
Finite Size E�ects in Neural Networks

Laura Viana1, Arnulfo Castellanos2, and A.C.C. Coolen3

1 Centro de Ciencias de la Materia Condensada, UNAM
A. Postal 2681, 22800 Ensenada, B.C., M�exico

laura@ccmc.unam.mx http:www.ccmc.unam.mx
2 Dept. de F��sica, Universidad de Sonora

A. Postal 1626, Hermosillo 83000, Son., M�exico
acastell@fisica.uson.mx

3 Dept. of Mathematics, King's College, University of London
Strand, London WC2R 2LS, U.K.

tcoolen@mth.kcl.ac.uk

Abstract. In this paper we give an overview of a recently developed
theory [1, 2] which allows for calculating �nite size corrections to the
dynamical equations describing the dynamics of separable Neural Net-
works, away from saturation. According to this theory, �nite size e�ects
are described by a linear-noise Fokker Planck equation for the uctua-
tions (corresponding to an Ornstein-Uhlenbeck process), whose solution
is characterized by the �rst two moments. The theory is applied to a
particular problem in which detailed balance does not hold.

PACS: 87.30, 05.20

1 Introduction

Most Statistical Mechanics theories for In�nite-range spin models of Neural Net-
works (NN) are valid in the thermodynamical limit. However, �nite size e�ects
have often been reported in the literature [3]. Secondly, the �rst surge of studies
of NN, concentrated on the study of the equilibrium properties of these systems
(for a review see [4]), whereas it is now generally accepted that due to the in-
trinsic storage properties of these systems, the study of the dynamics is essential
to achieve a better understanding of the behaviour of NN. Here, we review a
recently developed theory which considers both aspects, as it allows us to study
the dynamics of �nite separable NN, away from saturation, by making a correc-
tion of order (1/N) to the dynamical mean �eld equations. Besides, the theory
can be used in systems either satisfying, or not satisfying, detailed balance.

In this paper we give an overview of the derivation of the theory, which has as
a starting point the master equation for the microscopic probability distribution.
This distribution is then rewritten in terms of the overlaps, which are macro-
scopic variables which -it is assumed- contain all relevant information about the
state of the system; in this way all irrelevant information is eliminated from
the theory. By doing this, a Kramers-Moyal equation is obtained which can be



expanded in powers of 1/N. If the two leading orders are kept, one obtains a
linear-noise Fokker Planck equation, which describes the stochastic behaviour of
the overlaps, at least on �nite timescales (those not scaling with the system size
N). The theory then provides us with a general solution to the Fokker-Planck
equation, which is subsequantly applied to study a speci�c problem. We would
like to point out that the problem considered has already been studied in [1];
however, in this pap! er it is solved with more generality and detail than before.

1.1 The Theory

This theory considers a spin model for a NN, composed by a large number N of
interconnected neurons modeled as Ising spins �i = �1, for i = 1; : : : ; N . The
master equation for the microscopic probability distribution pt(�) is given by

d

dt
pt(�) =

X
i

fwi(Fi�)pt(Fi�)�wi(�)pt(�)g ; (1)

where Fi is an operator that ips the i�th spin, i.e. Fif(�1; : : : ; �N ) = f(�1; : : : ;
��i; : : : ; �N ), and wi(�) is the probability per unit time of the i� th spin being
ipped at time t, and it is given by

wi(�) =
1

2
[1��i tanh(�hi(�))] : (2)

In this expression, the inverse of � (= T�1) measures the noise level , and the
local �eld hi(�) is given by hi(�) =

P
j Jij�j , where Jij is the strength of the

synaptic connection from neuron j to neuron i. These connections contain infor-
mation about p randomly chosen (and �xed) binary patterns �� = (��

1
; : : : ; ��N ) 2

f�1; 1gN , with � = 1; : : : ; p, by means of a learning rule given by

Jij = [1��ij ] 1
N

pX
��=1

��i A���
�
j : (3)

It is possible to obtain a macroscopic description of the system, by introducing
the pattern overlaps

m(�) = (m1(�); : : : ;mp(�)) ; m�(�) =
1

N

NX
i

��i �i ; (4)

which measure the resemblance between the state of the system and each of the
stored random patterns. The probability density for the macroscopic variables
m is given by:

Pt(m) �
X
�

pt(�)� [m�m(�)] : (5)

By rewriting the microscopic master equation (1) in terms of this new variable,
and doing some algebra, it is possible to arrive at a Kramers-Moyal expansion



for the probability density Pt(m) of the macroscopic variables; this expression
is then expanded in powers of (1/N) [for full details of the calculation see [1]].
In the thermodynamical limit N ! 1, this expansion reduces to a Liouville
equation:

d

dt
Pt(m) =

pX
�=1

@

@m�

n
Pt(m)

h
m��h�� tanh� [� �Am]i�

io
;

with the deterministic solution

Pt(m) = � [m�m�(t)] ;
d

dt
m�(t) = h� tanh� [� �Am�(t)]i� �m�(t) ; (6)

where we de�ned hg[�]i� = limN!1 1

N

P
i g[�i], with �i = (�1i ; : : : ; �

p
i ).

If instead of taking the thermodynamical limit, the two leading orders in
the expansion are kept, a Fokker-Planck equation is obtained for the overlaps
m(�). Since we are interested in evaluating �nite size e�ects, as corrections to
the mean �eld equations, it is convenient to rewrite the overlap (4) as the sum of
a deterministic term m�(t) representing the state of the system, as predicted in
the thermodynamical limit and given by (6), plus a uctuating stochastic term
q(�)=

p
N resulting from the �nite size e�ects

m(�(t)) =m�(t) +
1p
N
q(t) : (7)

In terms of the new variable q(t), it is possible to write the Fokker-Planck equa-
tion in the form

d

dt
Pt(q) =

X
�

@

@q�
fPt(q)F�[q; t]g+

X
��

@2

@q�@q�
fPt(q)D�� [q; t]g ; (8)

in which the ow term is given by

F�[q; t] = K�(t) +
X
�

L��(t)q� (9)

with

K�(t) = lim
N!1

p
N

(
h�� tanhf�[� �Am�(t)]gi��

1

N

X
i

��i tanhf� [�i �Am�(t)]g
)
;

(10)

L��(t) = ��� ��
X
�

h����
�
1�tanh2f�[� �Am�(t)]g�i�A�� :

(11)
As we can see, K�(t) describes a 'frozen' correction to the ow �eld, which
depends explicitly on the microscopic realization of the pattern components f��i g,



and vanishes in the thermodynamical limit. Secondly, the di�usion matrix D��

in (8) is found to be symmetric, independent of q(t), and given by

D��(t) = ��� � e�t lim
N!1

1

N

X
i

��i �
�
i �i(0) tanhf�[�i �Am�(t)]g

�
Z t

0

ds es�th���� tanhf�[� �Am�(s)]g tanhf�[� �Am�(t)]gi� : (12)

This (8) is a `linear noise' Fokker-Planck equation, and it describes a so-called
time dependent Ornstein-Uhlenbeck process (see e.g. [5]), whose solution is a
Gaussian distribution.

Pt(q) =
1

(2�)p=2
p
det�(t)

exp

�
�1

2
[q � hqit] ���1(t)[q � hqit]

�
; (13)

where �(t) is de�ned as ���(t) = hq�q�i�hq�ihq�i, and h� � �i denotes an average
over an ensemble of initial states f�i(0)g such that m(0) = m�(0) + 1p

N
q(0),

with q(0) � O(1). Therefore, the complete solution is determined by the �rst
two moments, which are given by the solution of

d

dt
hqi = �L(t)hqi �K(t) ; (14)

d

dt
�(t) = �L(t)�(t)��(t)Ly(t) + 2D(t) : (15)

2 Escape from a Basin of Attraction as a Final Size E�ect

In this section we will use this theory to study a NN where detailed balance does
not hold, so it is not possible to de�ne an energy function whose minima are the
attractors of the dynamics of the system. This kind of problem is characterized by
a non symmetric interaction matrix A [c.f. (3)]. As we will see, the �nite version
of this system presents a qualitatively di�erent behaviour to that corresponding
to its in�nite counterpart. The system to be considered has two patterns ��, (� =
1; 2), stored according tho the learning rule (3) with an interaction matrix A =
ff1;�1g; f1; 1gg. These patterns are randomly drawn with equal probability
�pi = �1, so the overlaps between them are of order N�1=2; therefore, in the
thermodynamic limit the only states m(�) which can exist are those enclosed
by the rhombus formed by the dotted lines in Fig. (1-a). In the noiseless case, i.e.
at T = 0, the in�nite version has four basins of attraction, each corresponding
to one of the quadrants in the space of states (m�

1
;m�

2
), so the separatrices of

these regions are the lines y = 0, x = 0, x� y = �1; there are four �xed points
located over the separatices between two of the basins at �(1; 0) and �(0; 1).
We will analyze the behaviour of this system assuming any arbitrary valid initial
state within the �rst quadr! ant (satisfying m�

1
+m�

2
� 1), generalization of the

results to other initial states is straightforward if the symmetries of the problem



Fig. 1. a) Full line represents the evolution of an in�nite system, with the centre of
the circle showing the value of m�(0), while markers represent the evolution of two
particular �nite systems of the same size (N = 500), with positive and negative R,
respectively, and the same macroscopical initial state; dotted line encloses the region
where the in�nite system can exist. b) Solid (dot dash) line represents the time evolution
of the overlaps m�

1(t) (m
�

2(t)) of the in�nite system, while the symbols �, and + (ut
and �) represent the actual evolution of the overlaps m1(t) (m2(t)) for the same two
systems

are considered. By solving (6) it is possible to demonstrate that the in�nite
system evolves in straight line, with asymptotically decreasing speed, towards
the �xed point (0; 1), with m�(t) given by

m�
1
(t) = m�

1
(0) e�t ; m�

2
(t) = 1 + fm�

2
(0)� 1g e�t ; (16)

as shown in Fig. (1-a). In order to study �nite size e�ects, we need to consider
an speci�c realization of the system, characterized by its value of R, the frozen
correction (10) in the noiseless T ! 0 limit

R =
1p
N

X
i

�1i �
2

i ; (17)

and make an ansatz of initial conditions consistent with the value of m�(0). We
will consider the most general case which consists in assuming two condensed
patterns at t = 0; this ansatz is represented by initial states given by the prob-
ability density 1

p0(�) =
Y
i

n
jm�

1
(0)j ��i;�1i

+ jm�
2
(0)j ��i;�2i

+

1 Notice that we are considering a more general case than in [1]



Fig. 2. In this �gure solid lines show the theoretical predictions, while doted lines
show the precision of the theory. Markers indicate the result of computer simulations
in systems of di�erent sizes.

+
1

2
(1�jm�

1
(0)j�jm�

2
(0)j) (��i;1 + ��i;�1)

�
: (18)

If we take an average of m(0) over this ansatz, and keep in mind the de�nition
of q(t), given by (7), it is easy to demonstrate that the initial conditions are
given by

hq
1
(0)i = m�

2
(0)R ; hq

2
(0)i = m�

1
(0)R ;

�(0) =
�
1� (m�

1
(0))2 � (m�

2
(0))2

	
��� � 2m�

1
(0)m�

2
(0)(1� ���) : (19)

On the other hand, the relevant quantities (10-12) in the Fokker-Planck equation
(8) are given by

K(t) = �
�
R
0

�
; L(t) = I ; D(t) = e�t

�
1�m�

2
(0) �m�

1
(0)

�m�
1
(0) 1�m�

2
(0)

�
;

where R is given by (17). By solving (14-15) with the initial conditions (19),
we �nd that the �nite system evolves following a random path with average
uctuations given by [c.f. eq(7)]

hq1(t)i = R m�
2
(t) ; hq2(t)i = R m�

1
(t) ; (20)



Fig. 3. Computer simulations (markers) versus theory (lines) for a system with N =
1000 and R = +2:15. a) average of �nite size uctuations hq1i=R, hq2i=R, b) Central
correlations �(t)
.

�(t) = �(0)e�2t + 2D(0)e�t
�
1� e�t

�
; (21)

Figure (1) ilustrates the di�erent behaviour of two systems of the same size
(N = 500) and the same value of m�(t), but with frozen corrections of di�erent
sign. As we can see, �nite size e�ects displace the position of the �xed point on
a direction which depends on the sign of R. This allows a system with R < 0
to jump out from the �rst quadrant, and evolve towards the �xed point of the
second quadrant. The escape from this region will happen at t = tesc with tesc
de�ned by m1(tesc) = m�

1
(tesc) + q1(tesc)=

p
N = 0, which will have di�erent

values for di�erent initial states f�i(0)g. Although we know nothing for a given
particular process, this theory allows us to evaluate the average escape time, by
using instead hq1(tesc)i in the above expression, together with (16,20), to obtain:

htesci = 1

2
logN + log

�
m�
1
(0)

jRj
�
: (22)

Figure (2) shows the theoretical predictions of this theory (22) for the aver-
age escape time, and the actual measured average escape time obtained from
computing simulations performed in systems of di�erent sizes.

Finally, we present on Fig. (3) a comparison between the theoretical predic-
tions for the �rst two moments of the uctuations, and computer simulations



performed over an ensemble of n = 1600 di�erent initial conditions chosen ac-
cording to (18), for one system with N = 1000, and R = 2:15. As we can see,
the simulations are in reasonable agreement with this theory, since its theoret-
ical precision is of O(N�1=2) � 3:16%, while we have an uncertainty over the
computer simulations of O(n�1=2) = 2:5% .

3 Discussion

Finite size e�ects in NN can be very important, and as we have shown, some
�nite systems can even behave very di�erently from their in�nite counterparts,
so it is important to have a theory which allows for their evaluation. The present
theory can be successfully applied to study such e�ects to leading order in the
system size (N�1=2), in a wide variety of systems, away from saturation, and the
time dependent probability density can be explicitly calculated. These systems
are allowed to have either symmetric or non symmetric interactions, may present
non zero noise levels (T > 0), and even store biased patterns h��i 6= 0. Here,
for mathematical simplicity, we chose to consider a system with only two stored
patterns, but the results can be equally applied to systems with a higher number
of them.
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