Skip to main content

Association with multi-dendritic radial basis units

  • Plasticity Phenomena (Maturing, Learning & Memory)
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Abstract

Development of pattern recognition systems usually begins with selection of interesting features for resolving the problem. Later appearance of new interesting features must be taken into account in order to be used by the same system without developing the system again completely. The network configuration called follower-Associative Configuration is analyzed in classification task. This network with multidendritic connectivity presents representations generated in multiple dendritic fascicles. The associated dendritic representations of the same layer can be selected as diverse processing pathways by means of simple modulationmechanism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahalt, S.C., Krishnamurthy, A.K., Chen, P., & Melton, D.E. (1990) Competitive learning algorithms for Vector Quantization. Neural Networks. Vol. 3, pp 277–290.

    Article  Google Scholar 

  2. Buldain, J.D. (1998) Doctoral Thesis: Modelo Neuronal Artificial Multi-Dendritico de Unidades con campo receptivo. Dept. Ingeniería Electrónica & Comunicaciones. Universidad de Zaragoza.

    Google Scholar 

  3. Buldain, J.D. & Roy, A. (1998) Multi-Dendritic Neural Network Model with Receptive-Field Neurons, In revision in Neural Networks.

    Google Scholar 

  4. DeSieno, D. (1988) Adding a conscience to competitive learning. Proc. Int. Conf. on Neural Networks. pp 117–124. IEEE Press, New York.

    Google Scholar 

  5. Firenze, F. & Morasso, P. (1994) The “Capture Effect” a new self-organizing network for adaptive resolution clustering in changing environments. Proc. Int. Conference on Neural Networks. pp 653–658.

    Google Scholar 

  6. Fukushima, K., Miyaka, S., Ito, T. (1983) Neocognitron: A neural network model for a visual mechanism of pattern recognition. IEEE Transactions on System, Man and Cybernetics, 13, pp 826–834.

    Article  Google Scholar 

  7. Grossberg, S. (1987) The Adaptive Brain. Elsevier Science Publishers B.V.

    Google Scholar 

  8. Grossberg, S. (1988) Nonlinear neural networks: principles, mechanisms and architectures. Neural Networks. Vol. 1, pp 17–61.

    Article  Google Scholar 

  9. Jang, J.S.R., & Sun, C.T. (1993) Functional equivalence between Radial Basis Functions and Fuzzy inference systems. IEEE Trans. on Neural Networks. Vol. 4, no 1, pp 156–159.

    Article  Google Scholar 

  10. Kenneth, J.H., & Haas, H., & Murray-Smith, R. (1996) Extending the functional equivalence of Radial Basis Functions Networks and Fuzzy Inference Systems. IEEE Trans. on Neural Networks. Vol. 7, no 3, pp 776–781.

    Article  Google Scholar 

  11. Kohonen, T. (1982) Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43, pp 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kohonen, T. (1989) Self-Organization and Associative Memory. 3th ed., Springer-Verlag.

    Google Scholar 

  13. Li, S., Chen, Y., & Leiss, E.L. (1994) GMDP: a novel unified neuron for multilayer feedforward neural networks. IEEE Int. Conf. on Neural Networks 94. pp 107–112.

    Google Scholar 

  14. Moody, J., & Darken, C. (1989) Fast learning in networks of locally-tuned processing units. Neural Computation. Vol. 1 no 2 pp 281–294.

    Article  Google Scholar 

  15. Poggio, T., & Girosi, F. (1990) Networks for approximation and learning. Proceedings of the IEEE, Special Issue on Neural Netowrks vol. I, Sept. 90, pp 1481–1497.

    MATH  Google Scholar 

  16. Rumelhart, D.E. & McClelland, J.L. (1986) Parallel Distributed Processing. Vol. 1: Foundations. MIT Press.

    Google Scholar 

  17. Tr»vén, H.G.C. (1991) A neural network approach to statistical pattern classification by “semiparametric” estimation of probability density functions. IEEE Trans. on Neural Networks. Vol. 2, no 3, pp 366–377.

    Article  Google Scholar 

  18. Whitehead, B.A., & Choate, T.D. (1996) Cooperative-Competitive Genetic Evolution of Radial Basis Function Centers and Widths for Time Series Prediction. IEEE Trans. on Neural Networks. Vol. 7, no 4, pp 869–881.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

David Buldain, J., Roy, A. (1999). Association with multi-dendritic radial basis units. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098215

Download citation

  • DOI: https://doi.org/10.1007/BFb0098215

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics