Skip to main content

SA-prop: Optimization of multilayer perceptron parameters using simulated annealing

  • Plasticity Phenomena (Maturing, Learning & Memory)
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

Abstract

A general problem in model selection is to obtain the right parameters that make a model fit observed data. If the model selected is a Multilayer Perceptron (MLP) trained with Backpropagation (BP), it is necessary to find appropriate initial weights and learning parameters. This paper proposes a method that combines Simulated Annealing (SimAnn) and BP to train MLPs with a single hidden layer, termed SA-Prop. SimAnn selects the initial weights and the learning rate of the network. SA-Prop combiens the advantages of the stochastic search performed by the Simulated Annealing over the MLP parameter space and the local search of the BP algorithm.

The application of the proposed methodto several real-world benchmark problems shows that MLPs evolved using SA-Prop achieve a higher level of generalization than other perceptron training algorithms, such as QuickPropagation (QP) or RPROP, and other evolutive algorithms, such as G-LVQ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H.L. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley, Chichester, U.K., 1989.

    MATH  Google Scholar 

  2. C. San Martin; C. Gruss; J.M. Carazo. Six molecules of SV40 large tantigen assemble in a propeller-shaped particle around a channel. Journal of Molecular Biology, 268, 15–20, 1997.

    Article  Google Scholar 

  3. S. Fahlman. An empirical study of learning speed in back-propagation networks Technical report, Carnegie Mellon University, 1988.

    Google Scholar 

  4. S.E. Fahlman. Faster-Learning Variations on Back-Propagation: An Empirical Study. Proceedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann, 1988.

    Google Scholar 

  5. Werner Kinnebrock. A ccelerating the standard backpropagation method using a genetic approach. Neurocomputing, 6, 583–588, 1994.

    Article  Google Scholar 

  6. S. Kirkpatrick Optimization by Simulated Annealing—Quantitative Studies. J. Stat. Phys. 34, 975–986, 1984.

    Article  MathSciNet  Google Scholar 

  7. J.J. Merelo; A. Prieto; F. Moran; R. Marabini and J.M Carazo. Automatic Classificati of Biological Particles from Electron-microscopy Images Using Conventional and Genetic-algorithm Optimized Learning Vector Quantization. Neural Proccessing Letters 8: 55–65, 1998, 1998.

    Article  Google Scholar 

  8. Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, Second, Extended Edition. Springer-Verlag, 1994.

    Google Scholar 

  9. D.J. Montana and L. Davis. Training feedforward neural networks using genetic algorithms. Proc. 11th Internat. Joint Conf. on Artificial Intelligence, 762–767, 1989.

    Google Scholar 

  10. V. Vergara; S. Sinne; C. Moraga. Optimal Identification Using Feed-Forward Neural Networks. Lectures Notes in Computer Science, vol. 930, 1052–1059, 1995.

    Article  Google Scholar 

  11. Lutz Prechelt. PROBEN1—A set of benchmarks and benchmarking rules for neural network training algorithms. Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, D-76128 Karlsruhe, Germany, September 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.Z on ftp.ira.uka.deurl

    Google Scholar 

  12. P.A. Castillo; J. Gonzalez; J.J. Merelo; V. Rivas; G. Romero; A. Prieto. G-Prop: Global Optimization of Multilayer Perceptrons using GAs. submitted to Neurocomputing, 1998.

    Google Scholar 

  13. M. Riedmiller. Description and Implementation Details. Technical report, University of Karlsruhe, 1994.

    Google Scholar 

  14. M. Riedmiller and H. Braun. A Direct Adaptive Method for Faster Backpropagation Learning; The RPROP Algorithm. In Ruspini, H., (Ed.) Proc. of the ICNN93, San Francisco, pp. 586–591, 1993.

    Google Scholar 

  15. O. L. Mangasarian; R. Setiono and W.H. Wolberg. Pattern recognition via linear programming: Theory and application to medical diagnosis. Large-scale numerical optimization, Thomas F. Coleman and Yuying Li, editors, SIAM Publications, Philadelphia 1990, pp 22–30, 1990.

    Google Scholar 

  16. T. Tambouratzis. Simulated Annealing Artificial Neural Networks For the Satisfiability (SAT) Problem. Artificial Neural Nets and Genetic Algorithms, 340–343, 1995.

    Google Scholar 

  17. N. Metropolis; A.W. Rosenbluth; M.N. Rosenbluth; A.H. Teller; E. Teller. Equations of State Calculations by Fast Computing Machines. J. Chem. Phys. 21, 1087–1092, 1958.

    Article  Google Scholar 

  18. S. Kirkpatrick; C.D. Gerlatt; M.P. Vecchi. Optimization by Simulated Annealing. Science 220, 671–680, 1983.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castillo, P.A., Merelo, J.J., González, J., Rivas, V., Romero, G. (1999). SA-prop: Optimization of multilayer perceptron parameters using simulated annealing. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098224

Download citation

  • DOI: https://doi.org/10.1007/BFb0098224

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics