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Abstract .  This paper presents results from lesion experiments on a modular
attractor neural network model of semantic access.  Real picture data forms the
basis of perceptual input to the model.  An ultrametric attractor space is used to
represent semantic memory and is implemented using a biologically plausible
variant of the Hopfield model.  Lesioned performance is observed to be in
agreement with neuropsychological data.  A local field analysis of the attractor
states of semantic space forms a basis for interpreting these results.

1 Introduction

Connectionist models of neuropsychological phenomena can provide potentially useful
insights into the nature of cognitive processes.  In this paper we present the results of
lesion experiments on a modular neural network model of semantic access.  Our approach
differs from previous work on three counts: the use of real pictorial data; an ultrametric
representation of semantic memory that allows for an emergent prototype effect; a
biologically inspired, iterative, associative memory, storage prescription.  This paper
reports the results from three lesion experiments, that demonstrate the model’s ability to
accommodate neuropsychological data.  These results are subsequently interpreted in terms
of distributions of local fields in the Hopfield semantic network.

2 Background

The structure and organisation of categories play a vital role in efficient access to semantic
memory.  Once we know that animals breathe we can infer that all exemplars of that
category breathe without having to code for this feature directly in the representation of
each exemplar.  Early models of semantic memory explicitly distinguished between



category information and exemplar information.  Rosch’s work on the “basic object level”
marked basic-level category knowledge as special, and distinct, from exemplar level
knowledge [1].  The work of Damasio further suggests that this distinction is physical as
well as functional [2]. Furthermore, recent theorising on the nature of categories has
highlighted the need for dynamic forms of representation to capture the flexibility inherent
in human categorisation [3]. Our model uses a integrated approach, in which category
knowledge is an emergent property of the representation and network dynamics.  

Neuropsychological studies of patients with Alzheimer’s Disease (AD) provide striking
dissociation between knowledge of categories and exemplars.  These results provide
converging lines of evidence that span multiple measures of semantic knowledge: attribute
listing; confrontation naming and picture-name matching.  The most salient result for our
purpose here, is that semantic knowledge of base level categories appears
disproportionately impaired relative to superordinate knowledge of categories.  Particularly
striking are the types of naming errors made by AD patients within the confrontation
naming paradigm.  In many cases an object is called by the name of its category (e.g.
“animal” instead of “cow”); in others, termed semantic errors, the name of a different
object from the same category is given (e.g. “horse” instead of “cow”).  Detailed analysis
of the patterns of errors made by AD patients across this and other methodologies suggest
that semantic category knowledge is available but that specific exemplar knowledge is
impaired.

Computational modelling is increasingly being used to refine neuropsychological
theories [4,5].  These models have proven successful in increasing understanding of the
nature of disordered brain processes.  For all their success, these models can be criticised
on two fronts.  Firstly, the form of representation used, where instances to be categorised
are generally represented with hand crafted sets of features.  In so doing, a fundamental
problem is side-stepped: how to determine these features.  The second area of concern is
the architecture of the model.  Static approaches to modelling semantic memory using
back-propagation in multilayered perceptrons fail to address the intrinsic dynamic nature of
semantic memory.  The recurrent network of Plaut & Shallice [4] and the constraint
satisfaction networks of Tippet, McAuliffe & Farah [5], although addressing the dynamics
of semantic memory, are hindered by a tight coupling between perceptual and semantic
memory.  This coupling hinders detailed analysis of perceptual and semantic processes.
Our modular approach allows independent analysis of the mapping from perceptual to
semantic memory, and of the structure of semantic space, in both pre- and post-morbid
condition.



3 The Model

The architecture of the full model is shown in Figure 1, and builds on work by Gale et
al[6, 7].

SOFM Output : 100 real-valued
units. (I)

40 Hidden Units. (H)

100 Semantic Output
units. (S)

Fig .  1 .  Architecture of the full model showing interaction of the perceptual and semantic
modules.  The I-H  lesions refer to modifications of the connections between the SOFM and the

hidden units.

3 .1 Architecture

The model consists of two modular components: an unsupervised perceptual processing
module and a supervised semantic memory module. Our model uses real pictorial data.
Perceptual input to the model is in the form of features extracted from pictorial data by a
100 unit unsupervised self organising feature map (SOFM).  By using these



autonomously extracted features the ‘homunculus problem’ whereby modellers provide
suitable neural inputs [8], can be avoided.

The semantic module consists of a 100 unit Hopfield associative memory trained using
the iterative approach of Diederich and Opper [9].  The use of the Hopfield architecture
ensures that the semantic memory module has a well defined attractor nature.  A review of
the biological plausibility of such an approach can be found in [10].

The perceptual module is connected to the semantic module through an intermediate
layer of 40 hidden units.  Traditional back-propagation is used to map SOFM output to its
appropriate semantic attractor in the Hopfield network.  The perceptual and semantic
modules are de-coupled.  Perceptual input is mapped to an initial state of the Hopfield
network, which then relaxes to an attractor state under its own dynamics.

3 .2 Representation

3 .2 .1 Perceptual representation
The total perceptual data  set consists of 560 (8 bit) greyscale images derived from four
superordinate categories: Animals, Musical Instruments, Clothing and Furniture.  Each
superordinate category comprises  seven basic-level categories.  Animal is subdivided into:
bird, snake, spider, fish, deer, mouse and frog.  Each basic-level category is further divided
into five subordinate categories, for example Fish: pike, carp, salmon, herring and bass.
These categorical levels reflect the tripartite hierarchy proposed by Rosch et al [1].  Each
subordinate is represented by 4 versions of the same exemplar, which vary on dimensions
of contrast and left-right inversion [6].

Each image is processed by a self-organising feature map (SOFM) similar to that used
by Schynns [11].  The output of the SOFM forms the basis of the input to the perceptual
module of the model.

       

F i g .  2 .  Examples of greyscale images that comprise the perceptual data set. Each image
fits within a 50 by 50 pixel grid such that the principal dimension comes within one pixel of
the grid border. These examples depict the 5 subordinate images of the basic level category
‘clock’ which, in turn, is one of the 7 basic level categories representing furniture.



3 .2 .2 Semantic representation
The semantic representation associated with each perceptual input pattern consists of a 100
unit binary (-1,1) vector.  Categorical information is implicitly encoded using the
ultrametric approach of Virasoro [12], where semantic vectors are arranged in a hierarchical
structure.  The procedure is as follows: C class vectors are generated by independent
random choice of components.  That is, each bit in the vector is chosen (independently) to
be 1 or -1 with probability 0.5.  For each of these class vectors, E exemplar vectors are
generated, by correlated choice of components:

Si
αβ = Si

α  with probability 1- m( )
Si

αβ = − Si
α  with probability m

α = 1…C; β =1…E; i=1…100 (1 )

Sαβ  specifies the exemplar vector β, within the class α.  Where, α enumerates the
classes and β the exemplar vectors.  

For simplicity in collating results, our implementation uses exemplar patterns derived
from class vectors by flipping a fixed number of randomly chosen bits.  The number of
such flips, (m × 100), determines the cluster density of the category: smaller values of m
lead to more compact clusters.

These exemplar vectors, (but not the class vectors), are embedded in the Hopfield
semantic memory.  This approach allows for a two level semantic hierarchy to be
implemented in the model, with category membership based on similarity among
exemplar vectors, a prototype approach.

Bird Deer Fish Frog

Fig .  3 .   Four  derived exemplar semantic vectors. The cluster density m = 0.1, so that each
exemplar is derived from the class vector by independent random choice of 10 bits to flip.



3 .3 Training

There are three stages in training.  Firstly, the SOFM is trained on the real picture data.
The features extracted form the input to the perceptual module.  
Secondly, the exemplar semantic vectors are embedded in the Hopfield network using the
iterative approach of Diederich and Opper [9].  The procedure is as follows:

1. Begin with a zero weight matrix.
2. Repeat Until all training patterns are stable

2.1 Set the state of the network to one of the Sαβ

2.2 If a unit i changes state, update its incoming
weights according to

∆wij =
1

N − 1
Si

αβS j
αβ (2 )

This approach overcomes the poor storage performance associated with standard ‘one-
shot’ training.  A maximum useful capacity of N - 1 linearly independent patterns can be
stored in this way.  Furthermore, this approach uses only locally available information,
thereby increasing the biological plausibility of the model.

Finally, the network is trained to associate perceptual input with semantic output.
Two methods of training were investigated: using back-propagation to train a perceptual
input to fall just within the boundary of its associated semantic attractor; training
perceptual input directly to the associated semantic attractors.  Results reported here are
based on the latter.

4 Experiments

4 .1 Experiment 1

This experiment investigates the effect of lesions on the perceptual to semantic, (direct)
route.  Training sets of size 28 (4 categories of 7 exemplars) are generated as mentioned
above and the model trained to 100% performance.  Independent lesions of varying
severity, (5%-70%) are then performed on the I-H and H-S connections, see Figure 1.
Results are summarised in tables 1 and 2.



4 .1 .1 Results and Discussion
In order to measure the success of the network in categorising the input, the overlap
(normalised dot product) of the networks semantic response with the training set patterns
is taken.  The model is considered to give a correct exemplar response, if its output is
closer to the desired exemplar than to any other exemplar.  Additionally, this overlap must
be sufficiently close, that is, the overlap must be greater than the overlap with the class
vector of the category.  Furthermore, the gap to the next nearest exemplar must exceed
0.05, see [4] for motivation and justification.  Correct category response, is achieved if the
network’s response is closer to the desired prototype than to any other prototype.  To
ensure that this response is sufficient a cut-off of 0.7 was enforced.

Damage to the direct pathway can be visualised as a change in the mapping from
perceptual input to semantic output, or as perturbation in the initial point projected to in
semantic space.  The attractor nature of semantic memory will ensure that small
perturbations will be corrected, provided they stay within the appropriate basin of
attraction (see 10% H-S lesion in Table 1). But, as lesion severity increases the projection
point falls outside its correct basin of attraction.  Table 2 shows a typical response profile.
At 30% lesion, 6 of the 28 patterns get mapped into an emergent category prototype
attractor.  This attractor is not directly stored, but gets embedded as a result of storing the
correlated exemplar patterns, (a mixture state).  Additionally, there are 4 semantic errors,
where the input is mapped into the attractors of semantically related exemplar, (‘Dog’ to
‘Cat’). This behaviour mirrors that observed in patients with semantic deficit [6].

In summary, lesions to the direct pathway can result in an overall loss of exemplar
level accuracy over the category level.  Closer inspection of the data reveals that this is the
result of the model making emergent prototype and semantic error responses.

Lesion Severity 10% 20% 30% 40% 60%
Type I-H Category 95% 84% 70% 79% 54%

Exemplar 75% 70% 41% 50% 13%
Type H-S Category 100% 100% 98% 97% 86%

Exemplar 100% 84% 79% 66% 34%

Table 1 .  Percentage of correct category/exemplar responses for lesions at different sites on
the direct pathway.  Later stages of processing (H - S) are more resistant to damage.  There is
superior preservation of category information over exemplar information.  All results are
averaged over 10 training sets with each lesion performed 10 times.



Lesion severity 20% 30% 50% 60%
Correct exemplars 23 18 12 9
Semantic errors 0 4 4 6

Correct prototypes 5 6 9 11

Table 2.  Typical response profile for H-S lesions.  Based on 4 categories of 7 exemplars with
cluster density m = 0.1.  Correct here indicates going to an attractor state.  For example, at 50%
lesion severity: 12 patterns go to the appropriate attractor; 4 to a semantically related attractor;
9 to the emergent prototype attractor; 3 fail the response criteria.

4 .2 Experiment 2

This experiment investigates the effect of diffuse damage to the semantic memory module.

4 .2 .1 Results and Discussion
Unlike damage to the direct pathway, damage to the Hopfield network results in change to
the semantic attractor space: the locations and basins of attraction get modified.  The
performance of the network is summarised in table 3.

Lesion Severity 10% 25% 30% 40% 50% 60%
Category 100% 100% 93% 86% 64% 34%
Exemplar 100% 96% 75% 61% 11% 0%

T a b l e  3 .  Percentage of correct category/exemplar responses after diffuse damage to the
Hopfield semantic memory.

The network is initially resistant to small amounts of damage.  The intrinsic error
correcting abilities of the Hopfield network ensure 100% correct performance up to 20%
lesion severity.  As the lesion severity reaches 25% exemplar level loss begins.  This is
the result of ‘drift’ in the location of the attractors in semantic space.  The direction of this
‘drift’ is predominately towards the category prototype vector; that is, loss of exemplar
bits.  This corresponds to the response profile observed in patients with AD, where there
is predominant loss of exemplar level features over category level features.  The next
experiment investigates the computational reason for this.



4 .3 EXPERIMENT 3

It is instructive to relate the effect of lesions to the semantic network’s interconnections to
a measure of noise in the system.  The local field (net-input), hi , to a particular semantic

unit determines its activation state.  This in turn, is determined by the weighted sum over
the activations of the remaining semantic units.  The effect of damage to network
connectivity can be understood as the addition of a noise term, δi , to the ‘pre-damage’

local fields:

hi = wij S j
αβ

j
∑ ⇒ hi + δ i

A bit flip will occur only if the absolute value of the local ‘pre-damage’ field is less
than that of the noise term.  From this, it follows that larger fields will lead to more
robust bit patterns.  The results of experiment 2 would indicate that the field strengths for
category bits should on average be stronger than those of exemplar bits.  Such a result
would be important as it would make the results of experiment 2 independent of precise
implementation of diffuse damage.  See [12] for a detailed theoretical treatment.

In this experiment the distribution of local field strengths for exemplar and category
bits are analysed.  Exemplar bits, where Si

αβ = − Si
α , are those that identify the exemplar

within a category.  Category bits, on the other hand, are those where Si
αβ = Si

α , The

distributions of fields for various network loadings, ρ, the number of stored patterns/
number of units and various cluster densities, m, are summarised in Table 4.

Cluster density, m 0.1 0.15 0.2
Load density, ρ

0.28 Exemplar field 1.41 1.44 1.48
Category field 2.11 2.08 1.98

Difference 0.7 0.68 0.5
0.56 Exemplar field 1.42 1.56 1.59

Category field 2.11 2.08 2.01
Difference 0.69 0.52 0.42

Table 4.   Analysis of exemplar and category field strengths for various load and cluster
densities.  Category bit fields are substantially stronger and therefore more resistant to
noise.

4 .3 .1 Results and Discussion
There is substantial difference between the strengths of category and exemplar fields.  The
cumulative distribution of field strengths is particularly informative.  For example, with ρ
= 0.56, m = 0.1, we found approximately 80% of category bits have field strengths above



the 1.5 level compared to 30% for exemplar bits; increased loss of exemplar information
follows.

5 Conclusions

In this paper we report the results of lesion experiments on a modular connectionist model
of semantic access.  With appropriate use of representation and architecture we were able to
overcome some of the problems associated with previous approaches.  Furthermore,
prototypes are an emergent property of the model.  Finally, damage to the semantic
memory was shown to preferentially effect exemplar level information; analysis traced this
to asymmetry between exemplar and category field distributions.
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