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Abs t r ac t .  A novel approach to estimate generalisation errors of the 
simple perceptron of the worst case is introduced. It is well known that 
the generaiisation error of the simple perceptron is of the form d# with 
an unknown constant d which depends only on the dimension of inputs, 
where t is the number of learned examples. Based upon extreme value 
theory in statistics we obtain an exact form of the generalisation error 
of the simple perceptron. The method introduced in this paper opens 
up new possibilities to consider generalisation errors of a class of neural 
networks. 

1 I n t r o d u c t i o n  

Generalisation errors together  with learning errors show how fast a learning ma- 
chine improves its behaviour when the number t of training examples increases. 
There are several approaches to this problem. 

- According to the Vapnik-Chervonenkis(VC) theory of learning curves, min- 
imising empirical error within a function class 9 v on a random sample of t 
examples leads to generalisation error bounded by O(d/t) in the case tha t  
the target  function is contained in ~'. The bound is universal: it holds for 
any class of hypothesis function ~ ,  for any input distribution and for any 
target  function. The only problem specific quanti ty remaining in the bound 
is the VC dimension d, a measure of the complexity of the function class 
jr.  There are a lot of research activities along this line, see for example in 
[4, 16, 24, 25]. 

- The in-depth statistical mechanical approach is an another  origin of research. 
I t  proves results for specific models for which tools such as the replica trick 
can be applied [6, 18, 23, 21], al though a rigorous justification for the replica 
trick has not been provided [20]. Results are true under the thermodynamic  
limit [26]. 

- There are statistical and information theoretical methods of approach too 
[27, 15]. Most of these approaches suggest tha t  the generalisation error de- 
creases universally in the order of 1/t with only its coefficient unknown. The  
group led by Amari  ( [2, 19]) proposed a rigorous approach to tackle the 
problem of learning curves: a statistical approach based upon the expansion 
of est imators and the generalisation error measured by the entropic loss. 
They proved again tha t  the generalisation error is of the form 1/t with an 
exactly given coefficient of it depending on the dimension m of the input 
signals. 



414 

The theory of generalisation errors is already well developed, however, the ex- 
act form of generalisation errors of some concrete learning rule is rarely known[22]. 
Even in the simplest case-the simple perceptron, the problem to find the coeffi- 
cient of the generalisation error is still open except for some very special cases[2]. 
In this letter, based upon the extreme value theory of statistics we propose a 
novel approach to tackle the problem and open up new possibilities to rigor- 
ously consider the generalisation errors of a class of learning machines. The idea 
underlying our approach is straightforward. The generalisation error for a given 
machine is universal, as confirmed by all previous studies, in the sense that  it 
does not depend on the input distribution at all. This fact suggests tha t  to 
calculate the generalisation errors we should consider the input distribution as 
simple as possible. For a specific input we show that  the generalisation error 
of the simple perceptron is basically a linear combination of extreme values of 
input signals. Fortunately, for extremes of an i.i.d random sequence[7] we fully 
understand their properties, which enables us to complete our calculation. 

2 F r a m e w o r k  

Consider a machine fed with two dimensional independent inputs ~(r) = (~l (r), ~ (r)) 6 
f2 C / R  2. Without  loss of generality we assume that  the task for the machine to 
accomplish is the classification problem-to separate data  set {~(T), ~1 (T) < 0} 
from {~(T), ~i (T) > 0} and so sign(~l(T)) is the so-called target  function(see Re- 
mark 3 below). Suppose that  after trained by t examples in terms of a learning 
rule, for example the simple perceptron learning rule, the output  of the learned 
machine is h(~(t  + 1)) E { -1 ,  1} when a new signal ~(t + 1) is coming. One 
key assumption of our approach is tha t  we take into account the case of worst 
learning. 

Assumption 1: all new coming signals dropped on the one side of the line h(x, y), (x, y) E 
1R 2 are correctly recognised, whereas on the other side are not  correctly classified. 

Suppose that  the distribution of ~(r) is symmetric with respect to  x = 0, the 
generalisation error of two dimensional case can then be defined by 

e(t, 2) = ([h(~(t + 1)) - sign(~l (t + 1))]> (1) 
= (P(~( t  + 1) E f2(t)lJzt)} 

where Y2(t) is the region(the filled region shown in Fig. 1 (b)) between the target 
function and function h and /2(t) E 5rt, ~'t is the sigma-algebra generated by 
~(T), r <_ t .  

Let ~1 (tk) be the (t - k)-th smallest minimum in the set {~1 (v), r = 1 , - - - ,  t}. 
and so 

~l(t t)  = min{~l(r) ,T = 1 , - - . , t }  
~l (t( t  - 1)) = min{~l(T) > ~t (tt), r = 1 , . - .  , t ,  r ~ i t}  (2) 

Assumption I thus indicates that the line h passes through the minimum (~1 (tt), ~2 (tt)) 
and another k-th smallest minimum. Note that  here k depends on the realization 
of {{ ( r ) , r  = 1 , - - - , t}(Fig .  1). 
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3 E x t r e m e  V a l u e  T h e o r e y  

There are three types of behaviours for extreme values ~1 (tt) of a sequence of 
random variables ~1 (1), ~1 (2 ) , . " ,  ~l(t). For a full exposition of extreme value 
theory we refer the reader to [17, 13]. Typically for an extreme ~1 ( t ( t  - k)) of a 
sequence of random variables, i.e. for the k-th minimum of a sequence, we have 
the following property 

(~1 ( t ( t  - k))) = c(k)o(7( t ) )  (3) 

where c(k) is a constant depending on k and 7 (0  is a vanishing rate of t. 

"['hc target funclioll 
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~2 
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O 

O 

~t 
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Fig. 1. Open circle=examples or input signals. Filled circle=(~l (tt), ~2 (tt)) and filled 
rectangle=(~l ( t ( t - 2 ) ) ,  ~2( t ( t -2 ) ) ) .  The target function is sign(x). (a). After learning t 
examples a perceptron is capable of separating data on the two sides of the line h(x,  y). 
(b). Filled region =Y2(t). 

4 R e s u l t s  

Suppose tha t  ~I(T) "- U(O, 1). When t --+ oo we have 

X e -  x i). P(~I  (tt) >_ -[) = 
k - - 1  

X e -  x x s i i) .  P ( ~ ( t ( t  - k)) >_ -[) = ~ -~. 
s = O  

k + l  
i i i ) .  (~t ( t ( t  - k))) -- t 

for x > O. 

(4) 
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P r o o f  i). From Example 1.7.9 in [17] we know that  P(~l(tt) ~ 1 - x / t )  -- e -x for 
rl(tt) representing the largest maximum of ~1 (T), T = 1,--- t. Then i) is a simple 
consequence of the symmetry  between 1 and 0 of the uniform distribution. 

ii). It is a simple consequence of Theorem 2.2.1 and Example 1.7.9 in [17]. 
iii). Trivial. 
For uniformly distributed inputs ~1 (7-), when t -~ cc we have 

1 
e(t, 1 ) : =  ( P ( ( l ( t  + 1) _< ~, (tt)prt)) = - (5) 

t 

P r o o f  By definition of e(t, 1) (Eq. (5)) and Eq. (4) we get 

f0 ~ 1 e(t, 1) ----- (~1 (tt)) = xte- t=dx t (6) 

Now we turn  our at tention to more general case: the input signals are contin- 
uously distributed random variables. By this we mean that  the Radon-Nikodyn 
derivative of the input distribution is absolutely continuous with respect to the 
Lebesgue measure. Denote the density 

f ( x )  = dP /dx  

From the definition of e(t, 1) (Eq. (5)) we see that  e(t, 1) = ;~l(tt) f ( x )dx .  Define 
J 0  

a transformation Y : /R  1 - + / R  1 by Y(x )  = fo  f ( u ) d u  then Eq. (4) becomes 

f 
Y(~1 ( t t ) )  

e(t, 1) = d Y ( x )  (7) 
JY(O) 

Since the function is Y is a nondecreasing function we conclude that  Y(~I (tt)) >_ 
Y ( ( l ( t ( t  - 1))) > . - -  _> Y(~l ( tk ) )  ~ ..., k < t - 1 which yields 

If ~1 is a continuously distributed random variable we have 

e(t, 1) = 1/t  

Lemma 3 also gives rise to a transparent and elementary proof of the universal 
property of the generalisation errors of the simple perceptron in one dimensional 
case: c(t, 1) is independent of the distribution of inputs; ~(t, 1) = I / t  for what- 
ever continuously distributed inputs. With the help of lemmas above and the 
assumption below we consider the case of two dimensional inputs. 
Assumption 2: We suppose that ~2(~-) ~" 1/2((f0 + 51), i.e. inputs signals are 
drawn from two lines y = 0 and y = 1. 

Suppose that  ~1 (T) is continuously distributed. As t -~ oc we have the fol- 
lowing assertion 

1 
c ( t ,  2 )  = 2 - ( 8 )  

t 
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P r o o f  The  following ident i ty  is a basic one which indicates t ha t  when ~u (t t)  
~2(t(t - 1)) [2(0 is simply the region on the  left side of the  line passing th rough  
(~ l ( t t ) ,~2 ( t t ) )  and  (~l( t ( t  - 1)) ,~2(t(t  - 1))); when ~2(tt) = ~ ( t ( t  - 1)) but  
~2(t(t  - 2)) ~ ~2(t( t  - 1)) then  $2(t) is the  region on the  left side of the line 
passing th rough  (~  ( t t ) ,  ~ ( t t ) )  and  ( ~  ( t ( t  - 2)), ~2(t(t - 2))); .--  

e(t, 2) = ([P(~(t  + 1) e f2(t)[~2(tt)  • ~2(t( t  - 1) ) ) ) I{~( t t )#~2( t ( t -1) )}  
+ P ( ~ ( t  + 1) E [2(t)l~2(tt)  = ~2(t(t  - 1)) ~ ~2(t(t  - 2))) 

"I{~2(tt)=~2(t(t-1))#~2(t(t-2))} 
+ P ( ~ ( t  + 1) E f2( t ) l~2(t t  ) = ~2(t(t - 1)) = ~2(t(t  - 2)) ~ ~2(t(t - 3))) 

. I{~2(u)=~2(t( t_l))=~(t( t_2))#~(t( t_3))}  
+...]> 

(9) 
where I is the  indicator  function. Therefore  to  obta in  an exact  expression of  
c(t, 2) it suffices for us to  consider each t e rm in Eq. (9). In fact we see tha t  

P ( ~ ( t  + 1) E ~2(t)[~2(tt) = ~2(t(t - 1)) . . . . .  ~2(t( t  - k))  ~ ~2(t( t  - k - 1))) 

= "21 [f~2(tt)jo dx -~- fo ~2(t(t-k-1)) dx] 
1 

= ~[~l(t t)  + ~1 ( t ( t -  k - 1))] 

(10) 
Note t h a t  1 /2  ~ = ((f{~2(tt)=~2(t(t-1)) . . . . .  ~2(t(t-k))#~2(t(t-k-1))})), together  

with Eq.(10) we derive tha t  

([P(~(t  + 1) E [2(t)l~2(tt)  = ~2(t(t - 1)) . . . . .  ~2(t(t - k)) # ~2(t(t - k - 1))) 

"l[{~2(tt)=~2(t(t--1)) . . . . .  ~2(t(t--k))r 
1 1 

= ~[~-((~1 (tt)) + <~1 ( t ( t -  k - 1))))] 

(11) 
Subst i tu t ing  Eq. (11) into Eq. (9), in te rms of L e m m a  3 we finally conclude 

tha t  

c(t, 2) = 2-~((~1 ( t t ) )  + (~1 ( t ( t  - 1))}) + 2-~((~1 ( t t ) )  + (~1 ( t ( t  - 2))>) + . . . ( 1 2 )  

= l ( ~ l ( t t ) )  + ~ - - ~ ( ~ ( t ( t - 1 ) ) }  + ~ - ~ ( ~ l ( t ( t - k - 2 ) ) ) +  .-- (13) 

11  1 2  1 3  
= 2 t  + ~ t  + 237  + " "  (14) 

1 
= 2 .  - (15) 

t 

Eq. (13) is the key identi ty of our  approach  which claims tha t  e(t, 2) is a lin- 
ear combinat ion  of extremes under  assumption 1 and assumpt ion  2. T h e  ident i ty  
enables us to  obtain,  in conjunct ion with ex t reme value theory,  an exact  expres- 
sion for general isat ion errors of the simple perceptron.  It  is readily seen tha t  all 
conclusions in Theo rem 1 is valid when ~2 (T) ~ pS0 + q51 ,p  > 0, q > 0 ,p  + q = 1. 



418 

To confirm our theoretical approach above: coefficient of the generalisation 
error of the simple perceptron is independent of inputs, here we include a nu- 
merical simulation to est imate the generalisation error. Let both ~1 ( r ) ,~2( r )  be 
i.i.d, and uniformly distr ibuted over [0, 1]. Fig. 3 shows the numerical results 
with 10000 times simulations for each t = 100,200,- . . ,  10000. In [9] numerical 
simulations are presented for a variety of input distributions included in NAG li- 
brary. Numerical results underpin our theoretical approach: the exact form of the 
generalisation error of the simple perceptron can be obtained under assumpt ion  
1 and assumption 2. 
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Fig. 2. Numerical simulations of e(t,2) when inputs ((I(r),(2(T)) axe i.i.d uniformly 
distributed random variables, e(t, 2) for t = 100,200,300,..., 10000 axe numerically 
calculated. 

R e m a r k  1 Surprisingly, our numerical and theoretical results are bo th  different 
from the results obtained in terms of the replica trick approach in which it is 
est imated tha t  c(t ,m) = 0.62ra/t. The deviation can be understood from the 
following two reasons: firstly the replica trick approach as we already pointed at  
the beginning of the paper  is ~alid only when m tends to infinity in proport ion 
to t; secondly the behaviour of extreme value also changes substantial ly when k 
is proport ion to t, see for example [17]. However when m is small this effect will 
not play a role in our est imation since in Eq. (13) the t e rm with large k is quite 
small already. But  when m -~ co in proportion to t we have to take into account 
this effect in Eq. (13) . 

R e m a r k  2 I t  is easily seen tha t  the approach above can be generalised to any di- 
mensional case: assume 42 (T) are distributed subjected to 1/m(5(===o,x3=o...,=, =o)+ 
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5(=~=~,=~=o,...,=~=o) + "'" + 5(=~=o,=~=o,...,z~=l))-the simplest distribution em- 
bodying geometrical structure of m dimension, the problem to find the general- 
isation error is thus reduced to calculate probabilities like in Eq. ( l l ) - E q .  (17). 
We found that(see Remark 1) 

1 i f m = l  
e(t, rn) = t (m - 1)! m 1 

+ 1)7 otherwise 

A detailed proof can be found in our full paper[9]. 

5 D i s c u s s i o n  

There remain a lot questions for further investigation. For example, a challeng- 
ing problem is to generalise our approach to consider algorithms like the BP 
algorithm etc. [1, 8, 10, 11, 12]. It is promising: to replace the line we considered 
in this paper by a curve reflecting the nonlinearity of the BP and the curve is 
determined by a few(more than two in the two dimensional ease) extreme val- 
ues of input signals; to take a similar approach as we developed here, we would 
expect to obtain a learning curve for the BP algorithm. 

In summary our approach reported in this paper opens up new possibilities 
for rigorous analyses of generalization errors which reflect intricate nonlinear 
properties underlying most learning algorithms in neural networks. 
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