Skip to main content

Neuronal coding and color sensations

  • Artificial Intelligence and Cognitive Neuroscience
  • Conference paper
  • First Online:
Foundations and Tools for Neural Modeling (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1606))

Included in the following conference series:

  • 529 Accesses

Abstract

The state of the art and the further possibilities of physiological and psychophysical simulations of color vision are discussed. To achieve physiologically and psychophysically adequate models of color vision and other perceptual systems 1) the properties of the respective stimuli have to be determined and described by physiological models; 2) the properties of the neuronal coding system have to be measured by electrophysiological methods and described in physiological neuronal network simulations; 3) the sensations (perceptions) have to be described as related to the neuronal coding systems (epistemological, i.e., structural description); in addition, 4) the sensations (perceptions) have to be described as closely related or identical to material (physical) properties (ontological description). Simulations with these models allow us to explain the results of behavioral (animals) and psychophysical (man) experiments from the properties of the stimuli alone (neuroethology) including the internal representation of color stimuli in terms of color sensations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backhaus, W., Gerster, U., Buckow, H., Pielot, R., Breyer, J., Becker, K.: Physiological Simulations of Neuronal Color Coding in Honeybees. In: Bionet ’96. Bio-Informatics and Puls-propagating Networks—Selected Contributions, 3rd Workshop November 14–15, 1996, Berlin. GFAI, Berlin (1996) 24–32

    Google Scholar 

  2. Backhaus, W. (ed.): Neuronal Coding of Perceptual Systems. Proceedings of the International School of Biophysics, Course on “Neuronal Coding of Perceptual Systems”, Ischia/Naples, Italy, 12.–17.10.1998, Istituto Italiano per gli Studi Filosofici, Study Program on “From Neuronal Coding to Consciousness”. In: Series of Biophysics and Biocybernetics, Vol. 8. World Scientific, Singapore New Jersey, London Hong Kong (in prep.)

    Google Scholar 

  3. Backhaus, W., Kliegl, R., Werner, J.S. (eds.): Color Vision—Perspectives from Different Disciplines. De Gruyter, Berlin (1998)

    Google Scholar 

  4. Kevan, P.G., Backhaus, W.: Color vision: Ecology and Evolution in Making the Best of the Photic Environment. In: Backhaus, W., Kliegl, R., Werner, J.S. (eds.): Color Vision—Perspectives from Different Disciplines. De Gruyter, Berlin (1998) 163–183.

    Chapter  Google Scholar 

  5. Becker, K., Backhaus, W.: Physiological Modeling of Temporal Properties of the Neuronal Color Coding System in the Honeybee. In: Taddei-Ferretti, C., Musio, C. (eds.): From Structure to Information in Sensory Systems. World Scientific, Singapore New Jersey London Hong Kong (1998) 495–499

    Google Scholar 

  6. Becker, K., Backhaus, W.: A Physiological Model of Dark-and Light-adapted Photoreceptors of the Honeybee. Biol. Cybern. (subm.)

    Google Scholar 

  7. Menzel, R., Backhaus, W.: Colour Vision in Insects. In: Cronly-Dillon, J. (ed.): Vision and Visual Dysfunction, Vol. 6, Gouras, P. (ed.): Perception of Colour, chapt. 14. Macmillan, London (1991) 262–293

    Google Scholar 

  8. Backhaus, W.: Color Vision in Honeybees. Neurosc. & Biobeh. Rev. 16 (1992) 1–12.

    Article  Google Scholar 

  9. Backhaus, W.: Color Vision and Color Choice Behavior of the Honeybee. In: Recent Progress in Neurobiology of the Honeybee. Special Issue, Apidologie 24 (1993) 309–331

    Google Scholar 

  10. Kien, J., Menzel, R.: Chromatic Properties of Neurons in the Optic Lobes of the Bee. II. Narrow Band and Colour Opponent Neurons. J. Comp. Physiol. 113 (1977) 35–53.

    Article  Google Scholar 

  11. Backhaus, W.: Color Opponent Coding in the Visual System of the Honeybee. Vis. Res. 31 (1991) 1381–1397

    Article  Google Scholar 

  12. Backhaus, W.: The Bezold-Brücke Effect in the Color Vision System of the Honeybee. Vis. Res. 32 (1992) 1425–1431

    Article  Google Scholar 

  13. Jacobs, G.H.: Comparative Color Vision. Academic Press, New York Toronto Sydney (1981)

    Google Scholar 

  14. Backhaus, W.: Physiological and Psychophysical Simulations of Color Vision in Humans and Animals. In: Backhaus, W., Kliegl, R., Werner, J.S. (eds.): Color Vision—Perspectives from Different Disciplines. De Gruyter, Berlin (1998) 45–77

    Chapter  Google Scholar 

  15. Backhaus, W., Breyer, J., 1995. Simulation of Co-evolution of Color Vision Systems of Pollinating Insects and Spectral Reflectance of Flowers. In: Burrows, M., Matheson, T., Newland, P.L., Schuppe, H. (eds.): Proceedings of the 4th International Congress of Neuroethology, Cambridge, England, September 3–8. Thieme, Stuttgart (1995) 276

    Google Scholar 

  16. Pielot, R., Breyer, J., Backhaus, W.: Simulations of Coevolution of Color Vision Systems of Pollinating Insects and Spectral Reflectance of Flowers. Biol. Cybern. (subm.)

    Google Scholar 

  17. Pielot, R., Backhaus, W.: Simulations of Coevolution of Polychromatic Color Vision Systems of Pollinating Insects and Spectral Reflectance of Flowers. Biol. Cybern. (subm.)

    Google Scholar 

  18. Siemers, B., Backhaus, W., Franz, H.: Color Vision in Farm Animals: Evidence for Trichromacy in Dwarf Goats. In: Proceedings of the Neurobiology Conference, Göttingen, 1999. Thieme, Stuttgart New York (in press)

    Google Scholar 

  19. Menzel, R.: Chromatic Vision in the Honeybee at Low Light Intensities, J. Comp. Physiol. A 141 (1981) 389–393.

    Article  Google Scholar 

  20. Backhaus, W.: Neuronal Color Coding in the Honeybee. In: Taddei-Ferretti, C., Musio, C. (eds.): From Structure to Information in Sensory Systems. World Scientific, Singapore New Jersey London Hong Kong (1998) 487–494

    Google Scholar 

  21. Backhaus, W.: The Internal Representation of Color Information in Humans and Animals. In: Taddei-Ferretti, C., Musio, C. (eds.): Downward Processes in the Perception Representation Mechanisms. World Scientific, Singapore New Jersey London Hong Kong (1998) 256–262

    Google Scholar 

  22. Backhaus, W.: Conscious and Unconscious Color Vision in Man and Animals. In: Taddei-Ferretti, C., Musio, C. (eds.): Downward Processes in the Perception Representation Mechanisms. World Scientific, Singapore New Jersey London Hong Kong (1998) 373–389

    Google Scholar 

  23. Backhaus, W.: Physiological Modeling of Color Sensations. In: Taddei-Ferretti, C., Musio, C. (eds.): Neuronal Bases and Psychological Aspects of Consciousness. World Scientific, Singapore New Jersey London Hong Kong (in press)

    Google Scholar 

  24. Stoerig, P., Cowey, A.: Wavelength Sensitivity in Blindsight. Nature 342 (1989) 916–918

    Article  Google Scholar 

  25. Stoerig, P.: Wavelength Information Processing versus Color Perception: Evidence from Blindsight and Color-blind Sight. In: Backhaus, W., Kliegl, R., Werner, J.S. (eds.): Color Vision—Perspectives from Different Disciplines. De Gruyter, Berlin (1998) 131–147

    Chapter  Google Scholar 

  26. Backhaus, W.: On the Constraints for a Physiological Model of Color Sensations. In: Elsner, N., Wehner, R. (eds.) New Neuroethology on the Move. Göttingen Neurobiology Report 1998. Proceedings of the 26th Göttingen Neurobiology Conference 1998, Vol. I. Thieme, Stuttgart (1998) 750

    Google Scholar 

  27. Bohm, D., Hiley, B.J.: The Undivided Universe—an Ontological Interpretation of Quantum Theorie. Routledge, London New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backhaus, W. (1999). Neuronal coding and color sensations. In: Mira, J., Sánchez-Andrés, J.V. (eds) Foundations and Tools for Neural Modeling. IWANN 1999. Lecture Notes in Computer Science, vol 1606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0098237

Download citation

  • DOI: https://doi.org/10.1007/BFb0098237

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66069-9

  • Online ISBN: 978-3-540-48771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics