Skip to main content

Geoprove: Geometric probes for virtual environments

  • Workshop: Virtual Reality
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1593))

Abstract

We present a software architecture that can be used to instrument interactive virtual environments with virtual probes to obtain quantitative information from geometric presentations. This architecture provides tools by which measurements can be obtained from multiple levels of data presentations, ranging from graphically displayed geometry to the underlying raw data sets.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Academic Computing Services Amsterdam (SARA), Amsterdam, the Netherlands. SARA—CAVE Homepage, 1998. http://www.sara.nl/hec/vr/cave/.

    Google Scholar 

  2. R.G. Belleman, J.A. Kaandorp, and P.M.A. Sloot. A virtual environment for the exploration of diffusion and flow phenomena in complex geometries. Future Generation Computer Systems, 14(3–4):209–214, 1998.

    Article  Google Scholar 

  3. Rachael Brady, John Pixton, George Baxter, Patrick Moran, Clinton S. Potter, Bridget Carragher, and Andrew Belmont. Crumbs: a virtual environment tracking tool for biological imaging. In Murray Loew and Nahum Gurshon, editors, Proceedings of the IEEE Symposium on Frontiers in Biomedical Visualization, pages 18–25, Los Alamitos, CA, October 30 1995. IEEE Computer Society Press. //mayflower.ncsa.uiuc.edu/crumbs/crumbs.html.

    Google Scholar 

  4. Steve Bryson and Sandy Johan. Time management, simultaneity and time-critical computation in interactive unsteady visualization environments. In Proceedings of Visualization '96, page 255. IEEE Computer Science Press, Los Alamitos, CA, 1996.

    Google Scholar 

  5. C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-screen projection-based virtual reality: The design and implementation of the CAVE. In SIGGRAPH '93 Computer Graphics Conference, pages 135–142. ACM SIGGRAPH, August 1993.

    Google Scholar 

  6. Willem C. de Leeuw and Jarke J. van Wijk. A probe for local flow field visualization. In R.D. Bergeron G.M. Nielson, editor, IEEE Visualization '93, pages 39–45, Los Alamitos, CA, 1993. IEEE Computer Society Press.

    Chapter  Google Scholar 

  7. J. Feder. Fractals. Plenum Press, New York, London, 1988.

    MATH  Google Scholar 

  8. J.A. Kaandorp. Analysis and synthesis of radiate accretive growth in three dimensions. J. Theor. Biol., 175:39–55, 1995.

    Article  Google Scholar 

  9. J.A. Kaandorp. Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar. Biol., (in press).

    Google Scholar 

  10. J.A. Kaandorp, C. Lowe, D. Frenkel, and P.M.A. Sloot. The effect of nutrient diffusion and flow on coral morphology. Physical Review Letters, 77(11):2328–2331, 1996.

    Article  Google Scholar 

  11. B.B. Mandelbrot. The fractal geometry of nature. Freeman, San Francisco, 1983.

    Google Scholar 

  12. The Numerical Algorithms Group Ltd., Oxford, UK. Iris Explorer User's Guide, 1998. http://www.nag.co.uk/visual/IE/iecbb/DOC/UG/CONTENTS.html.

    Google Scholar 

  13. B. Rinkevich and Y. Loya. Coral isomone: a proposed chemical signal controlling interclonal growth patterns in a branching coral. Bull. Mar. Sci., 36:319–324, 1985.

    Google Scholar 

  14. Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit, an object-oriented approach to 3D graphics (2nd edition). Prentice Hall, Upper Saddle River, NJ, 1997. ISBN 0-13-954694-4.

    Google Scholar 

  15. K.P. Sebens, J. Witting, and B. Helmuth. Effects of water flow and branch spacing on particle capture by the reef coral madracis mirabilis (duchassaing and michelotti). J. Exp. Mar. Biol. Ecol., 211:1–28, 1997.

    Article  Google Scholar 

  16. C. Upson, T. Faulhaber Jr., and D. Kamins et al. The Application Visualization System: a computational environment for scientific visualization. IEEE Computer Graphics and Applications, 9(4):30–42, July 1989.

    Article  Google Scholar 

  17. Virtual Reality Consulting (VRCO) Inc., Chicago, IL. CAVE User's Guide, 1998. http://www.vrco.com/CAVE_USER/index.html.

    Google Scholar 

  18. Haim J. Wolfson and Isidore Rigoutsos. Geometric hashing: An overview. IEEE Computational Science and Engineering, pages 10–21, October–December 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Sloot Marian Bubak Alfons Hoekstra Bob Hertzberger

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Belleman, R.G., Kaandorp, J.A., Dijkman, D., Sloot, P.M.A. (1999). Geoprove: Geometric probes for virtual environments. In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds) High-Performance Computing and Networking. HPCN-Europe 1999. Lecture Notes in Computer Science, vol 1593. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100642

Download citation

  • DOI: https://doi.org/10.1007/BFb0100642

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65821-4

  • Online ISBN: 978-3-540-48933-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics