T be the set of the terms� i�e�� 	T � fM j �T M � � for some type �g� and 	�T

be the set of the closed terms� i�e�� 	�T � fM j M � 	T and FV
M � � �g� Following
Kahn� see ���� we de�ne the values of terms in 	�T via a standard operational semantics
described by judgments of the formM � K� whereM is a closed term and K is a closed
canonical term� i�e�� K � K � f�x��N j �x��N � 	�Tg � fhM��M�i j hM��M�i � 	�Tg�
Assume that any functional constant has a type of the shape �� � �� or ����� � ��� for
some ��� ��� �� � fnat� boolg� The meaning of a functional constant C is given by a set
mean
C� of pairs� i�e�� if
P�� P�� � mean
C� then CP� evaluates to P�� For example

�� �� � mean
succ� and
h�� �i� �� � mean
���

De�nition� �Value of a term�� We write M � K if this statement is derivable by
using the rules in Fig� ��

�CAN	 K � K �FIX	
M �x �� fixx�M � � K

fixx�M � K

�APP	
M � �x�P P �x �� N � � K

MN � K �PROJi	
P � hM��M�i Mi � K

�iP � K
i � f�� �g

�IF�	
N � true M� � K

if N thenM� elseM� � K
�IF�	

N � false M� � K
if N thenM� elseM� � K

�CASE�	
N � � M � K

case�N�M�F 	 � K
�CASE�	

N � n F n � K
case�N�M�F 	 � K

n �� �

�IT�	
N � � M � K
it�N�M�F 	 � K

�IT�	
N � n F �it�predn�M�F 		 � K

it�N�M�F 	 � K
n �� �

�REC�	
N � � M � K
rec�N�M�F 	 � K

�REC�	
N � n F n �rec�pred n�M�F 		 � K

rec�N�M�F 	 � K
n �� �

�APP�	
M � C N � C�

MN � C�
�C�� C�	 �mean�C	

�APP�	
M � C N � hN��N�i N� � C� N� � C�

MN � C�
�hC�� C�i� C�	 �mean�C	

Fig� �� �Natural semantics� evaluation rules

Let M � mean that for some K� M � K� We are interested in observing the behavior
of terms at the ground level� so� as in Pitts �	�� we consider the congruence on terms
induced by the contextual preorder that compares the behavior of terms just at the
ground type nat� Let
C ���� denote a typed context of type � with a hole of type
� in it� Let M and N be terms of type �� De�ne M �obs N whenever� for all closed
contexts
C ���nat� if CM � and CN � are closed terms� then CM � � implies CN � ��
Let �obs be the equivalence induced by �obs�
As shown in �	� such equivalence can
also be de�ned directly as a bisimilarity��
The closed term model M of 	T is de�ned by interpreting each type � as the set

of the equivalence classes of the relation �obs on the closed terms of type �� Let I
��
denote the interpretation of type � in this model� and M � denote the equivalence class

�

of term M � For each type �� fix x��x� is the least element� w�r�t� �obs� of I
��� An
environment is a mapping e � V �

S
��T I
�� which respects types� i�e�� such that� for

each x�� e
x�� � I
��� The interpretation of a termM in an environment e is de�ned in a
standard way by� M ��e � M x� �� N�� � � � � xn �� Nn��� where fx�� � � � � xng � FV
M �
and Nl� � e
xl�
� 	 l 	 n��

��� Dummy Terms

For each type �� we consider a dummy term
� of type �� Intuitively dummy terms
should be considered as special terms without operational meaning� In fact� they are
not present in the original programs� but
as we will show� they are introduced by the
dead code elimination algorithm presented in Sect� �� that replaces all the maximal
subterms that are proved to be dead code by dummy terms of the proper type� So�
each occurrence of a dummy term in a program is dead code� and this justi�es the
claim that dummy terms have not operational meaning� they are simply placeholders
for some dead code removed�
To ensure that the output of the optimization algorithm is a well typed term� we

extend the term formation rules of Fig� � by the following rule�

�
� � T

�
� � �
�

Remark� Despite to the claim above� for technical reasons� in the proof of the correct�
ness of the dead code elimination algorithmO of Sect� �
see in particular Theorem ����
we will deal with terms containing occurrences of dummy terms that are not dead code�
So we have to associate an operational meaning to dummy terms� This can be easily
done� In fact� since the evaluation rules in Fig� � do not mention dummy terms� we get
that� for every type ��
�
�� This means that the dummy term
� is observationally
equivalent to the divergent computation of type �� i�e��
�� � fix x��x�� �

� A Type Assignment for Detecting Dead Code

In this section we introduce a
non standard� type assignment system for detecting
useless code in typed terms� Starting from a typed term we want to be able to repre�
sent dead code information about this term� To this aim we de�ne two annotations of
the basic types� �� and ��
� � fnat� boolg�� which represent� respectively� the notion of
values of type � which are
possibly� necessary or
certainly� useless for the determi�
nation of the �nal value of a computation� I�e�� we identify �� with �possibly	 live and
�� with dead� Annotated types are de�ned from fa� j a � f�� �g and � � fnat� boolgg
following the type construction rules� Moreover� to get more expressivity� we allow the
use of intersection at rank ��

��� Annotated Types

De�nition� �Rank 	 annotated types�� The language L� of annotated rank
 in�
tersection types
a�
�types for short�� ranged over by �� is de�ned by the following
grammar� � ��� a� j �� � j �� �� where a � f�� �g and � � fnat� boolg�

Let �
�� denote the T type obtained from the annotated type � by removing all the
annotations a � f�� �g� i�e�� by replacing each occurrence of �� and �� with �� Moreover�
if � is a type and a � f�� �g� let a
�� denote the annotated type obtained from � by
replacing each occurrence of any basic type � by a�� For instance�

����nat � nat	� nat� nat	� nat	 � ���nat � �nat	� �nat � �nat	� �nat �

�

De�nition
 �Rank � annotated types�� The language L� of annotated rank � in�
tersection types
a���types for short�� ranged over by �� is de�ned by�

L� �
�

��T

f�� � � � � � �n j n �� ��� � � � � �n � L�� and �
��� � � � � � �
�n� � �g �

One can note the restriction �
��� � � � � � �
�n�� which is not usual for standard inter�
section types� It intuitively corresponds to the fact that each �i represents a property
of a same term� For example� the term I � �xnat�nat�x� of type
nat � nat� �
nat � nat� can be assigned both the a�	�types �� �
�nat � �nat� � �nat � �nat

and �� �
�nat � �nat�� �nat � �nat� So it can be passed as argument to a function
requiring an input satisfying the property �� � ���

De�nition� �Rank � annotated types�� The language L� of annotated rank � in�
tersection types
a���types for short�� ranged over by � is inductively de�ned by�

� � � L�� if � � L��
� � � � L�� if � � L� and and � L��
� � � � � L�� if �� � � L��

Notice that L� � L�� L� � L�� and L� � L� � L��
Since a�types are properties of terms� in the following we will use the words a�type
and property interchangeably� The notation �
�� introduced above naturally extends to
a���types and a���types� �
�� and �
� denote respectively the
standard� type obtained
from the a���type � and the a���type by removing all the annotations a � f�� �g and
by keeping just the �rst component of each intersection� For instance�

������nat � �nat	� �nat � �nat	 � ��	nat � �nat	� 	nat � �nat		� �nat	 �
��nat� nat	� nat� nat	� nat �

Intuitively� an a���type � ���� � ���n � � � L� such that �
� � �� �� represents
the set of all functional terms of type �� �� sending an input satisfying �� � � � � � �n
into an output satisfying ��
The informal meaning of a�types is formalized by interpreting each a�type as a

partial equivalence relation
p�e�r� for short� over the interpretation of the type �
��
i�e�� the set of equivalence classes of closed terms of type �
� with respect to �obs� Let
� denote the cartesian product of sets and M � denote the equivalence class of M in
�obs�

De�nition �Semantics of annotated types�� �� The interpretation �� of an a�
��type is de�ned by�

������ � fh�N �� �N �i j �N � � I�
	g ��	��� � I�
	� I�
	 ���� � ���� � ������� ������

��� � ��� � fh�M �� �N �i j �h�P �� �Q�i � ������h�MP �� �NQ�i � �����g �

where the interpretation ��� of an a���type � � �� � � � � � �n is de�ned by�

����� �
T

��i�n��i�� �

�� By �� we denote the p�e�r� �� on I
�
�� and by �� we denote the p�e�r� ��� on
I
�
����

��annotated types
��a�types for short� and ��annotated types
��a�types � respec�
tively formalize the notions of not being and of
possibly� being relevant to the com�
putation� i�e�� of being or
possibly� not being dead code� at higher types�

�

De�nition� ���a�types and ��a�types�� �� The set L�
� of ��a���types is the subset

of L� containing only � annotations�
The sets L�

� of ��a�	�types and L
�
� of ��a���types are de�ned in the same way�

�� The set L�
� of ��a���types is inductively de�ned by�

� �� � L�
�� if � � fnat� boolg�

� � � � L�
�� if � � L� and � L�

��
� � � � � L�

� � if �� � � L�
��

The sets L�
� of ��a�	�types is de�ned by L

�
� � L�

��L
�� and the set L�

� of ��a���types
is de�ned by�

L�
� �

�

��T

f�� � � � � � �n j n �� ��� � � � � �n � L�
�� and �
��� � � � � � �
�n� � �g �

Note that� if is an ��a���type� then �� � I
�
���I
�
��� i�e�� �� is the p�e�r� which
relates all pairs of elements of I
�
��� The same holds for ����types�
We now introduce a notion of inclusion between a���types� denoted 	�� � 	� �

means that � is less informative then �� i�e�� that ��� � ���� The 	� inclusion
relation is de�ned on the top of the inclusion relation for a�	�types� 	�� This choice
is justi�ed by the key role played by the 	� inclusion in the syntax directed a�type
assignment system in Sect� ��

De�nition� �Inclusion relations 	� and 	��� �� Let ��� �� � L�� We write �� 	�

�� to mean that �� 	� �� is derivable by the rules in Fig� �� and we write �� ��� ��
if both �� 	� �� and �� 	� �� hold�

�� Let �� � � L�� We write � 	� � to mean that � 	� � is derivable by the
rules in Fig� �� and we write �

��� � if both � 	� � and � 	� � hold�

�Ref�	 	� �	�	
� � L�

� ���	 � ���	
� 	� �

���	
� 	�

�
� �� 	� �

� � � 	�
�
� � ��

���	
� 	�

�
� � 	�

�
�

� � � 	�
�
� � ��

Fig� �� Inclusion rules for a���types

�Ref�	 � 	� � �	�	
�� � L�

� ����	 � ����	
�� 	� ��

���	
� 	� �

� �i � f�� � � � � mg�
j � f�� � � � � ng��j 	� i
� � � � � � m � � 	�

�
� � � � � �

�
n � ��

���	
�� 	� �

�
� �� 	� �

�
�

�� � �� 	� �
�
� � ���

Fig� �� Inclusion rules for a���types

It is immediate to show that both 	� and 	� are re�exive and transitive� and that they
behave in the same way on L�� i�e�� for all �� �� � L�� � 	� �

� if and only if � 	� �
��

With �����
we the denote the ����equivalence class of the a�	�type �� similarly for ����

Notice that� if � and � are ��a���types such that �
�� � �
��� then �
��� ��

Moreover� for all �� � � L�� � 	� � implies �
�� � �
���

�

The 	� relation between annotated types is sound w�r�t� the interpretation� indeed�
the following theorem holds�

Theorem�� �Soundness of 	��� � 	� � implies ��� � ����

��� Annotated Type Assignment System

Annotated types are assigned to 	T terms by a set of type inference rules� If x� is a
term variable of type �� an assumption for x� is an expression of the shape x� � �� or
x � � for short� where � � L�� and �
�� � �� A basis is a set � of a�types assumptions for
term variables� The functions �
��� �
�� and �
�� de�ned above are extended to bases�
More precisely� �
�� � fx� j x� � �g is the set of term variables which occur in �

and� for any �nite set � of term variables� �
� � and �
� � denote respectively the basis
fx� � �
�� j x� � �g and fx� � �
�� j x� � �g� We will prove judgments of the form
� �L M� where �
M�� is a typed term of type �
� whose free variables are in �� i�e��
such that �T �
M�� � �
� and �
�� � FV
M �� We use this notation since it allows
to attach an a�type to all subterms of M � Note the di�erence with the more usual
notation � �L M � in which this is not possible�
For each constant C an a�	�type L
C�� such that �
L
C�� � T
C�� is speci�ed� For
example� for all integers n� L
n� � �nat and L
�� � �nat � �nat � �nat� In the
following we require� as it is indeed natural� that L
C� 	� � implies either � ��� L
C�
or � � L�

��

De�nition�� �A�type assignment system �L�� An a�typing statement is an ex�
pression � �L M� where � is a basis containing an assumption for each free variable
of M � �� x � �� � � � �� �n denotes the basis � � fx � �� � � � ���ng where it is assumed
that x does not appear in �� We write � �L M� to mean that � �M� can be derived
by the rules in Fig� ��

If � �L M� then M� has written in it the a�types assigned to its subterms� We say
that M� is an annotated term� Note that� being �L an inference system� the same
terms can have di�erent annotations�

Remark� �� Note that the 	� inclusion relation is only used in the rules
If� and

Case�� In all the other rules the 	� inclusion su�ces�

�� It is worth mentioning that� in the rule
� E�� the condition

� L�
� implies �i � f�� � � � � ng��

�
i 	� �i �

is used instead of
�i � f�� � � � � ng���i 	� �i �

This is done to take into account the fact that� if �� � � � �� �n � is an ��a�type
then ��� � � � � �n can be any a�	�types such that �
��� � � � � �
�n� � �
���� � � � � �
�
��n��

�� The ��sequence N��

� � � � � � N��

n � in the rule
� E�� is just a way of storing n

decorations of the argument of an application� These decorations correspond to
di�erent uses of the argument in the function� Indeed� as pointed out in the remark
at the end of Sect� ���� the code duplication is not necessary and can easily be
avoided in the implementation of the a�type inference algorithm of Sect� �� �

The functions �
��� �
��� and �
��� de�ned for annotated types in Sect� ���� can naturally
be extended to annotated terms� �
M�� in particular is simply the term M� in which
each ��sequence has been replaced by its �rst component and all the a�type annotations
have been erased� The proof of the following fact is immediate�

�

�Var	 i 	�
�
i

��x � � � � � � � n � x
��

i

� 	 i 	 n �Con	
L�C	 	�

� � C�

�� I	 ��x � � � � � � � n �M
�

� � ��x��������n �M�	
��������n��

�� E	

� �M��������n�� � � N��

� � � � � � N��

n

�i � f�� � � � � ng�� �� L�
� implies �i 	� i

� � �M��������n���N��

� � � � � �N��

n 		
�

��I	 � �M�
�� � �M�

��

� � hM�
�� �M�

�� i
�����

��Ei	
� �M�����

� � ��iM
����� 	

�i
i � f�� �g

�Fix	
��x � �M�

� � �fixx��M�	
� �If	

� � N�bool � � M�
�� � �M�

��

�� 	� � �� 	� �

� � �if N�bool thenM�
�� elseM�

��	
�

�Case	

� � N�nat � �M�� � � Fanat���

�� 	� � �� 	� �

� � case�N�nat �M�� � Fanat��� 	
�

�It	

� � N�nat � �M�� � � F�����

� 	� � � � 	� �

� � it�N�nat �M�� � F����� 	
�

�Rec	

� � N�nat � �M�� � � Fanat������

� 	� anat � � � � 	� �
nat � �

� � rec�N�nat �M�� � Fanat������ 	
�

Fig� �� Rules for a�type assignment

Fact ��� �� � �L M� implies �T �
M�� � �
� and �
�� � FV
M ��
�� �T M � � implies for a � f�� �g a
FV
M �� �L a
M ��

To state the soundness of the a�type assignment system w�r�t� the semantics we
introduce the following de�nition�

De�nition��� �� Two environments e�� e� are ��related if and only if� for all x �
�� � � � � � �n � �� e�
x� ���������n e�
x��

�� Let � �L M� and � �L N�� We write �
M�� ��
� �
N�� to mean that for all e��

e�� if e� and e� are ��related� then �
M����e� �� �
N����e� �

Now we can state the main theorem for p�e�r� interpretation� which is standard
in
various forms� in the literature� The proof of the following theorem is by induction on
terms�

Theorem�� �Soundness of �L�� Let � �L M�� Then �
M�� ��
� �
M���

Let us now identify a subset of a�typings for which the ��
� relation implies the �obs

relation�

De�nition�
 �Faithful a�type assignment�� � �L M� is a faithful a�type assign�
ment statement if � � L�

� � and for all x � �� � � � � � �n � �� n � � and �� � L�
� � L�

��

�

The correctness proof of the optimization mappings of Sect� � rely on the following
theorem�

Theorem��� Let � �L M� and � �L N� be faithful a�typings� Then �
M�� ��
�

�
M�� implies �
M�� �obs �
N���

Remark� The condition of being a faithful a�type assignment is simply the translation
in our framework of the condition introduced by Berardi in �� to �nd dead code�
Namely� in the Berardi�s type assignment system a subterm is dead code if once removed

replaced by a dummy constant having a special type� corresponding to our ��a�types�
the global type of the term is unchanged� More precisely� in a faithful a�type assignment�
the fact that the global a�type of the term is in L�

�� re�ects the Berardi�s requirement
that all the basic types that occurs in the global type are considered as useful� �

� Dead Code Elimination

In this section we introduce an optimization mapping O that� given an annotated term
M�� returns an optimized version of �
M���
To de�ne the optimization mapping we introduce� following ��� a notion of pruning

and an operation of least upper bound on the set of terms 	T �

De�nition� �Pruning relation�� Let �T M � � and �T N � �� We say that M is a
pruning of N � and write M �prune N � ifM can be obtained from N by replacing some
subterms by dummy constants of the corresponding type�

De�nition�� �Operation sup�� �� Let �T M � �� M� �prune M � and M� �prune

M � Then sup
M��M�� is the term de�ned by the clauses in Fig� ��
�� Let �T M � ��M� �prune M � � � � � Mn �prune M �
n �� Then sup
M�� isM� and�
for n �� sup
M�� � � � �Mn� is short for sup
� � � sup
sup
M��M���M�� � � � �Mn��

Theorem��� Let �T M � �� The set

fM � jM � �prune Mg �

with the order relation �prune is a �nite lattice with bottom
� and top M � The oper�
ation sup of De�nition �� is the join of the lattice�

Let 	L be the set of all annotated terms which are de�ned according to De�ni�
tion ��� i�e�� 	L � fM� j � �L M� for some a���type and basis �g�

De�nition�	 �Optimization mapping O on terms�� �� The function

O � 	L � 	T

is de�ned by the clauses in Fig� ��
�� If � is a basis then

O
�� � fx	���� j x � �� � � � � � �n � �� n � and �i � f�� � � � � ng��i
� L�
�g�

The fact that the optimization mapping produces well typed terms is stated by the
following proposition�

Proposition��� If � �L M� then �T O
M�� and O
�� � FV
O
M����

The following result can be proved using the a�type semantics�

�	

sup�M�� �	 � sup�� ��M	 �M �

sup�C �� C �	 � C �

sup�x �� x �	 � x �

sup�hM��M�i� hN��N�i	 � hsup�M��N�	� sup�M��N�	i
sup��iM��iN	 � �isup�M�N	� where i � f�� �g
sup�M�M��N�N�	 � sup�M��N�	sup�M��N�	
sup��x ��M� �x ��N	 � �x ��sup�M�N	
sup�fixx ��M� fixx ��N	 � fixx ��sup�M�N	
sup�if M thenM� elseM�� if N thenN� elseN�	 �

if sup�M�N	 then sup�M��N�	 else sup�M��N�	
sup�case�M�P�F 	� case�N�Q�G		 � case�sup�M�N	� sup�P�Q	� sup�F�G		
sup�rec�M�P�F 	� rec�N�Q�G		 � rec�sup�M�N	� sup�P�Q	� sup�F�G		

Fig� �� Operation sup

O�M�	 � ������ if � � L�
�

otherwise�

O�C�	 � C����

O�x�	 � x����

O�hM�
�� �M�

�� i
����� 	 � hO�M�

�� 	�O�M�
��	i

O���iM
����� 	

�i	 � �iO�M
�����	� where i � f�� �g

O��M��������n���N��

� � � � � �N��

n 		
�
	 � O�M��������n��	sup�O�N��

� 	� � � � �O�N��

n 		

O���x��������n �M�	
��������n��

	 � �x������O�M�	

O��fixx��M�	
�
	 � fixx�����O�M�	

O��if N�bool thenM�
�� elseM�

�� 	
�

	 � if O�N�bool	 thenO�M�
��	 elseO�M�

�� 	

O�case�N�nat �M�� � Fanat��� 	
�

	 � case�O�N�nat	�O�M�� 	�O�Fanat��� 		

O�it�N�nat �M�� � F����� 	
�

	 � it�O�N�nat	�O�M�� 	�O�F����� 		

O�rec�N�nat �M�� � Fanat������ 	
�
	 � rec�O�N�nat	�O�M�� 	�O�Fanat������ 		

Fig� �� Mapping O on terms

Theorem��� If � �L M� then for each termN O
M�� �prune N implies �
M�� ��
�

N �

Note that� since the �prune relation is re�exive� we have in particular that �
M
�� ��

�

O
M��� This result is especially interesting when the typing of M is faithful since�
from the above theorem and Theorem ��� we get that if � �L M� is a faithful a�
typing statement then �
M�� and O
M�� are observationally equivalent�

Theorem�	� Let � �L M� be a faithful typing� Then �
M�� �obs O
M���

Example �� Let �T M � nat where FV
M � � fu�nat� u�natg and M �

��f �nat�nat��nat�nat�
�hf ��xnat�	u�� f ��y

nat�y	 u�i	
��znat�nat�z	 �

Note that M is very similar to the term N considered in the Introduction� the only

��

di�erences are the use of the pre�x notation for the operator � and the replacement
of the subterm P and Q by the free variables u� and u��
Let �� �
�nat � �nat� � �nat � �nat and �� �
�nat � �nat� � �nat � �nat�

It is easy to check that � �L M ��
nat

is a faithful a�typing� where
writing� for short� �

and � instead of �nat and �nat�� � � fu�� � u� �g and M �� �

���f����� �
�������h��f����x� ��	���	���u�� 	

�� ��f����y� �y�	���	���u��	
�i���	�	�������

���z��� �z���	��

�
��z����z���	�� 		� �

Applying the O optimization mapping we get O
M ��� �

��f �nat�nat��nat�nat�
�hf ��xnat�	�nat� f ��ynat�y	 u�i	

��znat�nat�z	 �

where �T O
M ��� � nat� and FV
�
O
M ����� � O
�� � funat� g � �

� An Algorithm for Annotated Type Inference

In this section we deal with the problem of de�ning a complete inference algorithm for
the annotated type assignment system �L� To this aim the main problem is to use the
inference rules to detect a faithful decoration showing the maximum amount of dead
code� i�e�� assigning an ��a�type to all the maximal subterms that can be proved to
be dead code by the system� The application of the optimization function O is then
trivial�
The algorithm rely on a syntax directed version of the a�type assignment system

�L which avoids free use of the assumptions and uses only the 	� inclusion relation�
To de�ne the new system we need some preliminary notations�

De�nition�� �Operation ��� Let �� �� be two basis� then ���� denotes the basis

fx � � � �� j x � � � � and x � �� � ��g
�fx � � j x � � � � and x
� ��g � fx � �� j x � �� � �� and x
� �g �

De�nition�
 �Sets L
p��� For every natural number p� let L
p� denote the set of
the a���types of the shape

�� � � � � � �p � � �

where ��� � � � � �p � L� and � � L��

In the judgments of the syntax directed a�type assignment system there are two basis�
the �rst contains a set of variables for which it is allowed to assume only a�	�types
and
not a���types�� while the second contains exactly the free variables of the term that
does not occur in the �rst one� Moreover each judgment is parameterized by a natural
number p� The idea is that� if the judgment � �� ��p� M� holds� then � L
p��

De�nition�� �Syntax directed a�type assignment system�� Let � denote a ba�
sis containing only assumption of the shape x � �� where � � L�� and let p be a natural
number� We write � �� ��p� M� if � �� ��p� M� can be derived by the rules in Fig� ��

Fact �
� Let � �� ��p� M�� Then � L
p� �
� ���
�� � � and �
�� � FV
�
M��� �
�
� � � �
���

��

The notion of faithful typing for the system ��p� is given by the following de�nition�

De�nition�� �Faithful �����type assignment�� � � � ���� M� is a faithful �����type
assignment statement if � � L�

�� and for all x � �
� � � � �� � L�

� � L�
� �

The relation between the a�type assignment system �L of De�nition �� and its syntact
directed formulation ��p� is stated by the following theorem�

Theorem��� �� � �� ��p� M� implies � �� �L M��
�� Let �T M � �� Then for each faithful a�typing of M � �L M �� there is a faithful
�����typing of M � � � ���� M ��� such that O
M ��� � O
M �����

�Varp��� 	 	�
�

�� x � � ��p� x�
� �Varp��� 	 	�

�

� � fx � g ��p� x�
� x �� �

�Conp��	
L�C	 	�

� � ��p� C�
�� Ip��� 	

�� x � �� ���� M��

� �� ���� ��x��M��

	
����

�� Ip��� 	 � ���x � � � � � � � n �
�p��� M�

� �� ��p� ��x��������n �M�	
��������n��

�� Ip��� 	 � �� ��p��� M�

� �� ��p� ��x��M�	
��� x �� � ��

�� Ep��	

� �� ��p��� M��������n�� � ��� �
��� N��

� � � � � ��n �
��� N��

n

� �� L�
� implies �i � f�� � � � � ng��i 	� i

� �� ��� � � � � � �n �
�p� �M��������n���N��

� � � � � �N��

n		
�

��Ip��	 � ��� �
�p� M�

�� � ��� �
�p� M�

��

� ��� ��� �
�p� hM�

�� �M�
��i

�����
��Ep��

i 	 � �� ��p� M�����

� �� ��p� ��iM
����� 	

�i
i � f�� �g

�Fixp��	 �� x � �� ���� M�

� �� ��p� �fixx��M�	
�

�If p��	

� �� ���� N�bool � ��� �
�p� M�

��������p��� � ��� �
�p� M�

��
�
�������p���

� 	� � 	�

� �� ��� ��� �
�p� �if N�bool thenM�

�� elseM�
�� 	

����
�

�
������p��

�

p��

�Casep��	

� ��� ��p� M��������p��� � ��� ��p� F
a�

nat�����an
nat���

�
�������p���

� �� ���� N�nat anat 	� a�
nat � � � anat 	� an

nat � 	� � 	�

� �� ��� ��� �
�p� case�N�nat �M�� � Fanat��� 	

����
�

�
������p��

�

p��

�Itp��	

� �� ���� N�nat � ��� �
��� M�� � ��� �

��� F�����

� 	� � � � 	� �

� �� ��� ��� �
�p� it�N�nat �M�� � F����� 	

�

�Recp��	

� �� ���� N�nat � ��� ���� M�� � ��� ���� Fanat������

� 	� anat � � � � 	� �
nat � �

� �� ��� ��� �
�p� rec�N�nat �M�� � Fanat������ 	

�

Fig� �� Rules for ��p��type assignment

��

Using the technique described in �	�� we can develop an algorithm that� given a well
typed term� returns a decoration of the term containing annotation variables and a set
of constraints involving annotation variables� The output of the algorithm characterizes
all the possible faithful �����typings of the term� more precisely� any solution of the set
of constraints corresponds to a faithful �����typing� and vice versa� Moreover� the set
of constraints has a maximal solution� i�e�� a solution corresponding to a �����typing
showing all the dead code that can be proved using the type assignment system �����
This solution can be found in an e�ective way�
We start by de�ning the notions of a�type pattern and a�type scheme�

��� Annotated Type Schemes

De�nition�	 �Annotated type patterns�� Let A be the set of annotation vari�
ables� ranged by �� � � � � � � ��

�� The language P � of a�
�type patterns
a�
�patterns for short�� ranged over by �� is
de�ned from the grammar of De�nition � by replacing a � f�� �g by � � A� i�e�
� ��� �� j � � � j � � �� where � � A and � � fnat� boolg�

�� The language P � of a���type patterns
a���patterns for short�� ranged over by ��
is de�ned according to the clauses of De�nition � by replacing a�	�types by a�	�
patterns�

�� The language P � of a���type patterns
a���patterns for short�� ranged over by �� is
de�ned according to the clauses of De�nition � by replacing a�	�types and a���types
by a�	�patterns and a���patterns�

The function � � L� � L� � L� � T is extended in the obvious way to a�patterns�

De�nition�� �Constraints�� A constraint is a formulaof one of the following shapes�

� �� � ��
� �� v ��
�
� in G�� E

where ��� �� � f�g � A� G is a �nite not empty subset of f�g � A and E is a �nite set
of constraints�

The symbol� denotes the equality on the set of annotations f�� �g� while v denotes the
order relation de�ned by� � v �� � v � and � v �� A constraint is simply an equality
or an inequality
between annotation variables or the constant ��� or a guarded set of
constraints� For instance� the set of constraints

f �� v ���
� in f��� ��g�� f�� v ��� �� v �g g

can be read as ��� v �� and if �� � � or �� � �� then �� v �� and �� v ���

De�nition�� �Annotated type schemes�� An a���type scheme is a pair h�� Eiwhere
� is an a���pattern and E is a �nite set of constraints�

An a���type scheme h�� Ei represents the set of a���types that can be obtained from
the pattern � by replacing annotation variables with annotations in such a way that
the constraints in E are satis�ed� A�types and a�typings can be obtained from patterns
by instantiation�

De�nition�� �Renamings and instantiations�� �� A renaming is a one�to�one
mapping r � A � A�

�� An instantiation is a mapping i � A � f�� �g�

��

Both renaming and instantiation can be extended to annotation constants
by de�ning
i
a� � a and r
a� � a� for a � f�� �g� and to a�types and patterns
in the obvious way��
For example� i
�nat � �nat� � i
��nat � i
��nat� Of course� for any a�type � L��
i
� � and r
� � �

De�nition��� Let h�� Ei be an a���scheme� An instantiation i satis�es E if

� �� � �� � E implies i
��� � i
���� and
� �� v �� � E implies i
��� v i
���� and
�
� in G�� E � � E implies that� if � � i
G�� then i satis�es E ��

The set of all the instantiations that satisfy E is denoted by sat
E�� An a���scheme
h�� Ei represents all the a���types i
��� for any i � sat
E��

De�nition�
� Let i�� i� be instantiations� We write i� v i� if� for all � � A� i�
�� v
i�
���

Fact 	�� Let E be a �nite set of constraints� The sets sat
E� is not empty and has a
maximum element�

Example �� Consider the sets of constraints�

E � f ��in��	� � E� � E� � E��
f��inf�	g	� f��
 v �	� �� v ���� ��inf�
g	� f�� v �
� �� v ��gg�
��inf�	g	� f��
 v �	� �� v ���� ��inf�
g	� f�� v �
� �� v ��gg g 	 g

E� � f ��in��	�
f��inf��g	� f �� v �� �	 v �g�
��inf��	g	� f ��� v ����

��inf��	g	� f ��inf��	g	� f �	 v ��	� �
�
� v ���

��inf��g	� f�� v ���� �
�
� v ��gg

��inf��g	� f �� v ���� �
�
� v ��ggg

��inf��	g	� f ��� v ����
��inf��	g	� f ��inf��	g	� f �	 v ��	� �

�
� v ���

��inf��g	� f�� v ���� �
�
� v ��gg

�� v ��� ��inf��g	� f�� v ���� �
�
� v ��ggg

��	 v ��� �
�
	 v �	

g g
E� � f ��in�
�	� f�
 v ��
� �

�
� v ��g g

E� � f ��in�
�	� f�
 v ��
� �
�
� v ��g g

E � � f ��inf��g	� f�� � �g� ��inf��g	� f�� � �g� �� � � g �

To �nd the maximum element i of sat
E � E �� observe that from the last constraint
of E we get i
��� � �� Then from the �rst constraint of E� we get i
��� � i
��� � ��
By proceeding in this way we �nally get that� for each � � A� i
�� � � if and only if
� � I� where

I � f��� �
�
�� �	� �

�
	� ��� �
� �

�

�

��� �
�
�� ��� �

�
�� ��� �

�
�� �	� �

�
	� ��� ��� ��� �

�
�� �
� �

�

�

��� �
�
�� ��� �	� �� g �

So i de�ned by� i
�� � � if � � I and i
�� � � otherwise� is the maximuminstantiation
in sat
E � E ��� �

The ��p��type inference of a term is reduced to the solution of a �nite set of constraints�
A maximal instantiation then corresponds to a faithful �����typing that shows the
maximal amount of dead code� The algorithm for �nding the maximal instantiation i
that satis�es a �nite set of constraints E is presented in natural semantics style using

��

judgments E � I� where I is the set of annotation variables that represents i� i�e�� such
that � � I if and only if i
�� � �� The idea is simply that of recognizing� following the
equalities and the inequalities� all the annotation variables that are forced to represent
�� All other annotation variables are then replaced by � in the maximal solution�

De�nition� �Constraints solution�� Let E be a �nite non empty set of constraints�
We write E � I to mean that this judgment is derivable by the rules in Fig� ��

�STOP 	 no other rule can be applied
E �

�GUARD	 E � E �� � I � � G
E � f�� in G	� E ��g� I

��	
f��� ��g � f�� �g E������ I

E � f�� � ��g� I � f�g
�v	

E������ I
E � f� v �g� I � f�g

Fig� 	� �Natural semantics� rules for constraints solution

It is easy to see that� given a �nite set of constraints E � we can �nd I such that E � I
in a time linear in the number of constraints which occur in E �

Proposition	�� Let E be a �nite set of constraints� Then E � I if and only if I
represents the maximum of sat
E��

��� An Algorithm to Infer Annotated Types

To de�ne the algorithm we need some preliminary notations� By newa
� we denote a
	�ary function that� whenever called� returns a fresh annotation variable�
Let � be a type� By fresh
�� we denote an a�	�pattern obtained from � by an�
notating each occurrence of any basic type in � with a fresh annotation variable�
For example� fresh
nat � nat� � �nat � �nat� For a set of term variables � �
fresh
� � � fx � fresh
�� j x� � �g�
The function vars maps an a���pattern � to its �nite set of annotation variables� For
example� vars
�nat � �nat� � f�� �g�
The function tail� that maps a���patterns and a���types
not containing �� to �nite
subsets of f�g � A� is inductively de�ned by� tail
� �� � f�g
for � � f�g � A��
tail
�� � ��� � tail
��� � tail
���� and tail
�� �� � tail
���
Let �� �� be a�	�patterns or a�	�types
not containing �� such that �
�� � �
����
cs�
�� �

��� cs��

�� ��� and ucs��

�� ��� denote the constraints sets inductively de�ned
by the clauses in Fig� �	� We have that for all instances i�

� i
�� � i
��� if and only if i � sat
cs�
�� �
���� and

� i
�� 	� i
��� if and only if i � sat
cs��

�� ����� and

� i
���
� L�
� implies i
�� 	� i
��� if and only if i � sat
ucs��

�� �����

Note that ucs��
is just an auxiliary function� it has been introduced to simplify the set

of constraints generated by the function cs��
� More precisely the auxiliary function is

used to avoid to introduce� in the right part of a guarded constraint� some guards that
are always satis�ed�
For each constant C an a�	�scheme ats
C� is speci�ed� For example� for any integer
n� ats
n� � h�nat� �i and ats
�� � h��

nat � ��
nat � �nat� ff�g � ff�� v �� �� v

�gggi�

��

cs����
�� ��

�	 � f�� � ��g� where ��� �� � f�g �A
cs���� � ��� �

�
� � ���	 � cs����� �

�
�	 � cs����� �

�
�	

cs���� � ��� �
�
� � ���	 � cs����� �

�
�	 � cs����� �

�
�	

cs��
���

�� ��
�	 � f�� v ��g� where ��� �� � f�g �A

cs��
��� � ��� �

�
� � ���	 � cs��

���� �
�
�	 � cs��

���� �
�
�	

cs��
��� � � � � � �n � �� ��� � � � � � ��n � ��	 �

f�� in tail���		� �ucs��
��� ��	 �

S
��l�n

cs��
���l� �l		g�

where n � � and �� �� are not arrow a�patterns or arrow a�types�

ucs��
��� � � � � � �n � �� ��� � � � � � ��n � ��	 �

cs��
��� ��	 �

S
��l�n cs��

���l� �l	�

where n � � and �� �� are not arrow a�patterns or arrow a�types�

Fig� �
� Functions cs�� cs��
and ucs��

De�nition�� �Sets P
p��� For every natural number p� let P
p� denote the set of
the a���patterns of the shape

�� � � � � � �p � � �

where ��� � � � � �p � P � and � � P ��

Consider the rules
Ifp��� and
Casep��� in Fig� �� and the a���types � � �� � � � � �
�p � ��� � � ��� � � � � � ��p � ��� and � �� � ��� � � � � � �p � ��p � � that
occur in these rules� Let ��� �� � P
p� be a���patterns corresponding respectively to
�� � � L
p�� Then J
p� ��� ���� where J is the algorithm in Fig� ��� returns an a�
��pattern � � P
p� and a set of constraints E that characterize the a���type � More
precisely� the following proposition holds�

Proposition��� Let ��� �� � P
p� �
��� � �
��� � � and h�� Ei � J
p� ��� ���� Then

�� � � P
p� and
�� for every instantiation i � sat
E� i
��� 	� i
�� and i
��� 	� i
�� and
�� for every instantiation i and a���type such that i
��� 	� and i
��� 	�

there is an instantiation i� � sat
E� such that i�
��� � i
��� i�
��� � i
��� and
i�
�� 	� �

J ��� �� ��	 � let ��� � fresh����		
in h���� cs��

��� ���	 � cs��
���� ���	i end

J �p� �� ��	 � case h�� ��i of
h��

�� ��
�i � let � � newa�	
in h�� f�� v �� �� v �gi end

h�� �� �� � ��i � let h����Ei � J �p� �� �� ��	
in h� � �� � ����Ei end

h�� � ��� �
�
� � ���i � let h�

��
� �E�i � J �p� ��� �

�
�	 and h�

��
� �E�i � J �p� ��� �

�
�	

in h���� � ���� �E� � E�i end

Fig� ��� Algorithm J

��

We can now proceed to de�ne the annotated type inference algorithm W� This
algorithm is presented in Fig� ��� �� and ��� Let �T M � �� if W
M � � h��M �
� Ei

then � is a basis that associates to each term variable in FV
M � an a�	�pattern� M �

is a term annotated with a�patterns� and E is a �nite set of constraints� We will prove
that h��M �
� Ei represents all the �����typings of M � More precisely� for any � and

M ��� such that �
� � � FV
M � and �
M ���� �M � we have that � � � ���� M ��� implies

� � i
�� and M ��� � i
M �
�� for some i that satis�es E �

W�P 	 � let � � fresh�FV �P 		
and h� P ��Ei �W������P 	

in h��P ��Ei end

Fig� ��� Algorithm W

Correctness and completeness of the inference w�r�t� ��p��typings containing as many
� annotations as possible is expressed by the following lemma�

Lemma��� �T M � � � � FV
M � � � fresh
� � and W�
p���M � � h��M ��� Ei
implies

�� if i is the maximum of sat
E� then i
��� i
�� ��p� i
M ��� and

�� for all � � and M ��� such that �
� � � � �
�� � �
�� and �
M ���� � M

if � �� ��p� M ��� then exists i � sat
E� such that i
�� � � i
�� � � and

i
M ��� � M ����

We are interested in faithful �����typings� so we want to restrict the set of solutions
of the constraints generated by the algorithm to those that correspond to faithful a�
typings� This can be done as shown by the following theorem�

Theorem��� Let �T M � � and W
M � � h��M �
� Ei� If i is the maximum of

sat
E � faithful
�� ��� then i
��� � ���� i
M �
� is a faithful assignment showing the
maximum amount of dead code where faithful
�� �� �

�

x	
��

f
� in tail
����� f� � �j� � vars
���gg � f� � �j� � vars
��g �

The constraint
� in tail
���� � f� � �j� � vars
���g means that �� must be instanti�
ated either to an ��a�	�type or to an ��a�	�type�

Example �� Let �T M � � be the typed term of Example �� Let �� �
�� � ��� �
�� � ��� �

�
� �
��� � ���� � ��� � ���� �� �
�� � ��� � �� � ��� and ��� �

��� � ���� � ��� � ���� Then W
M � � h��M ���
nat

� Ei where
writing� for short� �

instead of �nat�� � � fu� � ��� u� � ��g� M �
 �

���f	��	��

��
��
��
� h��f	
�

���x�� ���	����� 	�
�

�
���

�u

�

�

� 	�
�

� �

��f	
�

���y�� �y��	����� 	�
�

�
���

�u

�

�

� 	�
�

� i�
�

�
���

�	
� 	�	��	���
�

���z����� �z�
�

�
���

� 	����������

�
���

�

�

��z����� �z�
�

�
���

� 	����������

�
���

� 		
� �

��

W��p���C	 �
let h��Ei � ats�C	
in h� C	�Ei end

W��p��� x�	 �
let � � fresh��	 and �� � fresh��	
in if x � ���	

then h� x	
�

� cs��
���x	� ��	i

else hfx � �g� x	
�

� cs��
��� ��	i

end
W��p��� � x��M	 �

let � � fresh��	 in if p � �

then let h��M �	�

�Ei �W����� � fx � �g�M	

in h�� ��x	�M �	�

		�	�

�Ei end
else let h��M ��Ei �W��p� �� ��M	

QUI in case � of
� �� x � �� h� �� ��x��M �	�� �Ei
� h�� ��x	�M �		��Ei end

end
W��p���MN	 �

let h���M
�	������	n� �E�i �W��p� ����M	

and h��N �	�Ei �W������ N	

and� for each l � f�� � � � � ng� h�l�N
	�

l

l �Eli � rl�h��N
�	�Ei	�

where rl is a fresh renaming of all the annotation variables not in �
in h�� ��� � � � � ��n�

�M �	������	n��N �	�

� � � � � �N �	�

n		�
f�� in tail��		� �E� �

S
��l�n

�El � cs��
���l� �l			gi end

W��p��� hM��M�i	 �
let h���M

��
� � E�i �W��p���M�	

and h���M
��
� �E�i �W��p���M�	

in h�� ���� �hM
��
� �M ��

� i	��� �E� � E�i end
W��p��� �iM	 �

let h��M ���� �Ei �W��p� ��M	
in h�� ��iM

���� 	i �Ei end
W��p��� fix x��M	 �

let �� � fresh��	
and h��M �	� �Ei �W����� � fx � ��g�M	

in h�� �fixx	�M �			�E � cs����� ��	i end
W��p��� if N then M� else M�	 �

let h���N
��bool

� E�i �W��p���N	
and h���M

��
� �E�i �W��p���M�	

and h���M
��
� �E�i �W��p���M�	

and h��Ei � J �p� ��� ��	
in h�� ��� ����

�if N ��bool

then M �	�
� else M �	�

� 	�
f�� in tail��		� �f� � �g � E� � E� � E� � E	gi end

Fig� ��� Algorithm W� �continue	

��

W��p��� case�N�M�F 		 �

let h���N
���

nat

�E�i �W��p� ��N	
and h���M

�� �E�i �W��p���M	

and h��� F
���

nat������n
nat�� �E�i �W��p���F 	

and � � newa�	
and h��Ei � J �p� ��� ��	

in h�� ��� ����

�case�N ���
nat

�M �	� � F ��
nat�	�		�

f�� in tail��		� �f�� � �� � v ��� � � � � � v �ng � E� � E� � E� � E	gi end
W��p��� it�N�M�F 		 �

let h���N
���

nat

�E�i �W���� ��N	
and h���M

�	� �E�i �W���� ��M	
and h��� F

�	��	� �E�i �W���� ��F 	
and � � fresh�����		

in h�� ��� ����

�it�N ���
nat

�M �	� � F �	��	�		�
f�� in tail��		 � �f�� � �g � E� � E� � E� � ucs��

���� �	�
ucs��

��� � ��� �� �		gi end
W��p��� rec�N�M�F 		 �

let h���N
���

nat

�E�i �W���� ��N	
and h���M

�	� �E�i �W���� ��M	

and h��� F
���

nat�	��	� �E�i �W������ F 	
and � � fresh�����		

in h�� ��� ����

�rec�N ���
nat

�M �	� � F ���
nat�	��	�		�

f�� in tail��		 � �f�� � �g � E� � E� � E� � ucs��
���� �	�

ucs��
���

nat � �� � ��� �
nat � � � �		gi end

Fig� ��� Algorithm W�

and E is the �rst set of constraints introduced in Example ��
The set faithful
�� ��� is the set E � in Example �� so E � faithful
�� ��� � I�

where
I � f��� �

�
�� �	� �

�
	� ��� �
� �

�

�

��� �
�
�� ��� �

�
�� ��� �

�
�� �	� �

�
	� ��� ��� ��� �

�
�� �
� �

�

�

��� �
�
�� ��� �	� �� g �

Let i be de�ned by� i
�� � � if � � I and i
�� � � otherwise� Then i
��� � ���� i
M �
�
is the faithful �����typing that shows all the dead code that can be detected by using
the a�type assignment system �L�
Note that i
�� �L i
M �
� is the faithful a�typing used in Example �� �

Remark� The algorithm W is presented it this form to make it as close to the �����
type assignment system as possible� Indeed it generates some constraints that can be
avoided in a real implementation�
Moreover� an e�cient implementation of the algorithm should avoid the use of ��
sequences� recording just the annotation that contain the relevant information w�r�t�
the dead code elimination� In fact� as it is easy to see� for every a���pattern � asso�
ciated to a subterm� it su�ces to keep just the annotation variables in tail
��� So it
is possible to record all the relevant annotations by decorating the terms with sets of
annotation variables� For instance� the decorated term of Example � could be replaced

�	

by the following�

���ff�����g�

��f
�gh��ff�
�

�
g��xf��g�f��g	f��g	f�

�

�
gu

f
�

�
g

� 	f�
�

�
g�

��ff�
�

�
g��yf��g�yf��g	f��g	f�

�

�
gu

f
�

�
g

� 	f�
�

�
gif�

�

�
���

�
g	f
�g	f
�g

���zf�����g�zf�
�

�
���

�
g	f�

�

�
���

�
g		f
�g �

�

Conclusions and Future Work

In this paper we have presented an extension of the type assignment system for de�
tecting dead code introduced in �	�� The main achievement over that system is the
extension of the language of annotated types with rank � intersection� We have also
presented an inference algorithm which is correct and complete� in the sense that it
�nds all the dead code that can be detected by using the annotated type assignment
system�
The idea of using intersection types for dead code detection seems very natural�

In fact they allow to handle some problem in the detection and elimination of dead
code in applications� Take for instance the term
�f�M �N � If we look at the di�erent
occurrences of the bound variable f in M
let us denote them by fi�� then it may
happen that each fi has a di�erent annotated type�
Note that in the original framework of �� this raise problems since� after the optimiza�
tion process� the di�erent occurrences fi have di�erent types� This problem can be
partially handled by allowing subtyping� as done in ��
see also �	��� But subtyping
is contravariant in the left part of the arrow operator� whereas� to specialize a term

see ���� covariance is needed�
As showed in the present paper� by using rank � intersection it is possible to deal with
covariance�
The idea of specializing terms seems quite interesting for future works� Consider

the following application�

�f� � �h�
f M N 	�� ��
fP Q 	�i�

�x g���xnat��ynat��znat�if � hx� yi then hx� zi else g
�hx� yi� y
�h�� zi� �

where � � nat� nat� nat�
nat�nat� andM � N � P � Q are terms of type nat� The
lambda abstracted variable f is bounded to a function which� given � natural numbers
x� y� and z� returns the pair formed by the remainder plus z and the quotient of the
Euclidean division of x by y
thus when z is 	� it is just the standard Euclidean division��
In the �rst occurrence of f in the body of the lambda abstraction� both the components
of the pair computed are used� but in the second occurrence� the remainder is useless�
and since z is only used to compute the remainder� it is dead code
in this occurrence��
Indeed� it would be interesting to have two di�erent version of the Euclidean division�
the �rst one like the original version� and the second one for the cases when only the
remainder is purchased� In this way an optimized version of the term above would look
like�

�f� �h�
f M N 	�� ��
f P Q�i�

�x g���xnat��ynat��znat�if � hx� yi then hx� zi else g
�hx� yi�y
�h�� zi�
�

�x g���xnat��ynat�if � hx� yi then x else g
�hx� yi� y��� �

��

where � � nat� nat� nat�
If we allow these kind of optimization� we have to handle overloaded functions� Indeed�
in this case f is bound to two di�erent branches� and when it is used in the body of the
lambda abstraction� we have to choose the right branch� This can be done by looking
at the actual type of f in the body of the lambda abstraction� The � calculus of
Castagna� see ��� seems a good candidate to explore further this idea�

References

�� H� P� Barendregt� M� Coppo� and M� Dezani�Ciancaglini� A �lter lambda model and the
completeness of type assignment� Journal of Symbolic Logic� ���������� ����

�� P� N� Benton� Strictness Analysis of Lazy Functional Programs� PhD thesis� University
of Cambridge� Pembroke College� �����

� S� Berardi� Pruning Simply Typed Lambda Terms� Journal of Logic and Computation�
���	�������� �����

�� S� Berardi and L� Boerio� Using Subtyping in Program Optimization� In Typed Lambda

Calculus and Applications� �����
�� L� Boerio� Optimizing Programs Extracted from Proofs� PhD thesis� Universit�a di Torino�

�����
�� C� Pauline�M�ohring� Extracting F�
s Programs from Proofs in the Calculus of Construc�

tions� In POPL���� ACM� �����
�� C� Pauline�M�ohring� Extraction des Programmes dans le Calcul des Constructions� PhD

thesis� Universit�e Paris VII� �����
�� G� Castagna� Covariance and contravariance� con�ict without a cause� ACM Transactions

on Programming Languages and Systems� ���	�������� �����
�� Giuseppe Castagna� Object�Oriented Programming� A Uni�ed Foundation� Progress in

Theoretical Computer Science� Birk�auser� Boston� ����� To appear�
��� M� Coppo� F� Damiani� and P� Giannini� Re�nement Types for Program Analysis� In

SAS���� LNCS ����� pages ������� Springer� �����
��� M� Coppo and M� Dezani�Ciancaglini� An extension of basic functional theory for lambda�

calculus� Notre Dame Journal of Formal Logic� ����	�������� �����
��� M� Coppo and A� Ferrari� Type inference� abstract interpretation and strictness analysis�

Theoretical Computer Science� ����������� ����
�� D� Dussart and F� Henglein and C� Mossin� Polymorphic Recursion and Subtype Quali��

cations� Polymorphic Binding�Time Analysis in Polynomial Time� In SAS��	� LNCS ���
pages ������� Springer� �����

��� F� Damiani and P� Giannini� An Inference Algorithm for Strictness� In TLCA��
� To
appear in LNCS� Springer� �����

��� C� Hankin and D� Le M�etayer� Deriving algorithms for type inference systems� Applica�
tions to strictness analysis� In POPL���� pages �������� ACM� �����

��� T� P� Jensen� Abstract Interpretation in Logical Form� PhD thesis� University of London�
Imperial College� �����

��� G� Kahn� Natural semantics� In K� Fuchi and M� Nivat� editors� Programming Of Future

Generation Computer� Elsevier Sciences B�V� �North�Holland	� �����
��� T� M� Kuo and P� Mishra� Strictness analysis� a new perspective based on type inference�

In Functional Programming Languages and Computer Architecture� pages �������� ACM�
�����

��� J� Palsberg and P� O
Keefe� A Type System Equivalent to Flow Analysis� In POPL��	�
pages ������ ACM� �����

��� A� M� Pitts� Operationally�Based Theories of Program Equivalence� Summer School on
Semantics and Logics of Computation� Cambridge UK� ����� Sep �����

��� F� Prost� Marking techniques for extraction� Technical report� Ecole Normale Sup�erieure
de Lyon� Lyon� December �����

��� K� L� Solberg� Annotated Type Systems for Program Analysis� PhD thesis� Aarhus Uni�
versity� Denmark� ����� Revised version�

��

�� Y� Takayama� Extraction of Redundancy�free Programs from Constructive Natural De�
duction Proofs� Journal of Symbolic Computation� ��������� �����

��� S� van Bakel� Intersection Type Disciplines in Lambda Calculus and Applicative Term

Rewriting Systems� PhD thesis� Katholieke Universiteit Nijmegen� ����
��� D� A� Wright� Reduction Types and Intensionality in the Lambda�Calculus� PhD thesis�

University of Tasmania� �����

��

